JPH0317892B2 - - Google Patents

Info

Publication number
JPH0317892B2
JPH0317892B2 JP59017137A JP1713784A JPH0317892B2 JP H0317892 B2 JPH0317892 B2 JP H0317892B2 JP 59017137 A JP59017137 A JP 59017137A JP 1713784 A JP1713784 A JP 1713784A JP H0317892 B2 JPH0317892 B2 JP H0317892B2
Authority
JP
Japan
Prior art keywords
weight
less
steel
hot
suppressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59017137A
Other languages
Japanese (ja)
Other versions
JPS60162751A (en
Inventor
Michiro Komatsubara
Hiroto Nakamura
Masao Iguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59017137A priority Critical patent/JPS60162751A/en
Publication of JPS60162751A publication Critical patent/JPS60162751A/en
Publication of JPH0317892B2 publication Critical patent/JPH0317892B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 磁気特性ならびに表面性状の優れたセミプロセ
ス電磁鋼板およびその製造方法に関して、この明
細書に述べる技術内容は、打抜き加工後に歪取り
焼鈍を施して使用する無方向性電磁鋼板におい
て、とくにその成分組成さらには熱処理工程に工
夫を加えることにより、歪取り焼鈍後の磁気特性
ならびに表面性状を改善することに関連してい
る。 技術的背景 無方向性電磁鋼板は、各種電気機器の鉄芯材料
として用いられる。このうち小型モーターや継電
器、小型トランスおよび安定器などは、サイズが
小さいこともあつて鉄芯の特性としては、エネル
ギー損失が低いことよりもむしろ磁束密度が高い
ことが要求される。したがつてこれらの鉄芯の材
料としては、Si含有量の低いものが一般的に使わ
れている。というのはSi含有量の低い材料は、鉄
損こそ劣るものの飽和磁束密度が高く、上述した
要求に合致すること、さらには安価に入手できる
という利点もあるからである。 また、この種の材料としては、ユーザーにて打
抜き加工後、歪取り焼鈍を施して使用されるいわ
ゆるセミプロセス電磁鋼板が大部分である。した
がつて材料の特性は、歪取り焼鈍後における磁束
密度もしくは透磁率が高いことが要求されるわけ
である。 かかる磁気特性の改善策として、鋼中に第3成
分を添加する方法が提案され、たとおえば安価な
鋼中添加物としては、特公昭58−3027号公報に開
示されているSn、または特公昭56−54370号公報
に開示されているSbなどが知られていて、確か
にかような第3成分を添加することにより、通常
の電磁鋼の素材であるSi>0.5%、Al>0.1%の材
料においては、磁束密度や透磁率の向上が認めら
れた。しかしながら上掲各公報中にも述べられて
いるように、SiやAlの含有量が低い材料に対し
ては、SnやSbの添加効果は明確には現れなかつ
た。 ところでより安く材料を供給するためには、鋼
の脱酸に対し、過剰のAlやSiを投入する通常の
電磁鋼の溶製方法の替わりに、少量のSiのみによ
る脱酸や、少量のSiやAlによる複合脱酸で済む
一般冷延鋼板並みの溶製方法を採用することがで
きれば、素材コストを大幅に低減できる上からよ
り好ましいわけである。 しかしながら、こうした安価な脱酸素材や脱酸
を行わないリムド素材においては、上述したごと
く、SnやSbの効果が明確に現われないことに加
えて、表面に3mm径以上の凸凹を伴ううろこ状の
模様や畳じわと通称される模様が現われて板厚が
局所的に変動し、所期した鋼板の板厚精度が得ら
れないという問題が残つていたのである。 発明の目的 この発明は、上記の諸問題を有利に解決するも
ので、SiやAl含有量の低い、つまり安価な脱酸
素材に対してもSnやSbによる磁気特性向上効果
を発現させると共に、畳じわと通称される模様の
発生を抑制して板厚精度の向上をも併せて実現し
た磁気特性と表面性状の優れたセミプロセス用電
磁鋼板およびその有利な製造方法を提案すること
を目的とする。 発明の端緒 この発明は、鋼中に不可避に混入するC,Sお
よびOなどの不純物量を低減することにより、
SnやSnが、安価な脱酸素材に対しても磁気特性
改善成分として有効に作用すること、さらにはB
の添加が、表面性状の改善に極めて有効に寄与す
ることの、新規知見に立脚する。 またこの発明は、上記した如く成分調整を行つ
た鋼の製造過程において、冷間圧延前に調質熱処
理を施すことが、所期した磁気特性の改善に一層
効果的であることの知見に由来するものである。 発明の構成 すなわちこの発明は、Si:0.50重量%(以下単
に%で示す)以下、Al:0.05%以下、Mn:0.1〜
1.0%、P:0.01〜0.20%、B:0.001〜0.020%な
らびに少くとも0.01%は含有させるSbにつき、単
独もしくは0.02%までのSnとの合計量でそれぞれ
0.01〜0.10%を、不可避不純物としての混入量を
0.010%以下に抑制したC、0.020%以下に抑制し
たSおよび0.0080%以下に抑制したOと共に含
み、残部に実質的にFeの組成になることを特徴
とする、磁気特性ならびに表面性状の優れたセミ
プロセス電磁鋼板である。 またこの発明は、Si:0.50%以下、Al:0.05%
以下、Mn:0.1〜1.0%、P:0.01〜0.20%、B:
0.001〜0.020%ならびに少なくとも、0.01%は含
有させるSbにつき、単独もしくは0.02%までの
Snとの合計量でそれぞれ0.01〜0.10%を、不可避
不純物としての混入量を0.010%以下に抑制した
C、0.020%以下に抑制したSおよび0.0030%以
下に抑制したOと共に含む組成になる鋼スラブ
を、熱延仕上げ温度:750〜850℃で圧延して熱延
鋼板としたのち、この熱延鋼板に、700〜850℃の
温度範囲で1〜10時間にわたる熱処理を施してか
ら、常法に従つて酸洗ついで冷間圧延を行い、し
かるのち600〜800℃で1〜2分間の短時間連続焼
鈍を施すことを特徴とする、磁気特性ならびに表
面性状の優れたセミプロセス電磁鋼板の製造方法
である。 以下この発明を由来するに至つた実験結果に基
き、この発明を具体的に説明する。 さてSbやSnは、鋼中での偏折傾向が強い元素
として知られていて、実際結晶粒界や介在物の周
囲および表面層などに多量に偏析している。そこ
で発明者らは、SbやSnを添加したにもかかわら
ず、所望の効果が得られなかつた低Si、低Alの
各種材料(Si:0.01〜0.50%、Al:0.001〜0.05
%)について、マイクロオージエ電子分光計で詳
細に調査した結果、これらの材料は、MnS、
SiO2、Mn2SiO4、およびFe3Cなどの析出物や介
在物を鋼中に多量に含んでいること、しかもこれ
らの析出物、介在物の周囲にSnやSbが濃厚に偏
析していることを突止めたのである。 少量のSiのみによる脱酸や、少量のSiやAlに
よる複合脱酸は、通常の電磁鋼における多量のSi
による脱酸、もしくは多量のSiやAlによる脱酸
方法と比較して、酸素の含有量が高く、鋼中の酸
化物系の介在物数が非常に多い。また、低級な鋼
種であるため、溶銑の脱硫率が低く、MnS系の
析出物が多い。さらに溶鋼脱ガス処理を短時間で
終了するため、C含有量が高く、鋼中の炭化物系
の析出物も多い。 このように低Si、低Al鋼は、鋼中析出物や介
在物量が多く、これらの析出物、介在物の周囲
に、SnやSbが濃厚に偏析するため、鋼中に添加
した、SnやSbが有効に作用しなかつたものと思
われる。 ところでかかる問題を回避する手段としては、
SnやSbの添加量を増加させることが考えられる
が、これらの元素を増すと鋼板の結晶粒が極度に
微細化してしまい、かえつて磁気特性を劣化させ
てしまう不利がある。また冷延加工性を害する点
でも好ましくない。 そこで発明者らは、かかる問題の解決を図るべ
く鋭意研究を重ねた結果、鋼中に不可避に混入す
る不純物とりわけS,CおよびOを低減すること
により、結晶粒の極端な微細化などの不利を伴う
ことなしに、鋼中析出物や介在物を効果的に低減
することができ、かくして上記の問題が有利に解
消され得ることを究明したのである。 第1図aに、Si:0.30%、Al0.02%目標の溶
鋼を用い、半量はSb無添加とし、一方残りの半
量はSbを0.050%を添加した上で、両者につき、
溶銑予備脱硫処理の程度を変えることによりSレ
ベルを0.005〜0.040%の範囲にわたつて変化させ
た場合、また同図b,cには、CおよびOレベル
につき、 出鋼時のCレベルを変えたこと(溶鋼Oレベ
ルはCと負相関にあるので、したがつて当然O
レベルも変える)、 脱ガスにおけるリムド処理時間を変えて、
→CO↑の反応量を調整すること により、C:0.005〜0.030%、0:0.0020〜
0.0080%の範囲にわたつてそれぞれ変化させた場
合の各不純物含有量と透磁率との関係について調
べた結果を示す。 なおこれら不純物の含有量をとくに変えない場
合の鋼の成分組成は、C:0.005〜0.010%、Si:
0.28〜0.32%、Mn:0.20〜0.23%、P:0.07〜
0.08%、S:0.014〜0.016%、Al:0.002〜0.006
%、0:0.0018〜0.0025%であつた。また透磁率
の測定は、得られた各鋼スラブに熱間圧延を施
し、この熱延板は、酸洗してから冷間圧延で0.50
mmの板厚にしたのち、650℃で1分間の短時間焼
鈍を行い、ついで30mm×280mmの寸法に圧延方向
半量、圧延と垂直方向に半量を切出して、750℃
×2時間の歪取り焼鈍をN2ガス雰囲気中で施し
て得た試片について行つたものである。 第1図a,bおよびcにそれぞれ示したよう
に、S0.020、C0.010およびO0.0030であ
れば、Sbの添加に伴う透磁率の向上は著しく、
Sbによる磁性改善効果は顕著であるといえる。 なお、不純物のうち鋼中Nについては、通常処
理で0.0015〜0.0035%程度の含有量となるが、こ
の範囲ではいずれもSbの添加効果が顕著に現わ
れ、窒化物によるSbの濃厚偏析量は現状では問
題となるレベルではないことが併せて確められ
た。 しかしながら、第1図において、透磁率が
2000G/Oeを超えた製品については、表面に畳
みじわと通称される模様が現われた。かかる模様
は、3mm径以上の大きさで圧延方向に伸びた畳の
目状の凹凸を伴うものであり、従つて板厚が局所
的に変わるため、鋼板の板厚偏差は20〜30μmに
も達する。かように板厚偏差が大きい場合は、モ
ーターやトランスなどの鉄芯用として打抜加工
後、積層する場合に、積み厚に対して枚数管理が
できないため、自動積層ができなくなるという不
利が生じるところ、かかる問題を解消するために
は板厚偏差を10μm以下に抑えることが必要であ
る。 発明者らは、上記の問題の解決策についても鋭
意研究を重ねた結果、Bを鋼中に含有させること
が表面性状の改善に有効であことを試行錯誤の末
見出したのである。 第2図に、Si:0.30%、Al0.05%、Mn:0.20
%、P:0.08%、C0.010%、S0.020%、O
0.0030%およびSbもしくはSn:0.050%を基本
