JPS6254224A - Optical writing reading device - Google Patents

Optical writing reading device

Info

Publication number
JPS6254224A
JPS6254224A JP19413785A JP19413785A JPS6254224A JP S6254224 A JPS6254224 A JP S6254224A JP 19413785 A JP19413785 A JP 19413785A JP 19413785 A JP19413785 A JP 19413785A JP S6254224 A JPS6254224 A JP S6254224A
Authority
JP
Japan
Prior art keywords
light
liquid crystal
optical member
optical
changing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19413785A
Other languages
Japanese (ja)
Inventor
Masahiro Aoki
雅弘 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP19413785A priority Critical patent/JPS6254224A/en
Publication of JPS6254224A publication Critical patent/JPS6254224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Liquid Crystal (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Abstract

PURPOSE:To execute the light pick-up in which the mechanical tracking servo machine is not necessary by changing the inclination of the intensity of the light to irradiate the light conductive film and controlling the forward direction of the parallel light to pass through the liquid crystal layer. CONSTITUTION:The reflecting light from the optical disk on a focus plane 8 is reflected and divided by a half mirror 33. One divided side is made incident on a dividing photodetecting element 34 to analyze the diffraction pattern of the reflecting light, generates the tracking error signal, is fed back to the intensity control circuit of a uniform illuminating beam 9, and other divided light flux passes through a lens 35, and is made incident on a focus detecting photodetecting element 37 through a knife edge 36 arranged on the scheduled focus point surface. For an IC part, the size relation of the output of the photodetecting elements 37a and 37b is inverted due to the focus deviation and thereby, the error signal is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えばビディオ光ディスク等の光ピツクアップ
等として用い得る光学的書込み読出し装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical read/write device that can be used as an optical pickup for, for example, a video optical disc.

〔従来の技術〕[Conventional technology]

ビディオ光ディスクやその他の光記録媒体に光学的に書
込み、読出しを行なう光ピツクアップにとっては、トラ
ッキングサーボ機構が不可欠である。
A tracking servo mechanism is essential for optical pickups that optically write to and read from video optical discs and other optical recording media.

従来の光ピツクアップに於るトラッキングサーボは、カ
ルパノミラーにより光束を走査する方式又は対物レンズ
あるいはピックアップ光学系全体をンレノイドによ如ラ
ジアル方向に移動させる方式等何らかの機械的な駆動を
必要とするものに限られていた。
Tracking servo in conventional optical pickups is limited to systems that require some kind of mechanical drive, such as a method in which the light beam is scanned by a Carpano mirror, or a method in which the objective lens or the entire pickup optical system is moved in the radial direction using an lenoid. It was getting worse.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この点が光ビックアッグの信頼性向上、小型軽蓋化、低
消費電力化、低コスト化の面で大きな阻害要因となって
いた。
This has been a major impediment to improving the reliability of optical big bags, making them smaller and lighter, reducing power consumption, and lowering costs.

本発明は、トラッキングサーボのための機械的可動部を
必要としない光ピツクアップを提供するものである。
The present invention provides an optical pickup that does not require mechanical moving parts for tracking servo.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、液晶層と光導電膜を含む多層構造のrノ青イ
スを用いる。
The present invention uses a multi-layered glass chair including a liquid crystal layer and a photoconductive film.

液晶の複屈折性は、印加電界によって制御される。光導
電膜に照射される光強度の空間的分布は液晶層に印加さ
れる電界の分布に変換されさらに液晶層の複屈折性の空
間分布に変換される。
The birefringence of liquid crystals is controlled by the applied electric field. The spatial distribution of the light intensity applied to the photoconductive film is converted into the distribution of the electric field applied to the liquid crystal layer, and further converted into the spatial distribution of the birefringence of the liquid crystal layer.

空間的に線形な強度の傾きを持った光が光導電膜に照射
されると液晶の異常光線に対する屈折率が空間的に線形
な傾きを持つ。
When a photoconductive film is irradiated with light having a spatially linear intensity gradient, the refractive index of the liquid crystal for extraordinary light rays has a spatially linear gradient.

〔作用〕[Effect]

かかる液晶層を通過する平行光は進行方向を変える。従
って、光導電膜を照射する光の強度の傾きを変化させる
ことにより、液晶層を通過する平行光の進行方向を制御
することができる。
Parallel light passing through such a liquid crystal layer changes its traveling direction. Therefore, by changing the slope of the intensity of light that irradiates the photoconductive film, the traveling direction of parallel light passing through the liquid crystal layer can be controlled.

