JPS6253473B2 - - Google Patents

Info

Publication number
JPS6253473B2
JPS6253473B2 JP52140099A JP14009977A JPS6253473B2 JP S6253473 B2 JPS6253473 B2 JP S6253473B2 JP 52140099 A JP52140099 A JP 52140099A JP 14009977 A JP14009977 A JP 14009977A JP S6253473 B2 JPS6253473 B2 JP S6253473B2
Authority
JP
Japan
Prior art keywords
beryllium
powder
weight
silicon carbide
powder mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52140099A
Other languages
English (en)
Other versions
JPS5367711A (en
Inventor
Henrii Sumooku Richaado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kennecott Corp
Original Assignee
Kennecott Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kennecott Corp filed Critical Kennecott Corp
Publication of JPS5367711A publication Critical patent/JPS5367711A/ja
Publication of JPS6253473B2 publication Critical patent/JPS6253473B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Inorganic Insulating Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 炭化ケイ素、すなわち金属ケイ素と非金属炭素
との結晶性化合物は、その硬さ、強さ、および酸
化と腐食とに対する抵抗性について長い間知られ
てきている。炭化ケイ素は、低い膨張係数、すぐ
れた熱伝導性をもち、高温において高い強さを保
持する。最近において、炭化ケイ素粉末から高密
度の炭化ケイ素物体を製造する技術が開発され
た。このような技術には反応結晶、化学蒸気析
出、加熱圧縮および無加圧焼結(初め物品を成形
し、次いで焼結する)が含まれる。これらの技術
の例は、米国特許3853566、3852099、3954483お
よび3960577に記載されている。このようにして
製造された高密度の炭化ケイ素物体は、きわめて
すぐれた工業材料であり、タービン、熱交換単
位、ポンプならびに、か酷な摩耗および/または
高温条件下の運転にさらされる他の装置や工具の
成分の製作に利用される。本発明は、高密度の炭
化ケイ素物体を加熱圧縮または焼結により製造す
る種々の方法における使用に適する炭化ケイ素粉
末混合物、およびそれから製造されたセラミツク
物品に関する。
高密度および高強度の炭化ケイ素セラミツク材
料を得るため、種々の添加剤が利用されてきた。
たとえば、高密化助剤としてアルミニウムと鉄の
添加により炭化ケイ素を理論密度の98%程度の密
度に加熱圧縮する方法は、Alliegro、et al.、J.
Ceram.、Soc.、Vol.39、No.11、Nov.、1965、386
〜389ページに開示されている。彼らは1重量%
のアルミニウムを含有する粉末から密な炭化ケイ
素を製造できることを発見した。それらの製品は
室温において54000psi3797Kg/cm2)、1371℃にお
いて70000psi(4922Kg/cm2)の破壊係数を有し
た。最近の進歩は、高密化剤としてホウ素を通常
粉末の約0.03〜約3.0重量%の範囲で使用するこ
とである。ホウ素添加剤は、元素状ホウ素または
ホウ素含有化合物、たとえば炭化ホウ素の形であ
ることができる。ホウ素含有炭化ケイ素粉末の例
は、米国特許3852099、3954483および3968194に
記載されている。
