JPS6255539A - Water leak detecting device - Google Patents

Water leak detecting device

Info

Publication number
JPS6255539A
JPS6255539A JP60194846A JP19484685A JPS6255539A JP S6255539 A JPS6255539 A JP S6255539A JP 60194846 A JP60194846 A JP 60194846A JP 19484685 A JP19484685 A JP 19484685A JP S6255539 A JPS6255539 A JP S6255539A
Authority
JP
Japan
Prior art keywords
level
water
value
water leak
water leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60194846A
Other languages
Japanese (ja)
Other versions
JPH023935B2 (en
Inventor
Shozo Taniguchi
谷口 省三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60194846A priority Critical patent/JPS6255539A/en
Publication of JPS6255539A publication Critical patent/JPS6255539A/en
Publication of JPH023935B2 publication Critical patent/JPH023935B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To prevent malfunction, by providing a water leak decision means which compares a decision level determined by a water leak decision level determining means with an integrated value from a time integrating means to decide the existence of a water leak exists when the integrated value is larger than the decision level. CONSTITUTION:A vibration generated in a water supply pipe is detected 21 and inputted into a time integrating means 13 through a vibration detecting means 12. Then, the means 13 integrate output signal from the means 12 during the preset period when there is little water supply service. A detection level adjusting means 16 receives the input of the integrated value by the means 13 to be compared with a preset range and when it is off the range, above or below it, a detection level up command or down command is outputted to the means 12. Moreover, a water leak decision level determining means 15 receives the input of the integrated value bases on the detection level adjusted 16 to a proper value several times as scheduled to determine a water leak decision level on the basis of the maximum thereof. The integrated value by integration 13 is compared with the decision level determined 15 and when it is larger than the decision level, the existence of a water leak is decided 17.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は水道管からの水漏れおよびその方向を検出する
漏水検出装置l:関する、。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a water leakage detection device l for detecting water leakage from a water pipe and its direction.

〔発明の技術的R景〕[Technical landscape of invention]

浄水場、または1配水池から層要家まで配水される途中
の配水管および給水管から漏れる配水1は、現在、全品
水着の10 * % +ニなっており、これによる損失
を金額に換算すると、1m轟りの上水コストを100円
として1年当り約2,000憧円にも達する。漏水分を
補うために新規に水源を開発するにはさらに美大な資金
を必要とする。したがって、漏水の発生をすみやかに昶
り、漏水差を抑制することが急務とされるが、大部分の
漏水は地中で発生するため、これを地上から発見するこ
とば困雛である。
Currently, water leaking from water treatment plants or distribution pipes and water supply pipes on the way from water distribution reservoirs to main residences is 10 * % + 2 of all swimwear products, and the loss due to this is converted into monetary amounts. Assuming that the water cost for 1m of water is 100 yen, it amounts to approximately 2,000 yen per year. Developing new water sources to compensate for water leakage will require even more funding. Therefore, there is an urgent need to quickly remove water leaks and suppress the difference in water leakage, but since most water leaks occur underground, it is difficult to detect them from above ground.

この種の漏水検出装置としては、第6図に示すよ)に音
聴器による方法がある。これは音聴器1を、管路8が埋
設されている地上に当てるか、ボー9ングした穴を通し
て直接埋設管路にこれを接触させるか、あるいは消火栓
、量水器などの地上へ露出している部分へこれを、接触
させるかして。
As this type of water leakage detection device, there is a method using a hearing device (as shown in FIG. 6). This can be done by placing the sound hearing device 1 on the ground where the pipeline 8 is buried, by directly contacting the buried pipeline through a bored hole, or by exposing it to the ground at a fire hydrant, water meter, etc. Touch this to the part where it is.

音聴器から伝わる上動音を機械的、又は電気的(二重・
1輌シ、ヘッドホーン10を通して調査員が耳で聴くこ
とにより漏水の1無を判断する方法である。
The upward motion sound transmitted from the sound hearing device is mechanically or electrically (double/
This is a method for determining whether there is a water leak or not by having an investigator listen to the sound through headphones 10 in one vehicle.