この平行光を十分大きな開口を持つ対物レンズによって
f’4スク上に集光するようにすれば、デスク上でスポ
ット位置を変化させてやることができ、トラッキングサ
ーボの機能を実現することができる。
If this parallel light is focused onto the f'4 screen using an objective lens with a sufficiently large aperture, the spot position can be changed on the desk and a tracking servo function can be realized. .

〔実施例〕〔Example〕

第1図値〒徊は本発明の一実施例を示す図である。第1
図−において1ムは基本機能部分であり、IBは書込み
読出し機能部分である。
FIG. 1 is a diagram showing an embodiment of the present invention. 1st
In the figure, 1M is a basic functional part, and IB is a write/read functional part.

第2図は基本機能部分JAを示す図である。FIG. 2 is a diagram showing the basic functional part JA.

第2図において1は液晶を含む第1の光学部材であシ、
2はフィルタとしての第2の光学部材である。3は点光
源または物体の光点であ択4はコリメートレンズ、5は
ポーラライザ、1は焦光レンズ、8は上記集光レンズの
焦平面である。
In FIG. 2, 1 is a first optical member including a liquid crystal;
2 is a second optical member as a filter. 3 is a point light source or a light spot of an object; 4 is a collimating lens; 5 is a polarizer; 1 is a focusing lens; and 8 is a focal plane of the condensing lens.

第3図は、前記第1の光学部材1の構造を示す断面図で
ある。第2図において11は液晶、Jja、JJbは上
記液晶の両側に配置された内部誘電体層、13*、13
bは透明電極、14は誘電体ミラー、15は光吸収層、
16は光導電膜、J7a、Jrbはガラス板、18はス
ペーサ、19は透明電極13m、13bに接続されたA
C電源である。つtb液晶11が、JJa、Jjmを積
層した上部ガラス板11hと、12b、14,16.1
8.13mを積層した下部ガラス板J7mとの間に、ス
ペーサ18を介在させた領域内に封入されたものとなり
ている。
FIG. 3 is a sectional view showing the structure of the first optical member 1. As shown in FIG. In FIG. 2, 11 is a liquid crystal, Jja, JJb are internal dielectric layers arranged on both sides of the liquid crystal, 13*, 13
b is a transparent electrode, 14 is a dielectric mirror, 15 is a light absorption layer,
16 is a photoconductive film, J7a and Jrb are glass plates, 18 is a spacer, and 19 is A connected to transparent electrodes 13m and 13b.
It is a C power source. The tb liquid crystal 11 has an upper glass plate 11h laminated with JJa and Jjm, 12b, 14, 16.1
It is enclosed in a region with a spacer 18 interposed between it and a lower glass plate J7m in which 8.13 m of glass is laminated.

かくして制御光10が存在しないとき、光導電膜1gの
ダイオード効果と誘電体ミラー14のコンデンサ効果に
よシ、液晶11の両端に発生する電位はAC電源の周波
数、電圧によらず実効的に である、制御光10が一定
強度を持った場合、光導電膜ICは低抵抗体と等価にな
るため、液晶11の両端に電位差が生じる。
Thus, when the control light 10 is not present, due to the diode effect of the photoconductive film 1g and the capacitor effect of the dielectric mirror 14, the potential generated across the liquid crystal 11 is effectively independent of the frequency and voltage of the AC power source. When the control light 10 has a certain intensity, the photoconductive film IC becomes equivalent to a low-resistance material, so that a potential difference occurs between both ends of the liquid crystal 11.

液晶分子が第4図(、)のようにプラス面および紙面に
平行に配向されているとすると、外部電界Eが0のとき
、液晶分子の配向方向と同じ方向に偏光している被制御
光20に対する液晶11の屈折率は、異常光に対する屈
折率n・になる。
Assuming that the liquid crystal molecules are aligned parallel to the positive side and the plane of the paper as shown in Figure 4 (,), when the external electric field E is 0, the controlled light is polarized in the same direction as the alignment direction of the liquid crystal molecules. The refractive index of the liquid crystal 11 with respect to 20 is the refractive index n· for extraordinary light.

外部電界Eが生じると、液晶分子の分極に外力が働き飽
和電位E!に達すると第4図(、)のような状態となり
、液晶の屈折率は常光線に対する屈折率n・に等しくな
る。中間の電位E1では第4図(b)の状態であり、そ
の屈折率n1はn @ (n @ (m・の範囲で変化
する。
When an external electric field E is generated, the external force acts on the polarization of liquid crystal molecules, and the saturation potential E! When this reaches the state shown in FIG. 4 (,), the refractive index of the liquid crystal becomes equal to the refractive index n· for ordinary rays. At an intermediate potential E1, the state is as shown in FIG. 4(b), and the refractive index n1 changes within a range of n@(n@(m)).