さて、本発明によれば、焼結された炭化ケイ素
材料の製造における高密化助剤としてベリリウム
を使用できることがわかつた。粉末の約0.03〜約
3.0重量%の範囲のベリリウムは主として有用で
あることがわかり、さらにとくに粉末の約0.1〜
約1.0重量%は炭化ケイ素粉末成形体の高密化の
促進に適することがわかつた。ベリリウムは高密
化助剤として利用でき、あるいは、他の高密化助
剤、たとえばホウ素に加えて利用できる。したが
つて、ベリリウムとホウ素または他の助剤との混
合物を利用できる。通常このような助剤の範囲
は、ケイ素粉末の約0.03〜約3.0重量%である。
約0.5〜約5.0重量%の過剰炭素を含有する出発
炭化ケイ素粉末は、微細なベリリウムまたはベリ
リウム含有化合物と混合する。好ましくは、両方
の成分の粘度は5ミクロンより小さらに好ましく
は2ミクロンより小である。これらの成分が約
1.0ミクロンより小さいとき、きわめてすぐれた
分布が得られる。高密化を得るためには、ベリリ
ウムまたはベリリウム含有添加剤は、粉末の約
0.03〜約3.0重量%がベリリウムであるような量
で利用すべきである。約0.03重量%より少ない量
の使用は、焼結製品の密度を実質的に増加させな
いことがわかつた。約3.0重量%より多い量のベ
リリウムの添加は追加の高密化をほとんど与え
ず、過度の粒子生長に導びきかつ焼結製品の強さ
を低下させる。
理論密度の少なくとも75%のかさ密度はほとん
どの応用に要求され、理論密度の少なくとも85%
のかさ密度はしばしば要求される。理論密度の85
%の密度をもつ加熱圧縮または焼結製品は、本発
明によつて得られる。
本発明のベリリウム添加剤は、単独で利用でき
または他の高密化助剤、最もふつうにはホウ素と
混合できる。このような添加剤を使用するとき、
ベリリウム成分はホウ素または他の高密化助剤と
完全に置換でき、またはホウ素または他の高密化
助剤の一部分と置換できる。一般に、このような
混合物は、焼結する状態にあるとき、約0.03〜約
3.0重量%の合計の高密化助剤を含有する。
炭化ケイ素源材料は、表面積が8.0m2/gより
大きく、約0.5〜約5.0重量%の過剰炭素を含有す
るサブミクロンの粉末であることが好ましい。一
般に表面積が約5〜約20m2/gの粉末組成物は、
主として有用であることがわかつた。過剰炭素
は、たとえば、製造過程中、炭素または炭素質材
料の引き続く添加により、または焼結前の結合剤
として導入できる。
有用であることがわかつたベリリウムまたはベ
リリウム含有添加剤の出発材料は、一般に50ミク
ロンより小、好ましくは10ミクロンより小さい粒
度をもつ。5ミクロンより小さい粒度は主として
有用であり、そしてベリリウムまたはベリリウム
含有添加剤と炭化ケイ素粉末とを容易に分布させ
て焼結に有用な均質混合物を得るためには、約
1.0ミクロンより小さい粒度は非常に有用であ
る。
他の添加剤は利用できるが、焼結中の高密化の
促進には不必要である。好ましくは、焼結は不活
性雰囲気中で実施し、アルゴンまたはヘリウムは
不活性雰囲気として適切である。還元性雰囲気も
利用できる。
本発明の粉末組成物は、加熱圧縮または無加圧
焼結に利用できる。たとえば、加熱圧縮におい
て、約0.5〜約5.0重量%の過剰炭素を含有する炭
化ケイ素粉末をベリリウムまたはベリリウム含有
添加剤と混合して、合計約0.03〜約3.0重量%の
ベリリウムが存在する均質な混合物を形成する。
この混合物を加熱圧縮型に入れ、1000〜10000psi
(70.3〜703.1Kg/cm2)の圧力下に約1900〜約2200
℃の温度に十分な時間加熱して、理論密度の75%
より大きい密度をもつ炭化ケイ素製品を得る。さ
らに特定的には、表面積が約11m2/gであり約
2.0重量%の過剰炭素を含有する炭化ケイ素粉末
をBe2Cとして加えた約0.1〜約1.0重量%のベリリ
ウムと混合し、この混合物をグラフアイトの圧縮
型に入れ、約2000℃および約5000psi(352Kg/
cm2)の圧力において加熱圧縮できる。このように
して形成した炭化ケイ素製品は、典型的には理論
密度の85%より大きい密度をもち、形成したまま
で使用でき、あるいは機械加工して複雑な形状の
物品にすることができる。
無加圧焼結において、約0.5〜約5.0重量%の過
剰炭素を含有する炭化ケイ素粉末をベリリウムま