組成として含む鋼に、Bを種々の範囲で添加し、
畳じわすなわち板厚偏差の解消に有効なBの量に
ついて検討した結果を示す。 第2図に示した結果から明らかなように、Bを
0.0010%以上含有させることにより、鋼板の表面
性状は大幅に改善されている。 Bの添加が畳みじわ解消に対し有効であること
の理由は以下のように推定される。 すなわち畳じわは、冷間圧延前の表面層の再結
晶粒が、冷間圧延で引き伸ばされる結果、目視で
きる程度の大きさになつて発生するものと思われ
る。従つて冷間圧延前の鋼板の表面層の再結晶粒
をできるだけ、細粒化しておくことが、畳じわ抑
制には、有効であると考えられるところ、Bは周
知のように偏析型の元素であり、かつ、鋼の結晶
粒の粒成長を抑制する効果を有するので鋼中にB
を添加することにより、表面に濃縮したBが、表
面層の再結晶粒を微細化させ、かくして冷間圧延
後の畳じわと呼ばれる模様の微細・均一化をもた
らすものと推定される。 次に、この発明の基本成分ならびに抑制成分を
前記の範囲に限定した理由について説明する。 Si:0.50%以下 Siは、脱酸用もしくはAlとの複合脱酸用に少
量添加すればよく、あまりに多量の添加は飽和磁
束密度を低下させるので、0.50%以下とした。 Al:0.05%以下 Alは、脱酸用のFe−Si中に少量含まれ、また
Siとの複合脱酸用としても少量使用されるが、多
量に添加することはSiと同様飽和磁束密度を低下
させるだけでなく、コスト高ともなつてこの発明
の目的に反するので0.05%以下の範囲に限定し
た。 Mn:0.1〜1.0% Mnは、熱間圧延性の改善のためには少くとも
0.1%を必要とするが、1.0%を超えて含有される
と磁気特性が劣化するだけでなくコストの上昇を
招くので、0.1〜1.0%の範囲に限定した。 P:0.01〜0.20% Pは、不可避に含有される元素であるが、硬度
を改善し、打抜き加工性を向上させるのに有効に
寄与する。かかる加工性改善のためには少くとも
0.01%が必要であり、一方0.20%を超えて含有さ
れると磁気特性の劣化を招くので、Pの含有量は
0.01〜0.20%の範囲とした。 B:0.001〜0.020% Bは、表面性状を改善して板厚偏差を低減する
ためには、前掲第2図にも示したとおり0.001%
以上の添加が必要である。しかしながら含有量が
0.020%を超えると冷間加工性の劣化を招くだけ
でなくコスト高となるので0.001〜0.020%の範囲
に限定した。 Sb:0.01〜0.10% Sb+Sn:0.01〜0.10%(ただし、Sb0.01%、
Sn<0.02%) SbおよびSnはいずれも、磁束密度および透磁
率を改善するのに有用な元素であり、その効果は
均等である。しかしながらSbおよび/またはSn
の含有量が0.01%に満たないとそれらの添加効果
に乏しく、一方0.10%を超えるとかえつて磁気特
性を害し、また冷間加工性も損うため、Sb単独
またはSbとSnを併用する場合(但し、0.01%以
上のSbと0.02%未満のSn)いずれにおいても含
有量は0.01〜0.10%の範囲が良い。 ただしSnはSbに比較して原材料の単価が極め
て高く、しかも融点が低いため、溶鋼中に添加す
る際の鋼中への歩留りが悪いことなどにより、著
しいコストアツプを招く。したがつてSbを主と
して添加する方がコスト的に有利である。 しかしながら、Snはスクラツプ中に多量に含
有されているため、ある程度は溶鋼中に含まれて
おり、0.020%未満であれば、鋼中に含有させる
場合に、さほどのコストアツプとはならない。 したがつて、SbとSnを複合添加する場合は、
Snを0.01%以上含有させ、かつ、Snを0.020%未
満とし、さらにSbとSnの合計で0.01〜0.10%の範
囲とする。 C:0.010%以下 Cは、炭化物をつくつてSbやSnをその周囲に
偏析させ、かかる元素の添加効果を阻害する。そ
こで、前掲第1図aにも示したように、かような
おそれのない0.010%以下の範囲に抑制するもの
とした。 S:0.020%以下 Sは、MnSの硫化物をつくり、Cの場合と同
様SbやSnを該硫化物の周囲に偏析させ、こられ
の添加効果を消失させる有害元素である。そこ
で、前掲第1図bにも示したとおり、かような
SbやSnの添加効果を阻害するおそれのない0.020
%以下の範囲に抑制するものとした。 O:0.0030%以下 Oは、SiO2やMn2SiO4などの酸化物をつくり、
CやSと同様にSbやSnをその周囲に偏析させて
これらの有効性を損うので、そのおそれがない
0.0030%以下の範囲に抑制するものとした。 さて上記の如き適正成分組成に溶製された溶鋼
は、通常の方法で鋼スラブとし、ついで熱間圧延
によつて熱延鋼帯としたのち、通常の冷間圧延工
程、つまり1回の冷間圧延かもしくは中間焼鈍を
含む2回の冷間圧延によつて、目標の板厚とす
る。ついで最終仕上げ焼鈍を施すが、この最終仕
上げ焼鈍においては必ずしも十分に結晶粒を成長
させる必要はない。 というのはこの発明が適用されるセミプロセス
電磁鋼板は、ユーザー側で打抜加工後に施す歪取
焼鈍によつて、結晶粒を十分に成長させ得るから
であり、しかも後者の方法に従う方が磁気特性が
良い場合が多いからである。 さてかくして得られたこの発明に従うセミプロ
セス電磁鋼板は磁束密度、透磁率において優れた
ものであるが、さらにこれらの特性を向上させる
ためには、冷間圧延前にSbの調質熱処理を施す
ことが有効であることが判明した。すなわち熱間
圧延において、仕上温度を750〜850℃にするこ
と、そして熱間圧延後の鋼帯をさらに700〜850℃
の温度で1〜10時間熱処理することにより磁気特
性が一層改善され得ることが究明されたのであ
る。 かかる熱処理は、鋼板の冷間圧延の結晶粒径を
粗大化させることともに、偏析したSbもしくは
Snを鋼中に十分固溶させる意味をもつ。 このようにSbを鋼中に十分固溶させるために
熱延仕上げ温度を750℃以上そして熱間圧延後の
熱処理温度を700℃以上にすることが肝要である。 しかしながら熱延仕上げ温度および熱間圧延後
の熱処理温度が、850℃を超えると鋼が変態し結
晶粒径が逆に微細化し、磁気特性が劣化する不利
が生じる。 また熱間圧延後の熱処理時間が、1時間未満で
は、SbやSnの固溶促進効果に乏しく、一方10時
間を超えると固溶量が、準平衡量に達するためコ
ストアツプに比較して、効果の増加は少なくな
る。 従つてこの発明法では、熱間仕上げ圧延終了温
度を750〜850℃、またその後の調質熱処理条件を
700〜850℃でかつ1〜10時間の範囲に限定したの
である。 このように熱延仕上温度を規制し、さらに熱間
圧延後の熱処理を行なうことにより、Sbの鋼中
固溶促進効果および結晶粒界への偏析効果はより
一層高まる。したがつて、冷却条件において、熱
間圧延巻取後の冷却は急冷、熱間圧延後の熱処理
の冷却は徐冷とすることがSbの偏析量向上のた
めにはより好ましい。 ところで上述した如き処理を施された熱間圧延
鋼板は、冷間圧延において、コイルのエツジに不
均一な伸びを示す領域が存在する。これは熱延コ
イルが長時間の熱処理を受ける際にコイルのエツ
ジ部と中央部またはコイルの内巻側と中央側およ
び外巻側とで熱履歴が異つてくるからである。 しかしながらこの点については、最終仕上焼鈍
において、600〜800℃の温度で1〜2分間の短時
間連続焼鈍を施せば満足のいく解決が得られるこ
とがわかつた。以上Sbの場合につき主に説明し
たが、Sbの他に多少のSnを含む場合も同様の結
果が得られることが確められている。 この発明の鋼板は、Si0.50%、Al0.050%
と軟質の鋼板なので、600℃以上の温度で1分間
以上の短時間連続焼鈍で十分形状矯正が可能であ
る。しかし、焼鈍温度が800℃を超えたり、また
焼鈍時間が2分間を超えたりすると、鋼板強度が
軟かくなり過ぎて局所的な変形を引き起こすた
め、うねりを併発し、鋼板の形状を害するおそれ
が大きいので好ましくない。 実施例 実施例 溶銃予備脱硫処理後底吹転炉で吹錬し、低酸素
のため通常より高めのCで出鋼した溶鋼を、Cと
O低減のため、真空脱ガスでのリムド処理として
半量を10分のリムド処理とし、一方残りの半量を
25分のリムド処理とした後、Siで脱酸処理を施
し、ついでSn、Sb、B、MnおよびPなどを必要
に応じて添加して、表1に示した−a、−
a、b、−a、−b、−a、−aの組
成になる7種の鋼スラブを連続鋳造法により得
た。このスラブを通常の方法で熱延して2.0mmの
板厚の熱延コイルとしたのち、各コイルを2分割
し、ひとつは1回の冷間圧延で0.50mmの板厚とし
たのち、750℃、1分間の仕上げ焼鈍を施した。
他のひとつは、750℃、5時間の熱延コイルの焼
鈍ののち、1回の冷間圧延で0.50mmの板厚とし、
しかるのち800℃、2分間の仕上げ焼鈍を施した。 かくして得られた各鋼板の板厚偏差ならびに磁
束密度および透磁率について調べ、その結果を表
1に併記した。なお磁気特性については、30mm×
280mmのサイズに、圧延方向とこれに垂直な方向
とに半量づつ切出し、ついで750℃、2時間の歪
取り焼鈍を施した試片についてそれぞれ特性値を
測定し、それらの平均値で示した。
Technical field Regarding semi-processed electrical steel sheets with excellent magnetic properties and surface properties and their manufacturing method, the technical contents described in this specification are particularly focused on non-oriented electrical steel sheets that are used after being subjected to strain relief annealing after punching. It is related to improving the magnetic properties and surface properties after strain relief annealing by modifying the composition and heat treatment process. Technical Background Non-oriented electrical steel sheets are used as core materials for various electrical devices. Among these, small motors, relays, small transformers, and ballasts are small in size, so their iron core characteristics require high magnetic flux density rather than low energy loss. Therefore, materials with low Si content are generally used for these iron cores. This is because a material with a low Si content has a high saturation magnetic flux density, although it has an inferior core loss, and has the advantage of meeting the above-mentioned requirements and being available at a low price. Moreover, most of this type of material is a so-called semi-processed electrical