第5図(a) I (b)は、前記第2の光学部材2を
示す図である。第2の光学部材2は同図(a)に示すよ
うなものであシ、同図(b)に示すようにX方向に線形
に変化する強度透過率分布をもったフィルタである。
FIGS. 5(a) and 5(b) are diagrams showing the second optical member 2. FIG. The second optical member 2 is of the type shown in FIG. 3(a), and is a filter having an intensity transmittance distribution that changes linearly in the X direction as shown in FIG. 1(b).

このように構成された基本機能部分IAにおいては、図
示しない光源から一様な明るさの照明光9がフィルタ2
を通過すると、制御光10の空間強度分布は第6図の[
a)のようになル、光強度→外部電界→屈折率の変換プ
ロセスによ6一 シ第1の光学部材1に含まれる液晶Iノの屈折率分布は
第7図(、)の実線のようにX方向に対して一定の傾き
をもつ。とのような媒質、 (、)に第7図(b)に示
すように、平行光線が入射すると、媒質中の光線Iの光
路h−h′−A#と光線■の光路B −B’ −8’と
の間には、距離A−Hにほぼ正比例した光路差が生じる
。したがって出射光線はほぼ平行でかつ入射光線よシ小
さな角度θ。
In the basic functional part IA configured in this way, illumination light 9 of uniform brightness is emitted from a light source (not shown) to the filter 2.
When passing through, the spatial intensity distribution of the control light 10 becomes [
As shown in a), the refractive index distribution of the liquid crystal I included in the first optical member 1 is as shown by the solid line in Fig. 7 (,) by the conversion process of light intensity → external electric field → refractive index. It has a constant slope with respect to the X direction. As shown in FIG. 7(b), when a parallel ray is incident on a medium such as (,), the optical path h-h'-A# of the ray I in the medium and the optical path B-B' of the ray ■ -8', an optical path difference approximately directly proportional to the distance A-H occurs. Therefore, the outgoing rays are almost parallel and at a smaller angle θ than the incoming rays.

で出射する。It emits light.

一様な照明光90強度が増加すると、制御光10の強度
分布は第6図の(b)のようになり、液晶の屈折率分布
は第7図(亀)の点線のような傾きをもち、光線■と■
との液晶中の光路差が増加するため、0・はさらに小さ
くなる。
When the uniform illumination light 90 intensity increases, the intensity distribution of the control light 10 becomes as shown in Figure 6 (b), and the refractive index distribution of the liquid crystal has a slope as shown in the dotted line in Figure 7 (tortoise). , rays ■ and ■
Since the optical path difference in the liquid crystal increases, 0. becomes even smaller.

以上の説明から明らかなように、第2図の点光源または
物体の光点3の像を、一様な照明光90強度変化により
て焦xF−面8上で畠←bのように移動させることがで
きる。
As is clear from the above explanation, the image of the point light source or the light spot 3 of the object in FIG. be able to.

ポーラライプ5の偏光方向と液晶分子の点電界時の配向
方向がともに第1図におけるy方向であり電界による液
晶分子の回転がy−i平面内で生起するものとすれば、
液晶11の入射光に対する屈折率分布は入射角には依存
し5h以上の説明では第2図に於る第2の光学部材2の
強度透過率が図中X方向に分布していると仮定したが、
これがy方向に分布している場合にもitぼ同様な原理
によシ焦平面8上でのレーデ−光スポットの移動が、紙
面に垂直(y方向)な方向で生じることは容易に理解で
きるであろう。
Assuming that the polarization direction of the polarite 5 and the orientation direction of the liquid crystal molecules in a point electric field are both the y direction in FIG. 1, and that the rotation of the liquid crystal molecules due to the electric field occurs within the y-i plane,
The refractive index distribution of the liquid crystal 11 for incident light depends on the incident angle, and in the explanation above 5h, it is assumed that the intensity transmittance of the second optical member 2 in FIG. 2 is distributed in the X direction in the figure. but,
It is easy to understand that even when this is distributed in the y direction, the movement of the radar light spot on the focal plane 8 occurs in the direction perpendicular to the plane of the paper (y direction) based on almost the same principle. Will.