たはベリリウム含有添加剤と混合して、約0.03〜
約3.0重量%のベリリウムが存在する均質混合物
を形成する。次いで、この均質混合物を生製品に
成形する。粒子の流動と結合を増加させる適当な
添加剤を、出発混合物に混入できる。この生製品
を引き続いて不活性雰囲気中または還元性雰囲気
中で約1950〜約2300℃において十分な時間焼結し
て、理論密度の75%より大きい密度をもつ炭化ケ
イ素製品を得る。さらに特定的には、表面積がほ
ぼ11m2/gであり、約2.0重量%の過剰炭素を含
有する炭化ケイ素粉末を、適当にはBe2Cとし
て、または元素状の、約0.03〜約1.0重量%のベ
リリウムと混合できる。生じた混合物を圧縮し
て、約1.76g/cm2の密度にすることができる。結
合剤を使用して、粉末の流動性を増加でき、ある
いは圧縮製品の生強度を増加できる。次いで、圧
縮粉末成形体を、好ましくは不活性雰囲気中で、
約2100℃において約30分間焼結する。冷却後、焼
結粉末は典型的には理論密度の85%より大きい密
度をもつ。
次の実施例により、本発明を説明する。
実施例 1 加熱圧縮 次の仕様をもつ炭化ケイ素粉末を、出発材料と
して使用した。炭化ケイ素粉末は8.0m2/gより
大きい表面積と次の重量%で表わした分析値を有
した: 酸 素 0.8より小 鉄 0.2 〃 アルミニウム 0.4 〃 ニツケル 0.1 〃 チタン 0.1 〃 タングステン 0.5 〃 遊離ケイ素 0.4 〃 炭化ケイ素 97.5より大 97.5gの前記粉末を4.8gのフエノール樹脂
(Resin No.8121として知られている、Varcum
Chemical Companyの製品)および0.5gのマイ
ナス325メツシユのベリリウム金属粉末と混合し
た、フエノール樹脂は引き続く加熱圧縮温度に加
熱して分解すると、炭素残留物が残つた。この混
合物を閉じた環境内で配合し、次いで約2000psi
(141Kg/cm2)の圧力で3インチ(7.6cm)のスラ
グに圧縮した。このスラグは技術分野でよく知ら
れた技術すなわち約4000psi(281Kg/cm2)の圧力
において約2000℃の温度に加熱することによつて
加熱圧縮するのに適する。最終密度を達成するの
に要する時間は、約30分であつた。高密度化後、
圧力を減少し、温度を低下させた。上の技術によ
つて製造された製品は、2.88g/cm3(理論密度の
約90%)以上のかさ密度をもつことを期待でき
る。
実施例 2 無加圧焼結 実施例1の記載の特性をもち、フエノール樹脂
(Varcum Chemical Company No.8121)の形で
加えられたほぼ2重量%の炭素を含有する炭化ケ
イ素粉末49.75gを、0.25gのマイナス325メツシ
ユのベリリウム金属粉末と混合した。3%のポリ
ビニルアルコールを、粉末混合物の生強度を高く
するための結合剤として加えた。この混合物の調
製は閉じた環境内で実施した。粉末中の添加剤の
すぐれた分散を確保するため、湿式混合技術を用
いた。この混合物を80容量%のメチルアルコール
と20容量%の水との混合物中のスラリーとした。
よく混合したのち、このスラリーを蒸発乾固し、
生じた粉末混合物を、直径1.125インチ(2.85
cm)、重さ約10gのペレツトに、約12000psi(844
Kg/cm2)の圧力において圧縮した。次いで、得ら
れた粉末成形体をグラフアイト抵抗加熱要素炉に
入れ、ゆつくり加熱して揮発性物質を除去し、次
いで約2100℃に急速に加熱し、この温度に30分間
維持した。
典型的な加熱速度表は、次のとおりである: 室温から150℃ 30分 150℃から400℃ 120分 400℃から800℃ 60分 800℃から2100℃ 180分 焼結後、電力を切り、焼結製品を炉といつしよ
に放冷した。焼結過程中、アルゴン雰囲気を利用
した。製造した粉末成形体は、2.75g/cm3(理論
密度の85%)より大きいかさ密度を有する。
比較例 1 対 照 実施例1に記載するような特性をもち、フエノ
ール樹脂(Varcum Chemical Company No.
8121)の形で加えたほぼ2重量%の過剰炭素を含
有する50gの炭化ケイ素粉末を、ベリリウム粉末
を添加しない以外は実施例2の操作に従つて、調
製し、焼結した。製造した粉末成形体は、約2.25
g/cm3(理論密度の70%)より少ないかさ密度を
有することがわかつた。