しかし、この方法では、漏水iとその池の雑音を区別「
るためのも練技術を要すること、また、この技術を有す
る調査員が全市街地を巡回するためには膨大な労力と時
間を要するため、a水個所の発見が遅々として進まない
等の問題がある。
However, with this method, it is difficult to distinguish between water leakage i and the noise of the pond.
Problems include the slow progress in discovering a-water spots due to the fact that it takes a lot of skill and skill to conduct surveys, and it takes a huge amount of time and effort for surveyors with this technology to patrol all the city areas. There is.

これを解決するため、特開i1856−10226号公
報に小されるよ)に、配管近くに検音器を設け、その出
力を波形に変換し、この波形と予め設定しである正常時
の波形とを比較し、この比較結果により漏水の有無を検
知することが考えられている。
In order to solve this problem, a sound detector was installed near the piping, and the output was converted into a waveform, and this waveform was combined with a preset normal waveform. It is considered that the presence or absence of water leakage can be detected based on the comparison results.

しかし、この手法では一時的な波形の変化で誤動作した
り1時間の経過による波形の変化があるため正常時の波
形を決定するのが雌しいといり問題があったつ このほか水道管に、振動センサーを設け、水道の1史用
がほとんど零となる時間帯に、予定の振動レベル以上に
なる時間を積分し、これが予定値以上になると漏水有り
と判断することが考えられて、いる。しかし、この方法
では、振動センサーの設置場所により種々条件が異なり
、漏水判定レベルの設定が難しい。例えば、掘勤センサ
ーの設置場所近くに自動販売機などが設けられていると
、振動センサーは自動販売機から生じる振動を常時ひろ
ってしまうので、漏水判定レベルは高く設定しなければ
ならない。このように、漏水判定レベルは、振動センサ
ーの設置場所により種々異なり、その設定が殖しかった
However, with this method, temporary changes in the waveform can cause malfunctions, and the waveform can change over the course of an hour, so it is difficult to determine the normal waveform. One idea is to install a sensor and integrate the time when the vibration level exceeds a predetermined level during a time period when the water supply is almost zero, and if this exceeds the predetermined value, it will be determined that there is a water leak. However, with this method, various conditions vary depending on the installation location of the vibration sensor, making it difficult to set the water leakage determination level. For example, if a vending machine is installed near the location where the digging sensor is installed, the vibration sensor will constantly pick up the vibrations generated by the vending machine, so the water leak detection level must be set high. As described above, the water leakage determination level varies depending on the installation location of the vibration sensor, and its settings are complicated.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、振動センサーの設置場所に関係なく、
その設置場所に適した漏水検出レベルを自動設定できる
漏水検知装置を得ることにある。
The purpose of the present invention is to
To obtain a water leakage detection device that can automatically set a water leakage detection level suitable for the installation location.

〔発明の概要〕[Summary of the invention]

本発明による漏水検知装置は、第1図で示すよりに、水
道管11に生じる振動な振動センサ21でとらえこれが
ノツ[定レベル以上の場合出力信号を生じる振動検出手
段12と、この振動検出手段12からの出力信号を水道
の便用がほとんどない予め設定された時間帯の間積分す
る時間積分手段13と、この時間積分手段13(二よる
積分値を入力し予定の設定範囲との比較により設定範囲
(二尉して上方(ニガれている場合は011記検出レベ
ル上げ指令を出力し下方に外れている場合は検出レベル
下げ指令を出力する検出レベル調整手段16と、この検
出レベル調整子役16により適正値に調令された検出レ
ベルに基づく積分1直を予定回数入力しこれらのうちの
最大値を基に漏水判定レベルを決定する手段15と、こ
の漏水判定レベル決定手段15により決定された判定レ
ベルと前記時間積分手段13からの積分値とを比較しこ
の積分値が判定レベルより大きければ漏水有りと判定す
る漏水判定手段17とを備えており、前記検出レベル調
整手段16 、i6よび漏水判定レベル決定手段15に
より、設置場所に対応した検出レベルおよび判定レベル
を決めることかでさ、それにより、自動販売機等のノイ
ズにより誤動作することなく漏水を確実に検出できるも
のである。
As shown in FIG. 1, the water leakage detection device according to the present invention uses a vibration sensor 21 to detect vibrations generated in a water pipe 11. A time integration means 13 integrates the output signal from 12 during a preset time period in which water service is hardly used; A detection level adjustment means 16 that outputs a detection level increase command in 011 if it is outside the setting range (upwards from the second position) and outputs a detection level lowering command if it is outside the setting range, and this detection level adjustment child actor. means 15 for inputting a scheduled number of integral shifts based on the detection level adjusted to an appropriate value by step 16 and determining a water leakage determination level based on the maximum value of these; The water leak determining means 17 compares the determined determination level with the integral value from the time integrating means 13 and determines that there is a water leak if the integral value is larger than the determination level, and the detection level adjusting means 16, i6, By determining the detection level and determination level corresponding to the installation location by the water leakage determination level determination means 15, water leakage can be reliably detected without malfunctioning due to noise from the vending machine or the like.

