JPS6256255B2 - - Google Patents

Info

Publication number
JPS6256255B2
JPS6256255B2 JP56186642A JP18664281A JPS6256255B2 JP S6256255 B2 JPS6256255 B2 JP S6256255B2 JP 56186642 A JP56186642 A JP 56186642A JP 18664281 A JP18664281 A JP 18664281A JP S6256255 B2 JPS6256255 B2 JP S6256255B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
thermoplastic resin
weight
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56186642A
Other languages
Japanese (ja)
Other versions
JPS5887353A (en
Inventor
Naoyuki Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical BASF Co Ltd
Original Assignee
Mitsubishi Chemical BASF Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical BASF Co Ltd filed Critical Mitsubishi Chemical BASF Co Ltd
Priority to JP56186642A priority Critical patent/JPS5887353A/en
Publication of JPS5887353A publication Critical patent/JPS5887353A/en
Publication of JPS6256255B2 publication Critical patent/JPS6256255B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は自動車の天井材、ドアトリム、リヤー
シエル、シートバツク、トランクまわり部材等の
内装材として有用な深絞成形可能な剛性と弾性を
兼ね備えた不織布の製造方法に関するものであ
る。 従来、上記内装材としてはフエノール・アルデ
ヒド縮合樹脂に繊維を充填したレジンフエルト、
発泡合成樹脂、ポリプロピレン複合体、ポリプロ
ピレン製ダンボール等の100℃以上の温度に耐え
うる素材が用いられている。これら素材におい
て、レジンフエルトは剛性、耐熱保型性、寸法安
定性に優れるが、成形作業性、耐衝撃性、通気性
および軽さに乏しい欠点がある。また、ポリプロ
ピレン製ダンボールは剛性、軽量性に優れるが、
その反面、通気性に乏しい。また、コルゲート部
材を用いるため強度に方向性がある。更に発泡合
成樹脂、例えば架橋ポリスチレンは軽さに優れる
が耐熱保型安定性、耐屈曲性が乏しい欠点があ
り、内装材としての要求性能、即ち、剛性と適度
の柔軟性、軽量性、寸法安定性、耐熱保型性、成
形性の全てを満足する素材は得られていない。 一方、ポリエチレンやポリプロピレン、低融点
(140℃)ポリエステル等の繊維を繊維バインダー
とし、これと合成繊維よりなる繊維マツトをニー
ドリングしてウエブの上下層の繊維を仮り止めし
た後、加熱して上記繊維バインダーを溶融させ、
他の合成繊維の結合を行つて弾力に富む不織布を
製造する方法は公知である。この不織布は軽量
性、柔軟性に富むが成形性、剛性に欠けるため平
坦な場所で使用される内装材としては有用である
が、複雑な形状の場所に適用される内装材として
は有用でない。 また、ニードルパンチ布に軟化点が100〜130℃
の熱可塑性樹脂の水性エマルジヨンを塗布または
含浸させた後、加熱乾燥して水分を除去して成形
可能な不織布を得、これを更に加熱圧縮成形して
得られた自動車の内装材は公知である。この内装
材は形状が複雑な場所に敷設できる利点を有す
る。しかし、該不織布の繊維の固定はニードルパ
ンチングによる繊維同志の絡合とエマルジヨン樹
脂の繊維への付着によるものであるため、レジン
フエルトと比較して外部応力に対する寸法安定性
が劣るとともに、エマルジヨンが塗布、含浸され
る不織布の見掛密度が0.08〜0.13g/cm3と嵩高い
ためエマルジヨン樹脂による充填効果が悪く剛性
も劣る欠点がある。 本発明は後者の成形可能な不織布のかかる寸法
安定性、剛性に乏しい欠点を適宜の軽量性、耐熱
保型性、通気性を低下させないで改良した不織布
の製造方法を提供するものであつて、熱可塑性樹
脂製繊維バインダーの併用により不織布の剛性を
向上させるとともに、繊維同志を接着させて寸法
安定性を向上させ、また、エマルジヨンを塗布ま
たは含浸させる前に繊維マツトを圧縮して空気の
一部を追い出し、エマルジヨン樹脂のマツト中へ
の充填率を多くすることを可能ならしめて不織布
の剛性向上を計つている点に大きな特徴がある。 即ち、本発明は、熱可塑性樹脂製繊維が15〜50
重量%と、該熱可塑性樹脂の融点よりも40℃以上
高い融点を有する合成繊維もしくは天然繊維85〜
50重量%とよりなる繊維マツトをニードリングし
た後、該マツトを前記熱可塑性樹脂製繊維は溶融
するが合成繊維または天然繊維は溶融しない温度
で加熱して熱可塑性樹脂製繊維を溶融させ、次い
で該熱可塑性樹脂製繊維が溶融状態を保つ間に該
繊維マツトを圧縮して該マツトの見掛密度を0.15
〜0.50g/cm3に調整し、この圧縮された繊維マツ
トに更に成形可能な温度範囲が80〜180℃の熱可
塑性樹脂の水性エマルジヨンを該繊維マツトの繊
維重量に対し、エマルジヨンの樹脂固型分が15〜
300重量%となる様に塗布または含浸させたの
ち、60〜250℃に加熱乾燥して水分を除去して不
織布を得ることを特徴とする成形可能な不織布の
製造方法を提供するものである。 本発明の実施において、ニードリングされる前
の繊維マツトは公知の不織布の製造方法で製造さ
れる。即ち、1.2〜300デニール、繊維長25〜150
mmの熱可塑性樹脂製繊維15〜50重量%と、1.2〜
300デニール、繊維長25〜150mmの合成繊維およ
び/または天然繊維85〜50重量%とが十分に混
合、開繊されたものをウエブ形成装置に供給し、
該混合繊維より形成されたカードを目的とする繊
維目付量になる様に積み重ねることにより製造さ
れる。 上記熱可塑性樹脂繊維の素材としては融点が90
〜170℃の樹脂、例えばポリエチレン、ポリプロ
ピレン、低融点ポリエステル、低融点ポリアミド
等、またはこれらの混合物が挙げられる。これら
の中でも得られる成形可能な不織布に剛性を付与
させるにはポリプロピレン製繊維が好ましい。か
かるポリプロピレンとしてはプロピレンのホモポ
リマーであつても、プロピレンを主成分とし、こ
れとエチレン、ブテン等のオレフインとの共重合
体であつてもよい。また、ポリプロピレン製繊維
の50重量%以下をポリプロピレン繊維の融点より
低融点の繊維、例えばポリエチレン製繊維におき
かえてもよい。 実質的に繊維マツトを構成する他方の繊維であ
る合成繊維の原料としてはポリエチレンテレフタ
レート、ポリアミド等の前記熱可塑性樹脂の融点
よりも40℃以上、好ましくは70℃以上高い融点を
有する熱可塑性樹脂が用いられる。また、天然繊
維としては木綿、麻、羊毛等が用いられる。これ
らはすべて屑(再使用品)であつてもよい。 繊維バインダーとしてのポリプロピレン繊維等
の熱可塑性樹脂製繊維は繊維マツト重量の15〜50
重量%、好ましくは20〜40重量%の割合で使用さ
れる。15重量%未満であると得られる不織布の剛
性、寸法安定性の向上の寄与が小さい。逆に50重
量%を越えるとレジンフエルトのようになり、繊
維の風合が損われた硬く、脆いものとなる。 上述の繊維混合体よりなるカードを積み重ねた
ウエブ(繊維マツト)は垂直方向に針で突つか
れ、繊維が垂直方向に交錯されることにより各カ
ードが仮り止めされる(いわゆるニードリン
グ)。 このニードリングされた繊維マツトは繊維バイ
ンダーの熱可塑性樹脂製繊維は溶解するが、該熱
可塑性樹脂の融点より40℃以上高い融点を有する
合成繊維、天然繊維は溶解しない温度、例えば
130〜250℃、好ましくは190〜230℃に熱風を用い
て加熱されることによりポリプロピレン繊維等の
繊維バインダーを溶解させ、次いで該繊維バイン
ダーが溶融状態を保つている間に繊維マツトの見
掛密度が0.15〜0.50g/cm3、好ましくは0.17〜
0.30g/cm3となるように冷却ロールで圧縮すると
ともに溶融した繊維バインダーを冷却し、該繊維
バインダーにより合成繊維または天然繊維同志が
3次元構造に絡合されたマツトを得る。 繊維バインダーの溶融を樹脂エマルジヨン含浸
後の不織布の賦型時に行うのでなく、かかる圧縮
工程前に行うのは繊維マツトの密度の小さい(す
なわち嵩高い)間に行う方が熱が繊維間を通り易
く、短時間で溶融を行うことができるからであ
る。 また、繊維マツトを圧縮するのはエマルジヨン
樹脂の繊維マツトの充填率を高くし、得られる不
織布の剛性を向上させるためである。 この圧縮された繊維マツトに熱可塑性樹脂の水
性エマルジヨンを、繊維マツト重量に対してエマ
ルジヨンの樹脂固型分が15〜300重量%、好まし
くは30〜150重量%となる様に塗布または含浸さ
せ、次いで60〜250℃に加熱乾燥して水分を除去
することにより成形可能な不織布が製造される。 繊維マツトに含浸されるエマルジヨンの熱可塑
性樹脂は成形可能な温度範囲が80℃以上、好まし
くは120〜180℃で粒径が0.01〜5ミクロンのもの
である。具体的にはスチレン・アクリル酸の低級
エステル(エステルの炭素数は2〜6)共重合
体、メタクリレート・アクリル酸の低級エステル
共重合体、塩化ビニリデン共重合体(塩化ビニリ
デン含量が85重量%以上)、スチレン・ジエン共
重合体等の熱可塑性樹脂が挙げられる。かかるも
ののうちの一部は油化バーデイツシエ(株)よりアク
ロナールYJ―1100D、同8393D、同7082D、デイ
オフアン192D等の商品名で販売されている。 繊維マツトへのエマルジヨンの塗布または含浸
手段としてはリツクーロール、絞りロール、吹付
ガン、浸漬等が挙げられる。一般に繊維マツトへ
のエマルジヨンの含浸を完全とするため塗布され
たエマルジヨンは絞りロールにより圧搾される。 エマルジヨンの塗布は繊維マツトの片側面よ
り、または両側面より行うことがでる。また、そ
の含浸を繊維マツト全体に行うことも、中央部に
一部未含浸部を存在させることも、片側部に一部
未含浸部を存在させることも可能である。未含浸
部を繊維マツトに存在させることにより得られる
不織布のクツシヨン性を極度に減少させないこと
ができる。 このエマルジヨン中に、得られる不織布に重量
感を付与するため、炭酸カルシウム、酸化鉄、フ
エライト、硫酸バリウム等の充填剤を配合するこ
とも、成形性を付与させるために低密度ポリエチ
レンやポリスチレン、エチレン・酢酸ビニル共重
合体等の低融点樹脂のパウダーを配合することも
可能である。 エマルジヨンが塗布、含浸された繊維マツトは
水分を除去するため60〜250℃に加熱され、成形
可能な不織布が製造される。この加熱乾燥工程の
際、エマルジヨン中の樹脂粒子は一部は粒子状態
で繊維マツト内に存在し、一部は皮膜を形成し、
繊維同志の絡合を強固とするとともに、繊維マツ
トに成形性と剛性を付与する。 このようにして成形性を付与された不織布はそ
れ自身単独で、エマルジヨン樹脂ならびに繊維バ
インダーを構成した樹脂の融点以上の温度に加熱
されたのち、所望の形状に圧縮成形され、剛性の
高い成形品が得られる。この際、化粧紙、ポリプ
ロピレンシート、ABSレザーシート、ポリ塩化
ビニルレザーシートと不織布を重ね合せて圧縮成
形すれば表面がこれらシートにより加飾された成
形品を得ることができる。これらシートに代えて
ベニア板、レジンフエルト、ダンボール等の補強
材を用いれば不織布とこれら補強材が一体化した
複合成形体を得ることもできる。 本発明の実施により得られた成形可能な不織布
は自動車の内装材の外に、家屋内の床材、パレツ
トのデツキボード表面に貼合される滑り止め材と
して利用することもできる。 以下、実施例により本発明を更に詳細に説明す
る。なお、例中の部および%は特に例記しない限
り重量基準である。 実施例 1 15デニール、繊維長約100mmの回収ポリプロピ
レン(融点164℃)繊維20%と15デニール、繊維
長75〜125mmの回収ポリエチレンテレフタレート
(融点264℃)繊維80%の混合繊維屑をランダムに
積み重ねた繊維マツト(680g/m2)を、15―18
―32―3RBの針を用いて1平方インチ当り50本の
割合でニードリングした(厚さ約6.2mm)。 このニードリングしたウエブの見掛密度は0.11
g/cm3であり、曲げ強度〓、引張強度、引張伸度
は次の通りであつた。
The present invention relates to a method for manufacturing a nonwoven fabric that has both rigidity and elasticity and can be deep drawn and is useful as an interior material for automobile ceiling materials, door trims, rear shells, seat bags, trunk parts, etc. Conventionally, the above-mentioned interior materials include resin felt made of phenol-aldehyde condensation resin filled with fibers,