Claims (1)

  1. 【特許請求の範囲】 1 0.5〜5重量%の過剰炭素を含有する炭化ケ
    イ素粉末と、この粉末に対しベリリウムとして約
    0.03〜約3.0重量%のベリリウム又はベリリウム
    含有化合物を含有して成る炭化ケイ素焼結体製造
    用原料粉末混合物。 2 粉末は約0.5〜5.0重量%の過剰炭素を含有す
    る特許請求の範囲第1項記載の粉末混合物。 3 平均粒度は5ミクロンより小さい特許請求の
    範囲第1項記載の粉末混合物。 4 粉末は約0.03〜約1.0重量%のベリリウムを
    含有する特許請求の範囲第1項記載の粉末混合
    物。 5 ベリリウムは元素状ベリリウムである特許請
    求の範囲第1項記載の粉末混合物。 6 ベリリウムは炭化ベリリウムの形態にある特
    許請求の範囲第1項記載の粉末混合物。 7 (a) 0.5〜5重量%の過剰炭素を含有する炭
    化ケイ素粉末と、この粉末に対しベリリウムと
    して約0.03〜約3.0重量%のベリリウム又はベ
    リリウム含有化合物を含有して成る均質な粉末
    混合物を形成し、 (b) 該粉末混合物を、約1900〜約2200℃の温度
    に、約1000〜約10000psi(70.3〜703.1Kg/
    cm2)の圧力下で加熱し、そして (c) 該温度と該圧力を、理論密度の85%より大き
    い密度をもつ炭化ケイ素製品を得るのに十分な
    時間、維持する、 ことを特徴とする炭化ケイ素製品を製造する方
    法。 8 (a) 0.5〜5重量%の過剰炭素を含有する炭
    化ケイ素粉末と、この粉末に対しベリリウムと
    して約0.03〜約3.0重量%のベリリウム又はベ
    リリウム含有化合物を含有して成る均質な粉末
    混合物を形成し、 (b) 該混合物を生製品に成形し、 (c) 該生製品を不活性雰囲気中で約1950〜約2300
    ℃の温度において焼結し、そして (d) 該温度を、理論値の85%より大きい密度をも
    つ炭化ケイ素製品を得るのに十分な時間、維持
    する、 ことを特徴とする炭化ケイ素製品の製造法。 9 約0.03〜約3.0重量%のベリリウム;約0.5〜
    約5.0重量%の過剰炭素:および不純物として2.0
    重量%より少ない他の元素を含有する残部量の炭
    化ケイ素からなることを特徴とする理論密度の85
    %より大きいかさ密度を有する焼結セラミツク製
    品。
JP14009977A 1976-11-26 1977-11-24 Silicon carbioe composite powder containing beryllium Granted JPS5367711A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US74503576A 1976-11-26 1976-11-26

Publications (2)

Publication Number Publication Date
JPS5367711A JPS5367711A (en) 1978-06-16
JPS6253473B2 true JPS6253473B2 (ja) 1987-11-10

Family

ID=24994976

Family Applications (2)