〔発明の実施例〕[Embodiments of the invention]

以ド、図面を参照しながら本発明の実施例を詳細に説明
する。第2図におい−C121は振動を検出するセンナ
−で、水A管の管壁(二取付けて漏水発生時の水中を伝
播する音圧伝動によび管壁を伝播する倣動を検出する。
Embodiments of the present invention will now be described in detail with reference to the drawings. In FIG. 2, C121 is a vibration detecting sensor which is attached to the pipe wall of the water A pipe (2) and detects the sound pressure transmission propagating through the water and the following motion propagating through the pipe wall when a water leak occurs.

振動検出子設置2は上記センナ21を入力部とTるもの
で、次の各回路を持つ。
The vibration detector installation 2 has the sensor 21 as an input section, and has the following circuits.

すなわち、nはオペアンプを1!i!用した増1鴎回路
で、センナで検出した微小信号を増ユ<rる。24はオ
ペアンプを使用した比較回路で、増幅回路おにて増幅さ
れた信号を、予め設定した判定基準電圧E。
In other words, n is 1 operational amplifier! i! The small signal detected by the senna is multiplied by the magnification circuit used. 24 is a comparison circuit using an operational amplifier, which converts the signal amplified by the amplifier circuit to a preset judgment reference voltage E.

と比較し、この基準電圧E、以上の信号のみを出力させ
る。なお、几、 〜R,、Rff、 −y Rlaは抵
抗、SW、はロータリスイッチである。判定基準電圧F
irの値はこのロータリスイッf8W、の位置により変
えることができ、ロータリスイッチswlへの指令は漏
水判定電圧自動調整手段16から与えられる。
, and only signals that are higher than this reference voltage E are output. In addition, 几, ~R,, Rff, -y Rla are resistors, and SW is a rotary switch. Judgment reference voltage F
The value of ir can be changed by the position of this rotary switch f8W, and a command to the rotary switch swl is given from the water leakage determination voltage automatic adjustment means 16.

時間積分手段13は、上記振動比較回路24からの信号
、すなわち一定レベル以上の振動に対応する信号を入力
しこれを予め設定した水道便用はがほぼ零となる時間帯
の間積分する。そのため(二、第3図で示すように、上
記積分時間帯が設定されているタイミング回路31と、
これによって制御される記憶回路32J6よびカウンタ
羽とを有し、さらにこの記憶回路32の出力とパルス発
振回路あの出力とを入力するアンドグー)Glと、この
出力と第2図の比較回路りの出力との論理積出力をカウ
ンタ33に送るアンドグー) G2とで榊成される。
The time integrating means 13 receives a signal from the vibration comparison circuit 24, that is, a signal corresponding to vibrations above a certain level, and integrates the signal during a preset time period when the water supply is almost zero. Therefore, (2. As shown in FIG. 3, the timing circuit 31 in which the above-mentioned integration time period is set,
It has a memory circuit 32J6 and a counter blade controlled by this, and also has an ANDG (Gl) which inputs the output of this memory circuit 32 and the output of the pulse oscillation circuit, and the output of this output and the comparison circuit of FIG. Sakaki is formed by sending the AND output to the counter 33) and G2.