steel sheet, which is used after being punched and annealed by the user. Therefore, the material is required to have high magnetic flux density or magnetic permeability after strain relief annealing. As a measure to improve such magnetic properties, a method of adding a third component to steel has been proposed. Sb disclosed in Publication No. 56-54370 is known, and it is true that by adding such a third component, Si > 0.5% and Al > 0.1%, which are the materials of ordinary electrical steel. Improvements in magnetic flux density and magnetic permeability were observed in this material. However, as stated in the above-mentioned publications, the effect of adding Sn and Sb was not clearly apparent for materials with low Si and Al contents. By the way, in order to supply materials more cheaply, instead of the usual melting method for electromagnetic steel that adds excessive Al or Si to deoxidize steel, deoxidation with only a small amount of Si or a small amount of Si can be used. It would be more preferable to adopt a melting method similar to that used for general cold-rolled steel sheets, which requires composite deoxidation using aluminum and aluminum, since this would greatly reduce material costs. However, in these inexpensive deoxidizing materials and rimmed materials that are not deoxidized, in addition to the fact that the effects of Sn and Sb do not clearly appear, as mentioned above, the surface has scale-like irregularities with a diameter of 3 mm or more. The problem remained that the thickness of the steel plate varied locally due to the appearance of patterns commonly known as tatami wrinkles, making it impossible to obtain the desired thickness accuracy of the steel plate. Purpose of the Invention The present invention advantageously solves the above-mentioned problems, and allows Sn and Sb to exhibit the effect of improving magnetic properties even in low-Si and Al content, that is, inexpensive deoxidizing materials. The purpose of this project is to propose an electrical steel sheet for semi-processing with excellent magnetic properties and surface properties, which suppresses the occurrence of patterns commonly known as tatami wrinkles, and improves sheet thickness accuracy, as well as an advantageous manufacturing method. shall be. Introduction to the Invention The present invention aims at reducing the amount of impurities such as C, S and O that are inevitably mixed into steel.
Sn and Sn act effectively as magnetic property improving ingredients even in inexpensive deoxidizing materials, and
This is based on new findings that the addition of This invention also originates from the knowledge that in the manufacturing process of steel whose composition has been adjusted as described above, applying temper heat treatment before cold rolling is more effective in improving the desired magnetic properties. It is something to do. Structure of the Invention In other words, the present invention provides Si: 0.50% by weight or less (hereinafter simply expressed as %), Al: 0.05% or less, Mn: 0.1 to
1.0%, P: 0.01 to 0.20%, B: 0.001 to 0.020%, and at least 0.01% of Sb, either alone or in the total amount with Sn up to 0.02%, respectively.
0.01~0.10%, the amount of unavoidable impurities
It contains C suppressed to 0.010% or less, S suppressed to 0.020% or below, and O suppressed to 0.0080% or below, and has excellent magnetic properties and surface texture. It is a semi-processed electrical steel sheet. In addition, this invention has Si: 0.50% or less, Al: 0.05%
Below, Mn: 0.1-1.0%, P: 0.01-0.20%, B:
0.001 to 0.020% and at least 0.01% of Sb alone or up to 0.02%
A steel slab with a composition containing Sn in a total amount of 0.01 to 0.10% each, together with unavoidable impurities such as C whose amount is suppressed to 0.010% or less, S which is suppressed to 0.020% or less, and O which is suppressed to 0.0030% or less. is rolled into a hot-rolled steel plate at a hot-rolling finishing temperature of 750 to 850°C, then heat-treated in a temperature range of 700 to 850°C for 1 to 10 hours, and then subjected to a conventional method. Therefore, a method for manufacturing a semi-processed electrical steel sheet with excellent magnetic properties and surface properties, which is characterized by pickling, cold rolling, and then continuous short-term annealing at 600-800°C for 1-2 minutes. It is. This invention will be specifically explained below based on the experimental results that led to this invention. Now, Sb and Sn are known to be elements that have a strong tendency to segregate in steel, and are actually segregated in large amounts at grain boundaries, around inclusions, and in surface layers. Therefore, the inventors investigated various low-Si and low-Al materials (Si: 0.01-0.50%, Al: 0.001-0.05%) that did not produce the desired effect despite the addition of Sb and Sn.
As a result of detailed investigation using a micro-Ausier electron spectrometer, these materials were found to contain MnS,
Steel contains large amounts of precipitates and inclusions such as SiO 2 , Mn 2 SiO 4 , and Fe 3 C, and moreover, Sn and Sb are densely segregated around these precipitates and inclusions. I discovered that it was there. Deoxidation using only a small amount of Si, or combined deoxidation using a small amount of Si or Al, can eliminate the large amount of Si in ordinary electrical steel.