Application Number Title Priority Date Filing Date
JP14009977A Granted JPS5367711A (en) 1976-11-26 1977-11-24 Silicon carbioe composite powder containing beryllium
JP62142399A Granted JPS6325274A (ja) 1976-11-26 1987-06-09 炭化ケイ素粉末混合物およびその焼結セラミツク製品

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP62142399A Granted JPS6325274A (ja) 1976-11-26 1987-06-09 炭化ケイ素粉末混合物およびその焼結セラミツク製品

Country Status (6)

Country Link
JP (2) JPS5367711A (ja)
BR (1) BR7707857A (ja)
CA (1) CA1079309A (ja)
DE (1) DE2751851A1 (ja)
GB (1) GB1558254A (ja)
SE (1) SE7713343L (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144207A (en) * 1977-12-27 1979-03-13 The Carborundum Company Composition and process for injection molding ceramic materials
CA1122384A (en) * 1978-08-28 1982-04-27 Richard H. Smoak Pressureless sintering beryllium containing silicon carbide powder composition
JPS6125472Y2 (ja) * 1979-08-03 1986-07-31
JPS5987893A (ja) * 1982-11-12 1984-05-21 株式会社日立製作所 配線基板とその製造方法およびそれを用いた半導体装置
US4874725A (en) * 1984-04-27 1989-10-17 Nippon Tungsten Co., Ltd. High-density sintered article of silicon carbid
DE3840594A1 (de) * 1988-02-05 1989-08-17 Hoechst Ag Verfahrensmethode zur herstellung hochfester und hochdichter, polykristalliner siliziumkarbid-formkoerper mit homogener kohlenstoffverteilung durch kontrollierte diffusion

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993602A (en) * 1975-11-17 1976-11-23 General Electric Company Polycrystalline silicon carbide with increased conductivity
DE2621932C3 (de) * 1976-05-17 1979-02-01 Kajetan 8170 Bad Toelz Leitner Futter zum Spannen von Kopf- und Stiftschrauben beim Einschraubvorgang

Also Published As

Publication number Publication date
JPS5367711A (en) 1978-06-16
SE7713343L (sv) 1978-05-27
GB1558254A (en) 1979-12-19
JPS6325274A (ja) 1988-02-02
CA1079309A (en) 1980-06-10
BR7707857A (pt) 1978-09-05
DE2751851A1 (de) 1978-06-01
JPH0253388B2 (ja) 1990-11-16

Similar Documents

Publication Publication Date Title
US4123286A (en) Silicon carbide powder compositions
US4327186A (en) Sintered silicon carbide-titanium diboride mixtures and articles thereof
US4320204A (en) Sintered high density boron carbide
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
US4237085A (en) Method of producing a high density silicon carbide product
JPS61227966A (ja) 炭化珪素質焼結体及びその製造法
CA1139791A (en) Sintered silicon carbide-aluminum nitride articles and method of making such articles
US4486544A (en) Titanium boride based sintering composition and the use thereof in the manufacture of sintered articles
JPS6350311B2 (ja)
US4172109A (en) Pressureless sintering beryllium containing silicon carbide powder composition
JPS6350310B2 (ja)
JPS6253473B2 (ja)
JPH0228539B2 (ja)
JPS632913B2 (ja)
JPS5919903B2 (ja) SiC系焼結体のホツトプレス製造方法
JP2525432B2 (ja) 常圧焼結窒化硼素系成形体
JPS5891065A (ja) 炭化珪素質セラミツクス焼結体の製造法
JPS6034515B2 (ja) 炭化珪素質セラミックス焼結体の製造法
JPS605550B2 (ja) 炭化珪素焼結体の製法
JPS63392B2 (ja)
JPH0350808B2 (ja)
JPH0463028B2 (ja)
JPH02229767A (ja) 制御された粒寸を有する焼結成形体のための方法
JPS6328871B2 (ja)
JPS6126514B2 (ja)