タイミング回路31は時計を内蔵し、制御入力1:よっ
て設定された時刻に積分開始信号INI、積分終了信号
INO,判定実施信号DIO,カウンタ33のリセット
信号R8などの一連の指令信号を発生する。これらの信
号は通常は11日周期で発生し、例えば、水道の使用量
がほとんど零になる深夜の2時に積分開始信号INIが
、水道が使用し始められる午前4時に積分終了信号IN
Oが出るように設定する。
The timing circuit 31 has a built-in clock, and generates a series of command signals such as an integration start signal INI, an integration end signal INO, a determination execution signal DIO, and a reset signal R8 for the counter 33 at the set time according to the control input 1. These signals normally occur on an 11-day cycle; for example, the integration start signal INI is generated at 2 a.m. when the water usage is almost zero, and the integration end signal INI is generated at 4 a.m. when the water supply begins to be used.
Set it so that O appears.

記憶回、@32は積分開始信号INIから積分終了信号
INOまでの間、すなわち、水道の使用量がほとんど零
になる時間帯の間、論理“l”の状態を保持し、アンド
グー)Glによってパルス発振回路34からのパルスと
の論理積をとり、アントゲ−トG2へ上記パルスを供給
する。アンドゲートG2はアンドゲートGl−の出力パ
ルスと比較回路スの出力信号の論理積をとることによっ
て、比較回路冴の出力信号継続時間をディジタル化する
In the memory time, @32 maintains the logic "L" state from the integration start signal INI to the integration end signal INO, that is, during the time period when the amount of water used is almost zero, and is pulsed by (and goo) GL. A logical AND operation is performed with the pulse from the oscillation circuit 34, and the above pulse is supplied to the ant gate G2. The AND gate G2 digitizes the duration of the output signal of the comparator circuit by performing a logical product of the output pulse of the AND gate Gl- and the output signal of the comparator circuit.

カウンタおはアンドグー)G2の出力パルス列を計数す
ることによって、積分開始信号INIが発生してから積
分終了信号INOが発生するまでの波形整形回路出力信
号の時間積分を行う。すなわち、カウンタおは水道の使
用量がほとんど零になる時間帯にkいて、振動レベルが
予定レベル以上になる時間の間、パルス発生器34から
生じるパルスをカウントする。
By counting the output pulse train of the counter G2, the waveform shaping circuit output signal is time-integrated from the time the integration start signal INI is generated until the integration end signal INO is generated. That is, the counter counts the pulses generated by the pulse generator 34 during a time period when the amount of water used is almost zero and the vibration level is equal to or higher than a predetermined level.

漏水判定レベル決定手段15は前ば己振動センサー21
の設置個所に応じた漏水判定レベルを決メルモので、カ
ウンタ33からのカウント値をセットスイッ:7−14
を介して一定周期で入力し、前回入力しているカウント
値と比較し大きい方をカウント値とするカウント値比較
回路35と、このカウント値に余裕値M(たとえばM=
1.5)を乗算するカウント補正回路36と、この補正
後の値を漏水判定レベルとして記憶「る漏水判定レベル
記憶回路37とからなる。すなわち、漏水判定レベル決
定子設置5は。
The water leakage determination level determining means 15 is a self-vibration sensor 21 at the front.
To determine the water leakage judgment level according to the installation location, set the count value from counter 33. Switch: 7-14
A count value comparison circuit 35 inputs a count value at a constant cycle through a count value, compares it with the previously input count value, and sets the larger one as the count value, and sets this count value to a margin value M (for example, M=
1.5), and a water leakage judgment level storage circuit 37 that stores this corrected value as a water leakage judgment level.In other words, the water leakage judgment level determiner installation 5 consists of:

連動センサー21の設置後、ある期間(1週間又は1ケ
月)の間セットスイッチ14を介してカウンタあの値を
入力しておき、そのうちの最も大きな値を基(:漏水判
定レベルを決めており、以後、これ以上のカウント値が
生じた場合、漏水判定手段17は漏水ありと判定する。
After the interlocking sensor 21 is installed, the counter values are input via the set switch 14 for a certain period (one week or one month), and the water leakage judgment level is determined based on the largest value among them. Thereafter, if a count value greater than this occurs, the water leak determination means 17 determines that there is a water leak.