Compared to deoxidation methods using a large amount of Si or Al, the oxygen content is high and the number of oxide-based inclusions in the steel is extremely large. In addition, since it is a low-grade steel, the desulfurization rate of hot metal is low and there are many MnS-based precipitates. Furthermore, since the molten steel degassing treatment is completed in a short time, the C content is high and there are many carbide-based precipitates in the steel. In this way, low-Si, low-Al steel has a large amount of precipitates and inclusions in the steel, and Sn and Sb are concentrated and segregated around these precipitates and inclusions. It seems that Sb did not work effectively. By the way, as a way to avoid this problem,
It is possible to increase the amount of Sn or Sb added, but increasing the amount of these elements will make the crystal grains of the steel sheet extremely fine, which has the disadvantage of actually deteriorating the magnetic properties. It is also undesirable in that it impairs cold rolling workability. As a result of intensive research aimed at solving this problem, the inventors found that by reducing the impurities that inevitably mix in steel, especially S, C, and O, disadvantages such as extremely fine crystal grains can be avoided. The inventors have discovered that the precipitates and inclusions in steel can be effectively reduced without causing any problems, and thus the above problems can be advantageously solved. In Figure 1a, using molten steel with a target of 0.30% Si and 0.02% Al, half of the steel was without Sb added, while the other half had 0.050% Sb added, and for both,
When the S level was varied over the range of 0.005 to 0.040% by changing the degree of hot metal pre-desulfurization treatment, Figures b and c also show that the C level at the time of tapping was changed for the C and O levels. (The O level of molten steel is negatively correlated with C, so naturally O
(change the level), change the rimmed treatment time during degassing ,
+ By adjusting the reaction amount of O → CO↑, C: 0.005-0.030%, 0: 0.0020-
The results of an investigation of the relationship between each impurity content and magnetic permeability when varied over a range of 0.0080% are shown. The composition of steel when the content of these impurities is not particularly changed is C: 0.005 to 0.010%, Si:
0.28~0.32%, Mn: 0.20~0.23%, P: 0.07~
0.08%, S: 0.014~0.016%, Al: 0.002~0.006
%, 0:0.0018-0.0025%. To measure magnetic permeability, each steel slab obtained was hot rolled, and the hot rolled plate was pickled and then cold rolled to 0.50.
After making the plate thick, it was annealed for a short time at 650℃ for 1 minute, and then half of it was cut out in the rolling direction and half in the direction perpendicular to the rolling direction to a size of 30mm x 280mm.
This test was performed on a specimen obtained by subjecting it to strain relief annealing for 2 hours in an N 2 gas atmosphere. As shown in Figure 1 a, b, and c, respectively, when S0.020, C0.010, and O0.0030, the magnetic permeability improves significantly with the addition of Sb.
It can be said that the effect of Sb on improving magnetism is remarkable. Among impurities, the content of N in steel is approximately 0.0015 to 0.0035% in normal treatment, but in this range, the effect of Sb addition is noticeable, and the amount of concentrated segregation of Sb due to nitrides is at the current level. It was also confirmed that the level was not a problem. However, in Figure 1, the magnetic permeability is
For products exceeding 2000G/Oe, a pattern commonly known as tatamijiwa appeared on the surface. This pattern is accompanied by tatami-like irregularities with a diameter of 3 mm or more extending in the rolling direction, and the plate thickness changes locally, resulting in a thickness deviation of 20 to 30 μm. reach If the plate thickness deviation is large like this, when stacking after punching for iron cores such as motors and transformers, there is a disadvantage that automatic stacking cannot be performed because the number of sheets cannot be controlled based on the stacking thickness. However, in order to solve this problem, it is necessary to suppress the plate thickness deviation to 10 μm or less. The inventors have conducted extensive research into solutions to the above problems, and have discovered through trial and error that incorporating B into steel is effective in improving surface properties. Figure 2 shows Si: 0.30%, Al 0.05%, Mn: 0.20
%, P: 0.08%, C 0.010%, S 0.020%, O
Adding B in various ranges to steel containing 0.0030% and Sb or Sn: 0.050% as a basic composition,
The results of a study on the amount of B that is effective in eliminating folding wrinkles, that is, sheet thickness deviation, are shown below. As is clear from the results shown in Figure 2, B