第1図に説明を戻す。以下光ピツクアップ機能部分につ
いて説明する。第1図において31と32は偏光ビーム
スノリツタ及び1/4λ板であ〕31の透過偏光方向は
偏光板5の偏光方向3ノで反射されハーフンラーJJで
分割される。
Let's return to Figure 1. The optical pickup function section will be explained below. In FIG. 1, 31 and 32 are a polarizing beam snoritter and a 1/4 λ plate. The transmitted polarized light direction of 31 is reflected by the polarizing direction 3 of the polarizing plate 5 and divided by the half-wave mirror JJ.

分割された1方は反射光の回折・臂ターンを分析するた
めの分割受光素子J4に入射しトラッキング誤差信号を
生成し、図示しない電気回路によって一様照明光90強
度制御回路へフィードバックされる0分割された他方の
光束はレンズ35を通りその予定焦点面に配置されたナ
イフ二ンノ36を通過して焦点検出受光素子37に入射
する。
One of the divided parts enters the divided light receiving element J4 for analyzing the diffraction and arm turn of the reflected light to generate a tracking error signal, which is fed back to the uniform illumination light 90 intensity control circuit by an electric circuit (not shown). The other divided light flux passes through the lens 35, passes through the knife knife 36 disposed at its predetermined focal plane, and enters the focus detection light receiving element 37.

第1図のIC部分は35.3B、37!を側面から見た
図である。焦点ズレによって受光素子3 F h * 
J 7 bの出力の大小関係が反転することにより誤差
信号が得られる。
The IC part in Figure 1 is 35.3B, 37! It is a figure seen from the side. Due to the focus shift, the light receiving element 3 F h *
An error signal is obtained by inverting the magnitude relationship of the output of J7b.

第1図では液晶デバイス中を平行光線が1回しか通過し
ないように示されているが、第8図のような構造にして
複数回通過させることにより、より大きな偏向能力を持
たせることもできる。40は反射板である。
Although Fig. 1 shows that the parallel light passes through the liquid crystal device only once, it is possible to create a structure like Fig. 8 in which the parallel light rays pass through the device multiple times, giving it greater deflection ability. . 40 is a reflecting plate.

定として液晶に印加するAC電源の電圧にフィードバッ
クすることによっても液晶の屈折率変化の傾きを変える
ことができる。
The slope of the change in the refractive index of the liquid crystal can also be changed by feeding back to the voltage of the AC power supply that is applied to the liquid crystal as a constant.

また本例の光学部材1は液晶を含むものであるが例えば
B、S、Oのように光導電性と電気光学的複屈折効果を
同時に有する材料、又はデバイスであれば同様の機能が
実現できる。
Further, although the optical member 1 of this example includes liquid crystal, the same function can be realized by using a material or device that has both photoconductivity and electro-optic birefringence, such as B, S, and O, for example.

又トラッキング誤差の検出方式焦点誤差の検出方式は上
述した例に限らず公知の様々な方式を採用することがで
きる。
Further, the tracking error detection method and focus error detection method are not limited to the above-mentioned example, and various known methods can be adopted.

〔発明の効果〕〔Effect of the invention〕

本発明により機械的なトラッキングサーボ機構が不要な
光ピツクアップが実現でき、その信頼性が格段に向」ニ
するとともに、小型、低消費電力化にも有効でsb、全
体として低コスト化につながるという大きな効果が得ら
れる。
The present invention makes it possible to realize an optical pickup that does not require a mechanical tracking servo mechanism, significantly improving its reliability, and is also effective in reducing size and power consumption, leading to overall cost reduction. Great effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第7図は本発明の一実施例を示す図で、第1図
は全体的構成を示す図、第2図は基本構成部分を示す図
、第3図は第1の光学部材を示す断面図、第4図(a)
〜(、)は同部材の機能を示す図、第5図(a) * 
(b)は第2の光学部材を示す図、第6図、第7図(a
) e (b) Fi、作用説明図、第8図は本発明の
他の実施例を示す図である。 1・・・第1の光学部材、2・・・第2の光学部材、8
・・・光ディスクgヤ、fのt、w、yth 、)出願
人代理人  弁理士 坪 井   淳10 句   、
Oj) n〜−〜++IOψの + J j=’ 第4因 (a) 笛6 図 ^ 第5丙 e y、、60J0・17  。
1 to 7 are diagrams showing one embodiment of the present invention, in which FIG. 1 shows the overall configuration, FIG. 2 shows the basic components, and FIG. 3 shows the first optical member. Cross-sectional view showing FIG. 4(a)
~ (,) is a diagram showing the function of the same member, Figure 5 (a) *
(b) is a diagram showing the second optical member, FIG. 6, and FIG. 7 (a
) e (b) Fi, action explanatory diagram, FIG. 8 is a diagram showing another embodiment of the present invention. 1... First optical member, 2... Second optical member, 8
...Optical disc gya, f's t, w, yth,) Applicant's agent Patent attorney Jun Tsuboi 10 words,
Oj) n〜−〜++IOψ+ J j=' 4th factor (a) Whistle 6 Figure ^ 5th 丙e y,, 60J0・17.