漏水検出レベル調整手段16は、振動噴出手段12の判
定基準9圧Erを適正値(二A擬するもので、判定基準
電圧FXrが適切でないために、カウンタ33の出力が
ほとんどないユ易合やカウンタ33がパルス発生回路3
4からのパルスをほとんどカウントしてしまう場合に判
定基準電圧B、を自動調整する。
The water leakage detection level adjusting means 16 simulates the judgment reference voltage Er of the vibration ejection means 12 to an appropriate value (2A), and when the judgment reference voltage FXr is not appropriate, there is almost no output from the counter 33. The counter 33 is the pulse generating circuit 3
When most of the pulses from 4 are counted, the determination reference voltage B is automatically adjusted.

すなわち、前者の場合をカウント値比較回路39で検出
し、後者の場合をカウント値比較回路人38で検出し、
ロータリスイッチSW1へ下げまたは上げの指令を出す
That is, the former case is detected by the count value comparison circuit 39, the latter case is detected by the count value comparison circuit 38,
Issue a lower or higher command to rotary switch SW1.

漏水判定手段17は、カウンタ33からのカウント数と
漏水判定レベル記憶回路37に記憶された判定レベルを
比較し、前者の方が大きいとき、漏水とみなし漏水表示
回路40を駆動し、漏水表示をする。
The water leak determination means 17 compares the count number from the counter 33 and the determination level stored in the water leak determination level storage circuit 37, and when the former is larger, it is determined that there is a water leak and drives the water leak display circuit 40 to display a water leak display. do.

第4図は第2図の比較回路24および第3図の時間積分
手段13に、にける各部分の出力波形を示す。
FIG. 4 shows the output waveforms of each portion of the comparator circuit 24 of FIG. 2 and the time integrating means 13 of FIG. 3.

第4図(、)は、第2図の比較回路24の入力波形であ
り、同図(b)は基準電圧Brよりも同図(a)の信号
が大きいとき(二、ハイレベル(;なる比較回路24の
出力信号波形である。同図(c)はアンドグー) G2
の出カバネル列で、比較回路24の出力信号の・・イL
/ベル期間に比例したパルス数となる。(d)は積分開
始信号INx、(e)は積分終了信号INO,(f)は
記憶回路32の論理11”の状態を示す積分期間信号、
(g)は判定実施信号DIOで積分終了信号ISOの後
に出され、漏水判定手段15を動作させ、カクント値比
収回路38,39.35を動作させる。(h)はカウン
タあの積算状態を示−f、第3図のリセット信号比Sは
さらにこの後に出されてカウンタ33をイニシャライズ
するのに1吏われ、6つ 上記の4成に、結いてこの漏れ検知装置の動作を第5図
のフローチャートにより説明する。設置当初は漏水判定
レベル、判定基準電圧E、を決定するためセットスイッ
f14(モーメンタ9)’IOHする。
4(,) shows the input waveform of the comparator circuit 24 in FIG. 2, and (b) shows the input waveform when the signal in FIG. This is the output signal waveform of the comparator circuit 24. (c) in the same figure is ANDG2
In the output panel column, the output signal of the comparator circuit 24 is
/The number of pulses is proportional to the bell period. (d) is an integration start signal INx, (e) is an integration end signal INO, (f) is an integration period signal indicating the state of logic 11'' of the storage circuit 32,
(g) is the determination execution signal DIO, which is output after the integration end signal ISO, and operates the water leakage determination means 15 and the kakunt value ratio collection circuits 38, 39.35. (h) shows the integration state of the counter, and the reset signal ratio S in FIG. The operation of the leak detection device will be explained with reference to the flowchart shown in FIG. At the beginning of installation, the set switch f14 (momenter 9)'IOH is turned on to determine the water leakage determination level and determination reference voltage E.

水道管11の振励にンナ21からの振動信号は、増嘱回
路詔、比較回路24を経て時間積分手段13にて磁動信
号に比例したパルス数に変換される。このパルスは、水
道の筐用道がほぼ零である深夜の時間帯(たとえば2時
〜4時の聞)に、タイミング回路Jlから積分開始信号
INIと積分終了信号INOが出力されることによりカ
ウントされ、1日に1回の割合でカウント値No+が出
力される(ステップ■■■■)。このカウント値Nch
がパルス発生回路あの発儀a foとほとんど変らない
NMAx以上(たとえばN。≧0.8 X fo )の
ときは判定基準電圧E、の設定がセ動信号に比べ小さな
値となっているため判定基準電圧E7を上げるようロー
タリスイッチ5vV1に指令を出す(ステップ■■)。
The vibration signal from the inner tube 21 for exciting the water pipe 11 passes through an amplifying circuit and a comparison circuit 24, and is converted by a time integrating means 13 into a pulse number proportional to the magnetic signal. This pulse is counted by outputting the integration start signal INI and the integration end signal INO from the timing circuit Jl during the late night hours (for example, between 2:00 and 4:00) when the water supply case traffic is almost zero. The count value No+ is output once a day (step ■■■■). This count value Nch
When the value of the pulse generating circuit is equal to or higher than NMAX (for example, N≧0.8 X fo ), which is almost the same as that of the pulse generation circuit, the determination is made because the setting of the determination reference voltage E is a small value compared to the set signal. A command is issued to the rotary switch 5vV1 to increase the reference voltage E7 (step ■■).

またカウント値Noが零に近いNMIN以下(たとえば
N(1≦O,1Xfo)のときは1判定基準電圧E。
Further, when the count value No is close to zero and is less than or equal to NMIN (for example, N (1≦O, 1Xfo)), the 1 judgment reference voltage E is applied.

の設定が畿動伯号;二比べ大きな値となっているため判
定基準電三島を下げるようロータリスイッチSW、に指
令を出す(ステップ■■)。この様な調整方法によりカ
ウント値Noが例えば0.1 fo (N 。
Since the setting of is larger than that of Kido Hakugo and 2, a command is issued to the rotary switch SW to lower the judgment standard Den Mishima (step ■■). By using such an adjustment method, the count value No. is, for example, 0.1 fo (N).

(o、4 foになるように判定基準電圧B、を設定す
る。
(Set the determination reference voltage B so that it becomes o, 4 fo.

判定基準電圧E、が決定されると、漏水判定レベルを決
めるため、規定回数L(たとえば1週間(7回)または
1ケ月(30回)のデータをとり毎回比較して大きい方
のカウント値を記憶し規定回数りのうちカウント値Nの
最大値Nxを算出する。
Once the determination reference voltage E is determined, in order to determine the water leakage determination level, data is collected for a specified number of times L (for example, one week (7 times) or one month (30 times)), compared each time, and the larger count value is taken. The maximum value Nx of the count value N is calculated for the specified number of times.

漏水判定レベルはこのカウント値Nx I=余裕値M(
たとえば1.2〜1.5)を乗算した値Nx X Mを
漏水判定レベルとする(ステップ■O)、。
The water leakage judgment level is this count value Nx I = Margin value M (
For example, the value Nx x M multiplied by 1.2 to 1.5) is set as the water leakage determination level (step ①O).

この様に、設置個所に対応した判定基準電圧B。In this way, the determination reference voltage B corresponds to the installation location.

と漏水判定レベルが決まると、実際の漏水検出に移り、
判定基準電圧E、決定時と同様に、積分開始(コサIN
Iと積分終了信号INOによりカウント値Nを入力しく
ステップ■00)、この値が前述の漏水判定レベルN)
CX M ’d’超過しているか否かを漏水判定手段1
7で判定しくステップo)、超過の場合は漏水とみなし
漏水表示回路40を駆動する(ステップ■)。この判定
で超過していなければ漏水表示回路類にすiツ)(M号
を与える(ステップ0)。
Once the water leak detection level is determined, we move on to actual water leak detection.
In the same way as when determining the judgment reference voltage E, start integration (Kosa IN
Input the count value N according to I and the integration end signal INO (step 00), and this value is the water leakage judgment level N) mentioned above.
Water leakage determination means 1 to determine whether or not CX M 'd' is exceeded.
If it is determined in step 7 that the amount is exceeded (step o), it is regarded as a water leak and the water leakage display circuit 40 is driven (step -). If the result of this judgment is that it does not exceed the limit, give an M rating to the water leakage display circuit (Step 0).