By containing 0.0010% or more, the surface quality of the steel sheet is significantly improved. The reason why the addition of B is effective in eliminating wrinkles is presumed as follows. In other words, it is thought that the fold wrinkles occur as a result of the recrystallized grains in the surface layer before cold rolling being stretched by cold rolling, so that they become large enough to be visible to the naked eye. Therefore, it is thought that making the recrystallized grains in the surface layer of the steel sheet as fine as possible before cold rolling is effective in suppressing folding wrinkles. It is an element and has the effect of suppressing the grain growth of steel grains, so B is present in steel.
It is presumed that by adding B, the B concentrated on the surface refines the recrystallized grains in the surface layer, thus resulting in a finer and more uniform pattern called Tatami wrinkles after cold rolling. Next, the reason why the basic components and suppressing components of this invention are limited to the above ranges will be explained. Si: 0.50% or less Si may be added in a small amount for deoxidation or composite deoxidation with Al, and since adding too much will reduce the saturation magnetic flux density, it is set to 0.50% or less. Al: 0.05% or less Al is contained in small amounts in Fe-Si for deoxidation, and
It is also used in small amounts for composite deoxidation with Si, but adding a large amount not only lowers the saturation magnetic flux density like Si but also increases cost, which goes against the purpose of this invention. limited to a range. Mn: 0.1~1.0% Mn is at least necessary for improving hot rolling properties.
Although 0.1% is required, if the content exceeds 1.0%, it not only deteriorates the magnetic properties but also increases cost, so it was limited to a range of 0.1 to 1.0%. P: 0.01 to 0.20% P is an element that is unavoidably contained, but it effectively contributes to improving hardness and punching workability. In order to improve such workability, at least
0.01% is required, and on the other hand, if the content exceeds 0.20%, the magnetic properties will deteriorate, so the content of P is
The range was 0.01 to 0.20%. B: 0.001 to 0.020% B is 0.001% as shown in Figure 2 above in order to improve surface properties and reduce thickness deviation.
The above addition is necessary. However, the content
If it exceeds 0.020%, it not only causes deterioration of cold workability but also increases cost, so it is limited to a range of 0.001 to 0.020%. Sb: 0.01~0.10% Sb+Sn: 0.01~0.10% (However, Sb0.01%,
Sn<0.02%) Sb and Sn are both useful elements for improving magnetic flux density and magnetic permeability, and their effects are equal. However, Sb and/or Sn
If the content of Sb is less than 0.01%, the effect of adding them will be poor, while if it exceeds 0.10%, it will adversely affect the magnetic properties and also impair cold workability, so when using Sb alone or in combination with Sb and Sn. (However, in both Sb of 0.01% or more and Sn of less than 0.02%), the content is preferably in the range of 0.01 to 0.10%. However, compared to Sb, Sn has an extremely high unit price as a raw material and has a low melting point, so when added to molten steel, the yield in the steel is low, resulting in a significant cost increase. Therefore, it is more cost-effective to mainly add Sb. However, since a large amount of Sn is contained in scrap, it is contained to some extent in molten steel, and if it is less than 0.020%, the cost will not increase significantly when it is contained in steel. Therefore, when adding Sb and Sn in combination,
The content of Sn should be 0.01% or more and less than 0.020%, and the total amount of Sb and Sn should be in the range of 0.01 to 0.10%. C: 0.010% or less C forms carbides and segregates Sb and Sn around them, inhibiting the effect of adding such elements. Therefore, as shown in Figure 1a above, it was decided to suppress the content to a range of 0.010% or less, which does not cause such a risk. S: 0.020% or less S is a harmful element that creates MnS sulfide and causes Sb and Sn to segregate around the sulfide, as in the case of C, and eliminates the effects of these additions. Therefore, as shown in Figure 1b above, such
0.020 without fear of inhibiting the effect of adding Sb or Sn
% or less. O: 0.0030% or less O creates oxides such as SiO 2 and Mn 2 SiO 4 ,
Similar to C and S, Sb and Sn are segregated around them, impairing their effectiveness, so there is no risk of this happening.
It was decided to suppress it to a range of 0.0030% or less. Now, the molten steel produced to have the appropriate composition as described above is made into a steel slab by the usual method, then hot rolled into a hot rolled steel strip, and then subjected to the usual cold rolling process, that is, one cold rolling process. The target thickness is achieved by cold rolling or two times of cold rolling including intermediate annealing. Then, final annealing is performed, but in this final annealing, it is not necessarily necessary to grow crystal grains sufficiently. This is because in the semi-processed electrical steel sheet to which this invention is applied, crystal grains can be sufficiently grown by strain relief annealing performed by the user after punching, and it is better to follow the latter method to improve magnetic properties. This is because they often have good characteristics. The thus obtained semi-processed electrical steel sheet according to the present invention is excellent in magnetic flux density and magnetic permeability, but in order to further improve these properties, Sb tempering heat treatment must be performed before cold rolling. was found to be effective. In other words, in hot rolling, the finishing temperature is 750 to 850℃, and the steel strip after hot rolling is further heated to 700 to 850℃.