Materials that can withstand temperatures of over 100°C are used, such as foamed synthetic resin, polypropylene composites, and polypropylene cardboard. Among these materials, resin felt has excellent rigidity, heat-resistant shape retention, and dimensional stability, but has the drawbacks of poor moldability, impact resistance, air permeability, and lightness. In addition, polypropylene cardboard has excellent rigidity and lightness, but
On the other hand, it lacks breathability. Furthermore, since a corrugated member is used, the strength is directional. Furthermore, foamed synthetic resins, such as cross-linked polystyrene, have excellent lightness, but have the disadvantage of poor heat resistance, shape retention stability, and bending resistance, and do not meet the required performance as interior materials, that is, rigidity, appropriate flexibility, lightness, and dimensional stability. No material has been obtained that satisfies all of the properties of elasticity, heat-resistant shape retention, and moldability. On the other hand, fibers such as polyethylene, polypropylene, and low melting point (140°C) polyester are used as a fiber binder, and a fiber mat made of synthetic fibers is needled to temporarily bind the fibers of the upper and lower layers of the web, and then heated to Melt the fiber binder,
Methods for producing resilient nonwoven fabrics by bonding other synthetic fibers are known. Although this nonwoven fabric is lightweight and flexible, it lacks moldability and rigidity, so it is useful as an interior material for flat areas, but is not useful as an interior material for areas with complex shapes. In addition, needle punched cloth has a softening point of 100 to 130℃.
After applying or impregnating an aqueous emulsion of a thermoplastic resin, a moldable nonwoven fabric is obtained by heating and drying to remove moisture, and this is further heated and compression molded to obtain an automobile interior material. . This interior material has the advantage that it can be installed in places with complex shapes. However, the fixation of the fibers in this nonwoven fabric is due to the entanglement of the fibers by needle punching and the adhesion of the emulsion resin to the fibers, so the dimensional stability against external stress is inferior compared to resin felt, and the emulsion is difficult to apply. Since the apparent density of the nonwoven fabric to be impregnated is as high as 0.08 to 0.13 g/cm 3 , the filling effect with the emulsion resin is poor and the rigidity is also poor. The present invention provides a method for producing a nonwoven fabric that improves the shortcomings of the latter moldable nonwoven fabric, such as poor dimensional stability and rigidity, without reducing its lightness, heat-resistant shape retention, and air permeability. The combination of a thermoplastic fiber binder improves the rigidity of the nonwoven fabric, as well as improves dimensional stability by adhering the fibers together, and compresses the fiber mat to absorb some of the air before applying or impregnating the emulsion. The major feature is that it is possible to increase the filling rate of the emulsion resin into the mat by expelling it, thereby improving the rigidity of the nonwoven fabric. That is, in the present invention, the number of thermoplastic resin fibers is 15 to 50.
% by weight, and synthetic fibers or natural fibers having a melting point 40°C or more higher than the melting point of the thermoplastic resin 85~
After needling a fiber mat consisting of 50% by weight, the mat is heated at a temperature that melts the thermoplastic resin fibers but does not melt the synthetic fibers or natural fibers to melt the thermoplastic resin fibers, and then While the thermoplastic resin fibers remain in a molten state, the fiber mat is compressed to reduce the apparent density of the mat to 0.15.
~0.50g/ cm3 , and add an aqueous emulsion of a thermoplastic resin having a moldable temperature range of 80 to 180°C to the compressed fiber mat, based on the fiber weight of the fiber mat, and add the solid resin of the emulsion to the compressed fiber mat. Minutes are 15~
The present invention provides a method for producing a moldable nonwoven fabric, which is characterized in that the nonwoven fabric is obtained by coating or impregnating it to a concentration of 300% by weight and then heating and drying at 60 to 250°C to remove moisture. In the practice of the present invention, the fiber mat before needling is manufactured by a known method for manufacturing nonwoven fabrics. i.e. 1.2-300 denier, fiber length 25-150
15-50% by weight of thermoplastic fibers of mm and 1.2-50% by weight
300 denier, synthetic fibers with a fiber length of 25 to 150 mm and/or 85 to 50% by weight of natural fibers are sufficiently mixed and opened and supplied to a web forming device,
It is manufactured by stacking cards formed from the mixed fibers so as to have a desired fiber weight. The melting point of the above thermoplastic resin fiber material is 90.
-170°C resins such as polyethylene, polypropylene, low melting point polyesters, low melting point polyamides, etc., or mixtures thereof. Among these, polypropylene fibers are preferred in order to impart rigidity to the moldable nonwoven fabric obtained. Such polypropylene may be a propylene homopolymer or a copolymer containing propylene as a main component and an olefin such as ethylene or butene. Further, up to 50% by weight of the polypropylene fibers may be replaced with fibers having a melting point lower than that of the polypropylene fibers, such as polyethylene fibers. The raw material for the synthetic fiber, which is the other fiber that substantially constitutes the fiber mat, is a thermoplastic resin having a melting point higher than the melting point of the thermoplastic resin by 40°C or more, preferably by 70°C or more, such as polyethylene terephthalate or polyamide. used. Further, as natural fibers, cotton, linen, wool, etc. are used. All of these may be scraps (reused items). Thermoplastic resin fibers such as polypropylene fibers as a fiber binder are 15 to 50% of the fiber mat weight.