〔発明の効果〕〔Effect of the invention〕

以上の様1:本発明によれば漏水検知装置の設置場PJ
iの状態に適した判定基準電圧Er、漏水判定レベルを
自動決定−fるため、漏水以外のノイズ(自動販売機等
)による誤動作を防止できる。またこの判定基準電圧E
r。漏水判定レベルの決定は1水検知器設置時にセット
スイッチをON (モメンタリ)する操作のみで運用で
き非゛A口=簡単な操作で最適な基準値が設定できる。
As described above 1: According to the present invention, the installation site PJ of the water leakage detection device
Since the determination reference voltage Er and water leakage determination level -f suitable for the state i are automatically determined, malfunctions due to noise other than water leakage (such as from a vending machine) can be prevented. Also, this judgment reference voltage E
r. The water leak detection level can be determined by simply turning on the set switch (momentary) when the water detector is installed, and the optimum standard value can be set with a simple operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による漏水検知装置の機能を示すブロッ
ク図、第2図、第3図は本発明の一実施し11を示−r
ブロック図、第4図は漏水検出のための各gbの波形を
示す図、第5因は本発明の動作を示゛fフローチャート
、弗6図は音聴器を用いた従来方式を示r図である。 12・・・振動検出手段 ■3・・・時間積分手段[4
・・・セットスイッチ 15・・・漏水判定レベル決定手段 16・・・漏水検出レベル調整手段 17・・・禰水判定手fi、21・・・儀勘センナ代理
人 弁4士  則 近 櫂 佑 同  三俣弘文 第1図 □時間 第4図 第5図
FIG. 1 is a block diagram showing the functions of the water leakage detection device according to the present invention, and FIGS. 2 and 3 show an embodiment 11 of the present invention.
The block diagram, Figure 4 is a diagram showing the waveform of each gb for water leakage detection, the fifth factor is a flow chart showing the operation of the present invention, and Figure 6 is a diagram showing the conventional method using a sound hearing device. be. 12... Vibration detection means ■3... Time integration means [4
...Set switch 15...Water leak detection level determination means 16...Water leak detection level adjustment means 17...Nesui judgment hand fi, 21...Gikan Senna agent Ben 4-shi Nori Chika Kai Yudo Hirofumi Mitsumata Figure 1 □ Time Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 水道管に生じる振動をとらえこれが所定の検出レベル以
上の場合出力信号を生じる振動検出手段と、 この振動検出手段からの出力信号を水道の使用がほとん
どない予め設定された時間帯の間積分する時間積分手段
と、 この時間積分手段による積分値を入力し予定の設定範囲
との比較により設定範囲に対して上方に外れている場合
は前記検出レベル上げ指令を出力し下方に外れている場
合は検出レベル下げ指令を出力する検出レベル調整手段
と、 この検出レベル調整手段により適正値に調整された検出
レベルに基づく積分値を予定回数入力しこれらのうちの
最大値を基に漏水判定レベルを決定する手段と、 この漏水判定レベル決定手段により決定された判定レベ
ルと前記時間積分手段からの積分値とを比較しこの積分
値が判定レベルより大きければ漏水有りと判定する漏水
判定手段と、 を備えた漏水検出装置。
[Claims] Vibration detection means that detects vibrations occurring in water pipes and generates an output signal when the vibrations exceed a predetermined detection level; and a vibration detection means that detects vibrations occurring in the water pipe and generates an output signal when the vibrations occur at a predetermined detection level; A time integration means integrates between bands, and the integrated value by this time integration means is inputted and compared with the planned setting range. If the value deviates above the setting range, the detection level increase command is outputted and the integrated value is set downward. A detection level adjustment means outputs a detection level lowering command if it is out of range, and an integral value based on the detection level adjusted to an appropriate value by this detection level adjustment means is inputted a scheduled number of times, and based on the maximum value of these, the integrated value is inputted. means for determining a water leakage determination level; and a water leakage determination method that compares the determination level determined by the water leakage determination level determination means with the integral value from the time integration means, and determines that there is a water leak if the integral value is greater than the determination level. A water leakage detection device comprising means and.
JP60194846A 1985-09-05 1985-09-05 Water leak detecting device Granted JPS6255539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60194846A JPS6255539A (en) 1985-09-05 1985-09-05 Water leak detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60194846A JPS6255539A (en) 1985-09-05 1985-09-05 Water leak detecting device