It was discovered that the magnetic properties could be further improved by heat treatment at a temperature of 1 to 10 hours. Such heat treatment coarsens the grain size of the cold-rolled steel sheet and also removes segregated Sb or
This means that Sn is sufficiently dissolved in the steel. Thus, in order to sufficiently dissolve Sb in the steel, it is important to set the hot rolling finishing temperature to 750°C or higher and the heat treatment temperature after hot rolling to 700°C or higher. However, if the hot rolling finishing temperature and the heat treatment temperature after hot rolling exceed 850°C, the steel undergoes transformation, the crystal grain size becomes finer, and the magnetic properties deteriorate. In addition, if the heat treatment time after hot rolling is less than 1 hour, the effect of promoting solid solution of Sb and Sn will be poor, while if it exceeds 10 hours, the amount of solid solution will reach a quasi-equilibrium amount, which will increase the cost. The increase in will be less. Therefore, in this invention method, the finishing temperature of hot finish rolling is set at 750 to 850°C, and the subsequent tempering heat treatment conditions are set at 750 to 850°C.
The temperature was limited to 700 to 850°C and for 1 to 10 hours. By regulating the hot rolling finishing temperature in this manner and further performing heat treatment after hot rolling, the effect of promoting solid solution of Sb in steel and the effect of segregation to grain boundaries are further enhanced. Therefore, in the cooling conditions, it is more preferable that the cooling after hot rolling and coiling be rapid cooling, and the cooling of heat treatment after hot rolling be slow cooling, in order to improve the amount of segregation of Sb. By the way, in a hot-rolled steel sheet that has been subjected to the above-described treatment, there are regions at the edges of the coil that exhibit non-uniform elongation during cold rolling. This is because when a hot-rolled coil is subjected to long-term heat treatment, the heat history becomes different between the edge portion and the center portion of the coil, or between the inner winding side, the center side, and the outer winding side of the coil. However, it has been found that a satisfactory solution to this problem can be obtained by performing short-time continuous annealing at a temperature of 600 to 800° C. for 1 to 2 minutes in the final final annealing. Although the above explanation has mainly focused on the case of Sb, it has been confirmed that similar results can be obtained when some amount of Sn is included in addition to Sb. The steel plate of this invention has Si0.50% and Al0.050%.
Since it is a soft steel plate, shape correction can be achieved by continuous annealing at a temperature of 600℃ or higher for a short period of 1 minute or more. However, if the annealing temperature exceeds 800℃ or the annealing time exceeds 2 minutes, the strength of the steel sheet becomes too soft and local deformation occurs, which may also cause waviness and damage the shape of the steel sheet. I don't like it because it's big. Examples Examples After preliminary desulfurization treatment with a melt gun, molten steel is blown in a bottom-blowing converter and tapped at a higher C than usual due to low oxygen.The molten steel is subjected to rimmed treatment with vacuum degassing to reduce C and O. Half of the amount is rimmed for 10 minutes, while the other half is
After rimmed treatment for 25 minutes, deoxidation treatment was performed with Si, and then Sn, Sb, B, Mn, P, etc. were added as necessary to obtain -a, - shown in Table 1.
Seven types of steel slabs having compositions a, b, -a, -b, -a, and -a were obtained by continuous casting. This slab was hot-rolled in the usual way to make hot-rolled coils with a thickness of 2.0 mm, and then each coil was divided into two parts, one of which was cold-rolled once to a thickness of 0.50 mm. Finish annealing was performed at ℃ for 1 minute.
The other one is a hot-rolled coil annealed at 750℃ for 5 hours, then cold-rolled once to a thickness of 0.50mm.
Thereafter, final annealing was performed at 800°C for 2 minutes. The plate thickness deviation, magnetic flux density, and magnetic permeability of each steel plate thus obtained were investigated, and the results are also listed in Table 1. Regarding magnetic properties, 30mm×
The test specimens were cut in half in the rolling direction and in the direction perpendicular to the rolling direction to a size of 280 mm, and then subjected to strain relief annealing at 750°C for 2 hours.The characteristic values were measured for each specimen, and the average value was shown.