It is used in proportions by weight, preferably 20-40% by weight. If it is less than 15% by weight, the contribution to improving the rigidity and dimensional stability of the obtained nonwoven fabric will be small. On the other hand, if it exceeds 50% by weight, it becomes like resin felt, hard and brittle with impaired fiber texture. A web (fiber mat) in which cards made of the above-mentioned fiber mixture are stacked is vertically poked with a needle, and the fibers are crossed in the vertical direction, thereby temporarily fixing each card (so-called needling). This needled fiber mat is produced at a temperature at which the thermoplastic resin fibers of the fiber binder dissolve, but synthetic fibers and natural fibers having a melting point 40°C or more higher than the melting point of the thermoplastic resin do not dissolve, e.g.
A fiber binder such as polypropylene fibers is melted by heating to 130 to 250°C, preferably 190 to 230°C using hot air, and then while the fiber binder remains in a molten state, the apparent density of the fiber mat is reduced. is 0.15~0.50g/ cm3 , preferably 0.17~
The material is compressed with a cooling roll to a density of 0.30 g/cm 3 and the molten fiber binder is cooled to obtain a mat in which synthetic fibers or natural fibers are intertwined into a three-dimensional structure by the fiber binder. Rather than melting the fiber binder when shaping the nonwoven fabric after impregnating it with the resin emulsion, it is better to melt the fiber binder before the compression step while the fiber mat has a low density (i.e., is bulky) so that heat can pass between the fibers more easily. This is because melting can be carried out in a short time. The purpose of compressing the fiber mat is to increase the filling rate of the emulsion resin in the fiber mat and improve the rigidity of the resulting nonwoven fabric. Applying or impregnating the compressed fiber mat with an aqueous emulsion of a thermoplastic resin such that the resin solid content of the emulsion is 15 to 300% by weight, preferably 30 to 150% by weight based on the weight of the fiber mat, Next, a moldable nonwoven fabric is produced by heating and drying at 60 to 250°C to remove moisture. The thermoplastic resin of the emulsion impregnated into the fiber mat has a moldable temperature range of 80 DEG C. or higher, preferably 120 DEG to 180 DEG C., and a particle size of 0.01 to 5 microns. Specifically, styrene/acrylic acid lower ester copolymers (ester has 2 to 6 carbon atoms), methacrylate/acrylic acid lower ester copolymers, vinylidene chloride copolymers (vinylidene chloride content is 85% by weight or more) ), thermoplastic resins such as styrene-diene copolymers. Some of these products are sold by Yuka Verdate Co., Ltd. under trade names such as Acronal YJ-1100D, Acronal 8393D, Acronal 7082D, and Deiophan 192D. Examples of means for applying or impregnating the fiber mat with the emulsion include a liquid roll, a squeezing roll, a spray gun, and dipping. Generally, in order to completely impregnate the fiber mat with the emulsion, the applied emulsion is squeezed using squeeze rolls. The emulsion can be applied from one or both sides of the fiber mat. Further, it is possible to impregnate the entire fiber mat, to have a partially unimpregnated portion in the center, or to have a partially unimpregnated portion on one side. By allowing the unimpregnated portion to exist in the fiber mat, the cushioning properties of the resulting nonwoven fabric can be prevented from being extremely reduced. Fillers such as calcium carbonate, iron oxide, ferrite, barium sulfate, etc. may be added to this emulsion to give the obtained nonwoven fabric a sense of weight, and fillers such as low-density polyethylene, polystyrene, ethylene, etc. may be added to give moldability. - It is also possible to blend powder of low melting point resin such as vinyl acetate copolymer. The fiber mat coated and impregnated with the emulsion is heated to 60-250°C to remove moisture, producing a moldable nonwoven fabric. During this heat drying process, some of the resin particles in the emulsion exist in the fiber mat in a particulate state, and some form a film,
It strengthens the intertwining of fibers and provides moldability and rigidity to the fiber mat. The nonwoven fabric, which has been given moldability in this way, is heated by itself to a temperature higher than the melting point of the emulsion resin and the resin that made up the fiber binder, and then compression molded into the desired shape to create a highly rigid molded product. is obtained. At this time, by layering decorative paper, polypropylene sheet, ABS leather sheet, polyvinyl chloride leather sheet, and nonwoven fabric and compression molding, it is possible to obtain a molded product whose surface is decorated with these sheets. If a reinforcing material such as a plywood board, resin felt, or cardboard is used instead of these sheets, a composite molded article in which the nonwoven fabric and these reinforcing materials are integrated can also be obtained. The moldable nonwoven fabric obtained by carrying out the present invention can be used not only as an interior material for automobiles, but also as a flooring material in a house, and as an anti-slip material attached to the surface of a pallet deck board. Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that parts and percentages in the examples are based on weight unless otherwise specified. Example 1 Mixed fiber waste consisting of 20% recycled polypropylene (melting point 164°C) fibers with a 15 denier fiber length of approximately 100 mm and 80% recovered polyethylene terephthalate (melting point 264°C) fibers with a 15 denier fiber length of 75 to 125 mm was stacked randomly. 15-18 fiber mats (680g/ m2 )
Needling was performed using a -32-3RB needle at a rate of 50 needles per square inch (thickness approximately 6.2 mm). The apparent density of this needled web is 0.11
g/cm 3 , and the bending strength, tensile strength, and tensile elongation were as follows.