Publications (2)

Publication Number Publication Date
JPS6255539A true JPS6255539A (en) 1987-03-11
JPH023935B2 JPH023935B2 (en) 1990-01-25

Family

ID=16331248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60194846A Granted JPS6255539A (en) 1985-09-05 1985-09-05 Water leak detecting device

Country Status (1)

Country Link
JP (1) JPS6255539A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958296A (en) * 1987-07-22 1990-09-18 Kabushiki Kaisha Toshiba Water-leakage detecting apparatus and method which are little influenced by noise
US5017660A (en) * 1987-08-04 1991-05-21 Asahi Kasei Kogyo Kabushiki Kaisha Selectively, partially hydrogenated polymer and rubber composition and impact resistant styrenic resin containing the same
WO2013057991A1 (en) * 2011-10-19 2013-04-25 株式会社豊田自動織機 Rankine cycle
JP2015043001A (en) * 2014-12-02 2015-03-05 株式会社東芝 Water leakage detection device
JP2015064372A (en) * 2014-12-02 2015-04-09 株式会社東芝 Water leakage detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05534U (en) * 1991-06-24 1993-01-08 マツダ株式会社 Cup holder for automobile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936587U (en) * 1982-09-01 1984-03-07 エスエムケイ株式会社 coaxial cable connector
JPS59143287A (en) * 1983-01-31 1984-08-16 アンプ インコーポレーテッド Electric plug connector and receptacle therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936587U (en) * 1982-09-01 1984-03-07 エスエムケイ株式会社 coaxial cable connector
JPS59143287A (en) * 1983-01-31 1984-08-16 アンプ インコーポレーテッド Electric plug connector and receptacle therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958296A (en) * 1987-07-22 1990-09-18 Kabushiki Kaisha Toshiba Water-leakage detecting apparatus and method which are little influenced by noise
US5017660A (en) * 1987-08-04 1991-05-21 Asahi Kasei Kogyo Kabushiki Kaisha Selectively, partially hydrogenated polymer and rubber composition and impact resistant styrenic resin containing the same
WO2013057991A1 (en) * 2011-10-19 2013-04-25 株式会社豊田自動織機 Rankine cycle
JP2015043001A (en) * 2014-12-02 2015-03-05 株式会社東芝 Water leakage detection device
JP2015064372A (en) * 2014-12-02 2015-04-09 株式会社東芝 Water leakage detection device

Also Published As

Publication number Publication date
JPH023935B2 (en) 1990-01-25

Similar Documents

Publication Publication Date Title
JPH052934B2 (en)
KR100313741B1 (en) System for detecting leakage gas
WO1996037758A1 (en) Method and devices used in flow measurement
JPS6255539A (en) Water leak detecting device
AU671123B2 (en) Flow detecting systems
US6101451A (en) Water management system
JP2008224320A (en) Water meter
CN103326677A (en) Audio power amplifier and adjusting method thereof
JPH01282426A (en) Correction circuit for turbine type flowmeter
KR950012817B1 (en) Flow amount measuring ans controlling apparatus
JP3069266B2 (en) Gas safety equipment
US20140109654A1 (en) Method and Apparatus for Assessing the Consumption of a Medium in a Supply System
JPS59195139A (en) Water leakage detector
JPH023933B2 (en)
JPH01119734A (en) Hydrostat
JPH0758238B2 (en) Leakage detector
JPH06323887A (en) Electronic city water meter
JP3438955B2 (en) Gas leak detection device for common piping
KR101184726B1 (en) Flow meter for measuring flow rate at several time slots
JP2002039827A (en) Gas maintenance device
JP3078563B2 (en) Flow rate calculation device
JP3175412B2 (en) Fuel metering device
JP3137512B2 (en) Gas meter
JP2576917B2 (en) Gas leak detection device
JPH0447223A (en) Integrated type flowmeter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term