【表】【table】

【表】 表1に示した成積から明らかなように、鋼−
aは、SbおよびSnを含まずしかもB含有量がこ
の発明の適正範囲を下回るため、透磁率、磁束密
度がともに低いだけでなく、板厚偏差も大きい。
また鋼−a、−aは、磁気特性は良好ではあ
るけれどもB含有量が少いため、やはり板厚偏差
が大きい。さらにCが過多でBが過少の鋼−a
およびOが過多でBが過少の鋼−aはいずれ
も、磁気特性および表面性状とも劣つていた。 これに対し成分組成がこの発明を満足する鋼
−bおよび−bはいずれも、磁気特性および表
面性状とも良好であり、とりわけ製造過程で冷間
圧延に先立ち750℃、5hの調質熱処理を施したも
のはその特性が一段と優れていた。 実施例 溶銑予備脱硫処理の程度を変え、また、底吹転
炉で吹錬した後、出鋼Cを調整し、かつ真空脱ガ
ス処理でのリムド処理時間を変えて、鋼中S、C
およびO量を調整し、ついで脱酸のため、Siと
Alの複合添加を施してからSn、Sb、B、Mnお
よびPを必要に応じて添加して、表2に成分組成
を示した−a、−b、−aおよび−aの
4種の鋼スラブを連続鋳造法により得た。このス
ラブを仕上げ温度800℃となる条件で熱延し、2.5
mmの板厚の熱延コイルとしたのち各コイルを2分
割とし、ひとつは1回の冷間圧延で0.50mmの板厚
としてから、750℃、1分間の仕上焼鈍を施した。
他のひとつは800℃、2時間の熱延コイルの焼鈍
ののち、1回の冷間圧延で、0.50mmの板厚とし、
しかるのち600℃、1分間の短時間焼鈍を施した。 得られた各鋼板につき、実施例と同様にして
板厚偏差ならびに磁束密度および透磁率について
調べ、その結果を表2に併記した。
[Table] As is clear from the formation shown in Table 1, steel-
Since a does not contain Sb or Sn and has a B content below the appropriate range of the present invention, it not only has low magnetic permeability and magnetic flux density, but also has a large plate thickness deviation.
Moreover, although steels-a and -a have good magnetic properties, they have a small B content, so they also have large plate thickness deviations. Furthermore, steel with too much C and too little B-a
Steel-a containing too much O and too little B both had poor magnetic properties and surface properties. On the other hand, steels -b and -b whose composition satisfies the present invention both have good magnetic properties and surface properties, and are especially heat treated at 750°C for 5 hours in the manufacturing process prior to cold rolling. The ones that did so had even better characteristics. Example: By changing the degree of hot metal preliminary desulfurization treatment, adjusting the tapping C after blowing in a bottom blowing converter, and changing the rimmed treatment time in vacuum degassing treatment, S and C in steel were changed.
and O amount, and then Si and O for deoxidation.
Four types of steel, -a, -b, -a, and -a, whose compositions are shown in Table 2, are made by adding composite addition of Al and then Sn, Sb, B, Mn, and P as necessary. A slab was obtained by continuous casting method. This slab was hot-rolled at a finishing temperature of 800°C, and
After forming a hot-rolled coil with a thickness of mm, each coil was divided into two parts, one of which was cold-rolled once to a thickness of 0.50 mm, and then final annealed at 750°C for 1 minute.
The other one is a hot-rolled coil annealed at 800℃ for 2 hours, then cold rolled once to a thickness of 0.50mm.
Thereafter, it was annealed for a short time at 600°C for 1 minute. Each of the obtained steel plates was examined for plate thickness deviation, magnetic flux density, and magnetic permeability in the same manner as in the examples, and the results are also listed in Table 2.

【表】【table】

【表】 表2に示した結果から明らかなように、B含有
量がこの発明の適正範囲を下回る鋼−aは、磁
気特性は良好であつたけれども板厚偏差が大きか
つた。またSが過多である鋼−aは、板厚偏差
は小さかつたけれども磁気特性に劣つていた。こ
れに対しこの発明に従う鋼−bおよび−aは
いずれも、磁気特性および表面性状とも良好であ
り、とりわけ製造過程で800℃、2時間の熱延コ
イル焼鈍を施したものは一層優れた特性が得られ
た。 発明の効果 かくしてこの発明によれば、低Si、低Alのセ
ミプロセス用無方向性電磁鋼板につき、Sb単独
またはSbとSnとの複合添加により磁気特性の一
層の向上を達成できるだけでなく、B添加により
表面性状の格段の改善も併せて実現することがで
きる。
[Table] As is clear from the results shown in Table 2, Steel-a, in which the B content was below the appropriate range of the present invention, had good magnetic properties but a large thickness deviation. Steel-a containing too much S had poor magnetic properties, although the plate thickness deviation was small. On the other hand, steels -b and -a according to the present invention both have good magnetic properties and surface properties, and in particular, the steel that was subjected to hot-rolled coil annealing at 800°C for 2 hours during the manufacturing process has even better properties. Obtained. Effects of the Invention Thus, according to the present invention, not only can further improvements in magnetic properties be achieved by adding Sb alone or in combination with Sb and Sn to non-oriented electrical steel sheets for semi-processing with low Si and low Al, but also B By addition, it is also possible to significantly improve the surface properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bおよびcはそれぞれ、鋼中S、C
およびO量と透磁率との関係を、該鋼中にSbを
添加した場合とそうでない場合とで比較して示し
たグラフ、第2図は、SbまたはSnを添加した鋼
のB含有量と板厚偏差との関係を示したグラフで
ある。
Figure 1 a, b and c are steel medium S and C, respectively.
Figure 2 is a graph comparing the relationship between O content and magnetic permeability when Sb is added to the steel and when it is not. It is a graph showing the relationship with plate thickness deviation.