【表】 〓試料片(縦120mm、横30mm)の一端を固定
し、固定した箇所より縦方向に100mmの箇所にイ
ンストロン型試験機を用いて50cm/分の割合で試
料片に垂直に変形荷重を負荷した際の屈曲抵抗値
を測定した。 このニードリングしたウエブを200℃の熱風で
3分間加熱して前記ポリプロピレン繊維を溶融さ
せ、該ポリプロピレンが未だ溶融状態にあるうち
に、冷却ロールを用いてウエブを圧縮し、約3.5
mm厚のウエブとした。この圧縮されたウエブの見
掛密度は0.19g/cm3であつた。また、曲げ強度は
縦方向、横方向ともいずれも0g/3cm幅であつ
た。 この圧縮されたウエブに油化バーデイツシエ(株)
製アクリル酸エステル・スチレン共重合体水性エ
マルジヨン“アクロナール7082D(商品名、樹脂
軟化点約120℃、樹脂粒径0.1〜0.3ミクロン、固
型分50%)”を樹脂分が350g/m2となるように塗
布後、ニツプロールによつてエマルジヨンをウエ
ブ内に含浸させた。 次いで、シリンダー乾燥機(150℃)を用いて
エマルジヨンの水分を除去するとともにエマルジ
ヨン樹脂を溶融させ、繊維の絡合を確実とした。 このようにして製造された成形可能な不織布の
曲げ強度は縦方向220g/3cm幅、横方向190g/
3cm幅であつた。 実施例2、比較例1 実施例1において、エマルジヨン含浸前のウエ
ブの圧縮の程度をウエブの肉厚が3mm(実施例
2)または5mm(比較例1)となるように変える
他は同様にして成形可能な不織布を得た。この不
織布の縦方向の曲げ強度は次表の通りであつた。
[Table] 〓One end of the sample piece (length 120 mm, width 30 mm) is fixed, and the sample piece is deformed perpendicularly at a rate of 50 cm/min using an Instron type testing machine at a point 100 mm vertically from the fixed point. The bending resistance value was measured when a load was applied. This needled web is heated with hot air at 200°C for 3 minutes to melt the polypropylene fibers, and while the polypropylene is still in a molten state, the web is compressed using a cooling roll to approximately 3.5
It was made into a web with a thickness of mm. The compressed web had an apparent density of 0.19 g/cm 3 . Further, the bending strength was 0 g/3 cm width in both the longitudinal and lateral directions. This compressed web is processed by Yuka Bardatesier Co., Ltd.
Acrylic acid ester/styrene copolymer aqueous emulsion "Acronal 7082D (trade name, resin softening point approximately 120℃, resin particle size 0.1-0.3 microns, solid content 50%)" with a resin content of 350g/m 2 After coating as described above, the emulsion was impregnated into the web using Nipprol. Next, water in the emulsion was removed using a cylinder dryer (150° C.) and the emulsion resin was melted to ensure entanglement of the fibers. The bending strength of the moldable nonwoven fabric produced in this way is 220 g/3 cm width in the longitudinal direction and 190 g/3 cm in the transverse direction.
It was 3cm wide. Example 2, Comparative Example 1 The same procedure as in Example 1 was carried out except that the degree of compression of the web before impregnation with the emulsion was changed so that the thickness of the web was 3 mm (Example 2) or 5 mm (Comparative Example 1). A moldable nonwoven fabric was obtained. The longitudinal bending strength of this nonwoven fabric was as shown in the table below.

【表】 実施例3〜6、比較例2〜4 ウエブとして実施例1で用いたポリプロピレン
繊維22%とポリエチレンテレフタレート繊維78%
の混合繊維から成形された肉厚約8mm、見掛密度
0.11g/cm3、860g/m2重量のウエブを用い、こ
れをニードリング後、加熱してポリプロピレン繊
維を溶融させ、次いで次表に示す肉厚にウエブを
圧縮し、以下、実施例1と同様にしてエマルジヨ
ンを固型分が300g/m2となるように塗布、含浸
し、加熱乾燥して成形可能な不織布を得た。 この不織布の通気性、縦方向の曲げ強度は次表
に示す通りであつた。
[Table] Examples 3 to 6, Comparative Examples 2 to 4 22% polypropylene fiber and 78% polyethylene terephthalate fiber used in Example 1 as web
Approximately 8mm thick, apparent density molded from mixed fibers.
Using a web weighing 0.11 g/cm 3 and 860 g/m 2 , this was needled, heated to melt the polypropylene fibers, and then compressed to the thickness shown in the following table. In the same manner, an emulsion was coated and impregnated to a solid content of 300 g/m 2 and dried by heating to obtain a moldable nonwoven fabric. The air permeability and longitudinal bending strength of this nonwoven fabric were as shown in the following table.

【表】 実施例 7 実施例6において、アクリル系共重合体エマル
ジヨン“アクロナール7082D”の代りに塩化ビニ
リデン共重合体エマルジヨン“デイオフアン192
(油化バーデイツシエ製商品名)”を用いる他は同
様にして通気性、難燃性に優れた成形可能な不織
布を得た。 比較例 5,6 実施例1の肉厚約6.2mm、重量680g/m2、見掛
密度約0.11g/cm3のニードリングされたウエブ
に、水性エマルジヨン“アクロナール7082D”を
固型分が470g/m2または900g/m2となるように
塗布、含浸し、以下、実施例1と同様に乾燥して
次表に示す物性の成形可能な不織布を製造した。
[Table] Example 7 In Example 6, vinylidene chloride copolymer emulsion “Diofan 192” was used instead of acrylic copolymer emulsion “Acronal 7082D”.
A moldable nonwoven fabric with excellent air permeability and flame retardance was obtained in the same manner except that "(trade name, manufactured by Yuka Verdice Co., Ltd.)" was used. Comparative Examples 5 and 6 Thickness: approximately 6.2 mm and weight: 680 g of Example 1 /m 2 and an apparent density of about 0.11 g/cm 3 , a water-based emulsion "Acronal 7082D" was applied and impregnated to a solid content of 470 g/m 2 or 900 g/m 2 , Thereafter, it was dried in the same manner as in Example 1 to produce a moldable nonwoven fabric having the physical properties shown in the following table.

【表】【table】

【表】 上表から理解されるように本発明の実施により
得られた不織布は、従来の内装材と比較し、同一
重量のものでも約2.5〜3倍の高い剛性を示し、
また耐熱保型性にも優れる。 〓 耐熱保型性の評価方法 トレイ状に成形された不織布を110℃の熱風が
吹きでている部屋に20分間保存した際、原型をと
どめているものを良好(〇)とし、原型をとどめ
ていないものを不良(×)とした。
[Table] As can be seen from the above table, the nonwoven fabric obtained by implementing the present invention exhibits about 2.5 to 3 times higher rigidity than conventional interior decoration materials even when the weight is the same.
It also has excellent heat resistance and shape retention. 〓 Evaluation method for heat-resistant shape retention When a nonwoven fabric formed into a tray is stored in a room blowing hot air at 110℃ for 20 minutes, those that retain their original shape are evaluated as good (〇), and those that retain their original shape are evaluated as good (〇). The item was marked as defective (x).

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂製繊維が15〜50重量%と、該熱
可塑性樹脂の融点よりも40℃以上高い融点を有す
る合成繊維もしくは天然繊維85〜50重量%とより
なる繊維マツトをニードリングした後、該マツト
を前記熱可塑性樹脂製繊維は溶融するが合成繊維
または天然繊維は溶融しない温度で加熱して熱可
塑性樹脂製繊維を溶融させ、次いで該熱可塑性樹
脂製繊維が溶融状態を保つ間に該繊維マツトを圧
縮して該マツトの見掛密度を0.15〜0.50g/cm3
調整し、この圧縮された繊維マツトに更に成型可
能な温度範囲が80〜180℃の熱可塑性樹脂の水性
エマルジヨンを該繊維マツトの繊維重量に対し、
エマルジヨンの樹脂固型分が15〜300重量%とな
る様に塗布または含浸させたのち、60〜250℃に
加熱乾燥して水分を除去して不織布を得ることを
特徴とする成形可能な不織布の製造方法。 2 熱可塑性樹脂製繊維がポリプロピレン繊維で
あることを特徴とする特許請求の範囲第1項の製
造方法。
[Scope of Claims] 1. A fiber mat consisting of 15 to 50% by weight of thermoplastic resin fibers and 85 to 50% by weight of synthetic fibers or natural fibers having a melting point 40°C or more higher than the melting point of the thermoplastic resin. After needling, the mat is heated at a temperature that melts the thermoplastic resin fibers but does not melt the synthetic fibers or natural fibers to melt the thermoplastic resin fibers, and then the thermoplastic resin fibers are melted. While maintaining the state, the fiber mat is compressed to adjust the apparent density of the mat to 0.15 to 0.50 g/cm 3 , and the compressed fiber mat is further molded using heat within a temperature range of 80 to 180°C. The aqueous emulsion of plastic resin is added to the fiber weight of the fiber mat,
A moldable nonwoven fabric characterized in that the emulsion is coated or impregnated with a resin solid content of 15 to 300% by weight, and then heated and dried at 60 to 250°C to remove moisture. Production method. 2. The manufacturing method according to claim 1, wherein the thermoplastic resin fiber is polypropylene fiber.
JP56186642A 1981-11-20 1981-11-20 Production of moldable nonwoven fabric Granted JPS5887353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56186642A JPS5887353A (en) 1981-11-20 1981-11-20 Production of moldable nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56186642A JPS5887353A (en) 1981-11-20 1981-11-20 Production of moldable nonwoven fabric

Publications (2)

Publication Number Publication Date
JPS5887353A JPS5887353A (en) 1983-05-25
JPS6256255B2 true JPS6256255B2 (en) 1987-11-25

Family

ID=16192154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56186642A Granted JPS5887353A (en) 1981-11-20 1981-11-20 Production of moldable nonwoven fabric

Country Status (1)

Country Link
JP (1) JPS5887353A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021952A (en) * 1983-07-18 1985-02-04 株式会社クラレ Production of high density fiber molded body
JPS61132665A (en) * 1984-11-29 1986-06-20 三菱油化バ−デイツシエ株式会社 Production of moldable nonwoven fabric
JPS61172194U (en) * 1985-04-12 1986-10-25
JPS62162060A (en) * 1985-12-30 1987-07-17 ダイニツク株式会社 Sheet like molding material
FR2671565B1 (en) * 1991-01-11 1993-04-30 Libeltex Nv NON WOVEN FABRIC USED AS A UNDERCOAT OF A SEAT COVER FABRIC FOR THE TRANSPORT OF PERSONS.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010037A (en) * 1973-05-23 1975-02-01
JPS5160781A (en) * 1974-11-21 1976-05-26 Hara Kk Kyokaseniboodono seizoohoo
JPS5162883A (en) * 1974-11-28 1976-05-31 Hara Kk Kyookasenibanno seizoohoo
JPS5231175A (en) * 1975-09-01 1977-03-09 Isao Hayashi Lining core for car and its manufacture
JPS5237875A (en) * 1975-09-19 1977-03-24 Chisso Corp Manufacture of unwoven molded sheet
JPS6239118U (en) * 1985-08-29 1987-03-09

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587388U (en) * 1978-12-13 1980-06-16

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010037A (en) * 1973-05-23 1975-02-01
JPS5160781A (en) * 1974-11-21 1976-05-26 Hara Kk Kyokaseniboodono seizoohoo
JPS5162883A (en) * 1974-11-28 1976-05-31 Hara Kk Kyookasenibanno seizoohoo
JPS5231175A (en) * 1975-09-01 1977-03-09 Isao Hayashi Lining core for car and its manufacture
JPS5237875A (en) * 1975-09-19 1977-03-24 Chisso Corp Manufacture of unwoven molded sheet
JPS6239118U (en) * 1985-08-29 1987-03-09

Also Published As

Publication number Publication date
JPS5887353A (en) 1983-05-25

Similar Documents

Publication Publication Date Title
US4836871A (en) Manufacturing method for an expanded laminated sheet
US4908176A (en) Process for producing moldable non-woven fabrics
US4418031A (en) Moldable fibrous mat and method of making the same
US5055341A (en) Composite molded articles and process for producing same
JPH0129901B2 (en)
US5981411A (en) Thermoformable material
JPS6256255B2 (en)
JPH0146625B2 (en)
JPS62299582A (en) Production of nonwoven fabric having excellent elasticity
JPH0441910B2 (en)
JP3409948B2 (en) Papermaking method stampable sheet, lightweight stampable sheet molded product and lightweight stampable sheet skin bonded product
JPH0120260B2 (en)
JPH01209131A (en) Fibrous laminate and preparation thereof
JPS6146590B2 (en)
JPH0228457B2 (en)
JPH01180339A (en) Preparation of laminated material
JPS61252378A (en) Forming material of multilayer structure and its production
JPS63309659A (en) Fiber molded body
KR0164856B1 (en) Moldable interior material of motor cars and process for producing the same
KR102512960B1 (en) Interior material for trunk of Recreational Vehicle and manufacturing method thereof
JPH0228458B2 (en)
JPH0474471B2 (en)
IE912743A1 (en) Deep-drawable textile material and shaped articles produced¹therefrom
JPH01209132A (en) Fibrous laminate and preparation thereof
WO1992003283A1 (en) Method of manufacturing fiber-reinforced plastics material