Claims (1)

【特許請求の範囲】 制御光の空間強度分布にしたがって被制御光の少なくと
も一つの特定方向に偏向した成分に対する屈折率の空間
的分布が変化する第1の光学部材と、 前記第1の光学部材に対する前記制御光の空間強度分布
を空間的に線形となす第2の光学部材と、 前記第2の光学部材による空間的に線形分布した光の強
度の傾きを変化させる手段およびまたは 前記第1の光学部材の制御光強度に対する読出し光の屈
折率変化の比率を変化させ得る手段を有する 光偏向器の前記光の強度の傾きを変化させ得る手段およ
び/または前記屈折率変化の比率を変化させ得る手段に
、トラッキングエラー検出器からの誤差信号をフィード
バックさせることにより、収束光を書込み読出しトラッ
クに正しく追随させ得るようになしたことを特徴とする
光学的書込み読出し装置。
[Scope of Claims] A first optical member in which a spatial distribution of refractive index for a component of controlled light that is deflected in at least one specific direction changes in accordance with a spatial intensity distribution of control light; and the first optical member. a second optical member that makes the spatial intensity distribution of the control light spatially linear; and a means for changing the slope of the spatially linearly distributed light intensity distribution by the second optical member; A means capable of changing the slope of the light intensity of an optical deflector having a means capable of changing the ratio of the refractive index change of the readout light to the control light intensity of the optical member and/or a means capable of changing the ratio of the refractive index change An optical writing/reading device characterized in that the means is configured to feed back an error signal from a tracking error detector so that the convergent light can accurately follow the writing/reading track.
JP19413785A 1985-09-03 1985-09-03 Optical writing reading device Pending JPS6254224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19413785A JPS6254224A (en) 1985-09-03 1985-09-03 Optical writing reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19413785A JPS6254224A (en) 1985-09-03 1985-09-03 Optical writing reading device

Publications (1)

Publication Number Publication Date
JPS6254224A true JPS6254224A (en) 1987-03-09

Family

ID=16319522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19413785A Pending JPS6254224A (en) 1985-09-03 1985-09-03 Optical writing reading device

Country Status (1)

Country Link
JP (1) JPS6254224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0351675A2 (en) * 1988-07-21 1990-01-24 Mitsubishi Denki Kabushiki Kaisha Focusing error detecting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0351675A2 (en) * 1988-07-21 1990-01-24 Mitsubishi Denki Kabushiki Kaisha Focusing error detecting apparatus
US5004900A (en) * 1988-07-21 1991-04-02 Mitsubishi Denki Kabushiki Kaisha Focusing error detecting apparatus with light switching and detector sampling

Similar Documents

Publication Publication Date Title
JPH02501247A (en) Integrated optical reading/recording head and associated equipment
JPS6227456B2 (en)
JP2798185B2 (en) Optical head for magneto-optical information reproducing device
JP2000268398A (en) Optical pickup, information recording device, and information reproducing device
EP0469580A2 (en) Optical pickup apparatus
US5579291A (en) Compact-size magneto-optical head apparatus
JPS6254224A (en) Optical writing reading device
JPS6117103A (en) Polarizing beam splitter
US5859730A (en) Optical apparatus having a luminous flux shaping filter
US20090167965A1 (en) Liquid crystal optical element and optical pickup apparatus
JP2710809B2 (en) Crossed diffraction grating and polarization rotation detector using the same
JPS6254223A (en) Optical writing reading device
JPS6337829A (en) Tracking servo mechanism
KR100210485B1 (en) Lc wavelength plate and optical pickup device using it
KR900002004B1 (en) The optical pick-up apparatus
KR850000421B1 (en) Forcus detecting method
US8098352B2 (en) Optical pickup apparatus and liquid crystal optical element
JPH0785523A (en) Magneto-optical disk device
JPH0627429A (en) Condensing device
JPS61233442A (en) Optical head device
JPS58200436A (en) Focus detecting device
JP2011014176A (en) Optical unit and optical information recording and reproducing device
JPH06267106A (en) Optical head
JPH05174440A (en) Optical head device
JPH0242641A (en) Optical head structure