Claims (1)

【特許請求の範囲】 1 Si:0.50重量%以下、 Al:0.05重量%以下、 Mn:0.1〜1.0重量%、 P:0.01〜0.20重量%、 B:0.001〜0.020重量%ならびに 少くとも0.01重量%は含有させるSbにつき、単
独もしくは0.02重量%までのSnとの合計量でそれ
ぞれ0.01〜0.10重量%を、不可避不純物としての
混入量を 0.010重量%以下に抑制したC、 0.020重量%以下に抑制したSおよび 0.0030重量%以下に抑制したO と共に含み、残部は実質的にFeの組成になるこ
とを特徴とする、磁気特性ならびに表面性状の優
れたセミプロセス電磁鋼板。 2 Si:0.50重量%以下、 Al:0.05重量%以下、 Mn:0.1〜1.0重量%、 P:0.01〜0.20重量% B:0.001〜0.020重量%ならびに 少くとも0.01重量%は含有させるSbにつき、単
独もしくは0.02重量%までのSnとの合計量でそれ
ぞれ0.01〜0.10重量%を、不可避不純物としての
混入量を 0.010重量%以下に抑制したC、 0.020重量%以下に抑制したSおよび 0.0030重量%以下に抑制したO と共に含む組成になる鋼スラブを、熱延仕上げ温
度:750〜850℃で圧延して熱延鋼板としたのち、
この熱鋼板に、700〜850℃の温度範囲で1〜10時
間にわたる熱処理を施してから、常法に従つて酸
洗ついで冷間圧延を行い、しかるのち600〜800℃
で1〜2分間の短時間連続焼鈍を施すことを特徴
とする、磁気特性ならびに表面性状の優れたセミ
プロセス電磁鋼板の製造方法。
[Claims] 1 Si: 0.50% by weight or less, Al: 0.05% by weight or less, Mn: 0.1 to 1.0% by weight, P: 0.01 to 0.20% by weight, B: 0.001 to 0.020% by weight, and at least 0.01% by weight. Regarding the Sb to be contained, the total amount of Sb alone or together with Sn up to 0.02% by weight is 0.01 to 0.10% by weight, and the amount of C mixed as an unavoidable impurity is suppressed to 0.010% by weight or less. A semi-processed electrical steel sheet with excellent magnetic properties and surface properties, characterized in that it contains S and O suppressed to 0.0030% by weight or less, with the remainder being substantially Fe. 2 Si: 0.50% by weight or less, Al: 0.05% by weight or less, Mn: 0.1 to 1.0% by weight, P: 0.01 to 0.20% by weight, B: 0.001 to 0.020% by weight, and at least 0.01% by weight of Sb to be contained alone. Or the total amount of Sn up to 0.02% by weight, respectively 0.01 to 0.10% by weight, C with the amount mixed as unavoidable impurities suppressed to 0.010% by weight or less, S suppressed to 0.020% by weight or less, and 0.0030% by weight or less After rolling a steel slab with a composition containing suppressed O at a hot rolling finishing temperature of 750 to 850°C to form a hot rolled steel plate,
This hot steel plate is heat treated at a temperature range of 700 to 850°C for 1 to 10 hours, then pickled and cold rolled according to a conventional method, and then heated to a temperature of 600 to 800°C.
A method for producing a semi-processed electrical steel sheet with excellent magnetic properties and surface properties, characterized by subjecting it to continuous short-time annealing for 1 to 2 minutes.
JP59017137A 1984-02-03 1984-02-03 Semi-process electrical steel sheet having excellent magnetic characteristic and surface characteristic and its production Granted JPS60162751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59017137A JPS60162751A (en) 1984-02-03 1984-02-03 Semi-process electrical steel sheet having excellent magnetic characteristic and surface characteristic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59017137A JPS60162751A (en) 1984-02-03 1984-02-03 Semi-process electrical steel sheet having excellent magnetic characteristic and surface characteristic and its production

Publications (2)

Publication Number Publication Date
JPS60162751A JPS60162751A (en) 1985-08-24
JPH0317892B2 true JPH0317892B2 (en) 1991-03-11

Family

ID=11935629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59017137A Granted JPS60162751A (en) 1984-02-03 1984-02-03 Semi-process electrical steel sheet having excellent magnetic characteristic and surface characteristic and its production

Country Status (1)

Country Link
JP (1) JPS60162751A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068489B2 (en) * 1988-12-28 1994-02-02 新日本製鐵株式会社 Non-oriented electrical steel sheet with excellent weldability after magnetic annealing
JP2536131B2 (en) * 1989-02-23 1996-09-18 日本鋼管株式会社 Non-oriented electrical steel sheet having excellent surface properties and method for producing the same
JPH0686647B2 (en) * 1990-03-22 1994-11-02 住友金属工業株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
JPH0686648B2 (en) * 1990-09-27 1994-11-02 住友金属工業株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
JP3446385B2 (en) * 1995-04-21 2003-09-16 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent coating adhesion

Also Published As

Publication number Publication date
JPS60162751A (en) 1985-08-24

Similar Documents

Publication Publication Date Title
KR102095142B1 (en) Non-oriented electrical steel sheet and production method thereof
US6444051B2 (en) Method of manufacturing a grain-oriented electromagnetic steel sheet
CA2971682C (en) Non-oriented electrical steel sheet and method for producing the same
US4560423A (en) Process for producing a non-oriented electromagnetic steel sheet having excellent magnetic properties
US5250123A (en) Oriented silicon steel sheets and production process therefor
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0317892B2 (en)
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
EP0084980B1 (en) Non-oriented electrical steel sheet having a low watt loss and a high magnetic flux density and a process for producing the same
US5425820A (en) Oriented magnetic steel sheets and manufacturing process therefor
KR950009760B1 (en) Method of manufacturing grain oriented silicon steel sheet
JP4790151B2 (en) Non-oriented electrical steel sheet with extremely excellent iron loss and magnetic flux density and method for producing the same
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JP2746631B2 (en) High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same
JP2713028B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPS6333518A (en) Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production
JP7465354B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
KR102119095B1 (en) Grain oriented electrical steel sheet method for manufacturing the same
JP2001158948A (en) Nonoriented silicon steel sheet low in core loss and producing method therefor
KR950014313B1 (en) Method of producing grain-oriented silicon steel with small boron addition
JPH04337050A (en) High tensile strength magnetic material excellent in magnetic property and its production
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss