JPS6252235A - Magnet damper - Google Patents

Magnet damper

Info

Publication number
JPS6252235A
JPS6252235A JP19120785A JP19120785A JPS6252235A JP S6252235 A JPS6252235 A JP S6252235A JP 19120785 A JP19120785 A JP 19120785A JP 19120785 A JP19120785 A JP 19120785A JP S6252235 A JPS6252235 A JP S6252235A
Authority
JP
Japan
Prior art keywords
magnetic
damper
magnet
rubber
magnetic damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19120785A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Iida
一嘉 飯田
Keiichiro Mizuno
水野 惠一郎
Kazutomo Murakami
和朋 村上
Masanori Murase
正典 村瀬
Shigeru Kijima
来嶋 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP19120785A priority Critical patent/JPS6252235A/en
Publication of JPS6252235A publication Critical patent/JPS6252235A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To realize a magnet damper with no influence received by a temperature difference further with the excellent execution property and shock resisting property, by connecting permanent magnets of metal system to be combined with a high molecular material. CONSTITUTION:A magnet damper 1 has construction such that a plurality of metal system permanent magnets 2 are connected and combined with a high molecular material 3 of rubber or plastics and the like. Each permanent magnet 2, being formed by a sintered material or a metal of various magnetic materials, is secured by adhesive mounting or embedding to the high molecular material 3 in an attitude such that the same magnetism appears in a mounting surface of the damper 1. The damper, when it is used, is mounted by magnetic attracting force to the surface of a vibrator 4 like an iron panel.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は振動や騒音を発生ずる部品あるいは部分に添着
し割振作用を得るマグネットダンパーの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to the structure of a magnetic damper that is attached to a component or part that generates vibration or noise to obtain a vibration distribution effect.

〔従来技術〕[Prior art]

振動や騒音を軽減する一つの方法として、振動部分の表
面に割振材を添着して振動エネルギーを熱エネルギーに
変換する方法が提案されている。
As one method for reducing vibration and noise, a method has been proposed in which a damping material is attached to the surface of a vibrating part to convert vibration energy into thermal energy.

例えば、自動車や機械のギヤ等の厚物部品あるいはフレ
ーム等の高剛性構造体を制振したり、OA機器、自動車
、船、鉄橋あるいは機械などのパネルを制振したり、さ
らには配管系の振動騒音を軽減するため、これらの表面
に割振材を添着する場合がある。
For example, it can be used to dampen the vibrations of thick parts such as gears of automobiles and machinery, or highly rigid structures such as frames, to damp the panels of OA equipment, automobiles, ships, iron bridges, and machinery, and even to damp the vibrations of piping systems. In order to reduce vibration noise, a damping material may be attached to these surfaces.

この種の割振材としては、高分子材料系の制振材あるい
は金属系や高分子系のマグネット単体から成る制振材な
どが提案されている。
As this type of damping material, damping materials based on polymeric materials, damping materials made of a single metal-based or polymer-based magnet, and the like have been proposed.

高分子材料系の制振材は、ゴムやプラスチックなどの高
分子材料に金属粉、砂あるいはマイカなどの充填物を混
合し、内部ロスを増強して振動エネルギーを熱エネルギ
ーに変換しようとするものである。
Polymer material-based vibration damping materials are made by mixing polymer materials such as rubber or plastic with fillers such as metal powder, sand, or mica to increase internal loss and convert vibration energy into thermal energy. It is.

しかし、この高分子材料系の制振材にあっては、雰囲気
温度によって制振効果が左右されやすく、また、振動面
に固着するのに接着剤が必要であり施工性およびコスト
面で難点があるという問題がある。
However, with this polymer material-based damping material, the damping effect is easily influenced by the ambient temperature, and adhesives are required to adhere to the vibrating surface, making it difficult to install and cost. There is a problem.

一方、金属や高分子系のマグネット単体から成る割振材
は、磁力で接触させて固着面での界面摩擦により振動エ
ネルギーを熱エネルギーに変換しようとするものである
On the other hand, an allocation material made of a single metal or polymer-based magnet attempts to convert vibrational energy into thermal energy through interfacial friction on the fixed surface when brought into contact with magnetic force.

しかし、このマグネット単体から成る制振材にあっては
、金属系の場合、機械的衝撃で欠けやすくしかも成形に
モールドが必要であるため後加工が困難であり、一方、
高分子系の場合、金属系に比べ磁力が弱いため所望の磁
力を得ようとすると割振材が厚くなり重くなるなどの問
題がある。
However, if the damping material is made of a single magnet, it is easy to chip due to mechanical impact and post-processing is difficult as it requires a mold.
In the case of a polymer-based material, since the magnetic force is weaker than that of a metal-based material, there are problems such as the allocation material becomes thick and heavy when trying to obtain a desired magnetic force.

〔目的〕〔the purpose〕

本発明の目的は、上記従来技術の問題を解決でき、温度
差に関係なくすぐれた制振効果を発揮することができ、
しかも、施工性、耐衝撃性にすくれたマグネットダンパ
ー(マグネット使用の割振材)を提供することである。
The object of the present invention is to be able to solve the above-mentioned problems of the prior art, to exhibit excellent vibration damping effects regardless of temperature differences, and to
Moreover, it is an object of the present invention to provide a magnetic damper (distribution material using magnets) with excellent workability and impact resistance.

(m要〕 本発明は、金属系の永久磁石をゴムまたはプラスチック
などの高分子材料で連結し複合化することにより、上記
目的を達成するものである。
(Required) The present invention achieves the above object by connecting metallic permanent magnets with a polymeric material such as rubber or plastic to form a composite.

前記高分子材料としては、通常の高分子材料の他、金属
粉、マイカあるいは砂などを充填して内部ロスの増強を
図った高損失高分子材料、または鉄粉などの磁性体粉を
混合して磁性化した磁性高分子材料などの特殊材料を使
用することができ、このような特殊材料を使用すること
により割振効果を向−ヒさせることができる。
In addition to ordinary polymer materials, the polymer material may be a high-loss polymer material filled with metal powder, mica, or sand to increase internal loss, or a mixture of magnetic powder such as iron powder. It is possible to use special materials such as magnetic polymeric materials that have been magnetized, and the use of such special materials can improve the allocation effect.

また、本発明は、上記のごとく高分子材料で連結し複合
化したマグネットダンパーの表面に金属、硬質ゴムある
いは硬質プラスチックなどの板状の質量である拘束層を
付加することにより、一層の割振能力の向上を図ったマ
グネットダンパーをも提供するものである。
Furthermore, the present invention further improves the distribution ability by adding a restraining layer, which is a plate-like mass of metal, hard rubber, or hard plastic, to the surface of the composite magnetic damper connected by polymeric materials as described above. The present invention also provides a magnetic damper with improved performance.

(実施例〕 以下図面を参照して本発明を具体的に説明する。(Example〕 The present invention will be specifically described below with reference to the drawings.

第1図および第2図は本発明の一実施例に係るマグネッ
トダンパーの平面および縦断面を示す。
1 and 2 show a plane and a longitudinal section of a magnetic damper according to an embodiment of the present invention.

第1図および第2図において、マグネットダンパー1は
複数個(図示の例では5個)の金属系の永久磁石2をゴ
ムまたはプラスチックなどの高分子材料3で連結し複合
化した構造を有している。
In FIGS. 1 and 2, a magnetic damper 1 has a composite structure in which a plurality of (five in the illustrated example) metallic permanent magnets 2 are connected with a polymeric material 3 such as rubber or plastic. ing.

各永久磁石2は、各種磁性体の焼結材または金属で形成
されており、ダンパー1の取付は面に同一磁性(Sまた
はN)が現れる姿勢で高分子材料3に接着または埋め込
みで固着されている。
Each permanent magnet 2 is made of various magnetic sintered materials or metals, and the damper 1 is fixed to the polymeric material 3 by adhesive or embedding in a posture in which the same magnetism (S or N) appears on the surface. ing.

使用に際しては、鉄パネルなどの振動体4の表面に磁力
吸引力で取付けられる。        1′第1図お
よび第2図の永久磁石2は直方体または立方体の角形を
しているが、これは取付は面に面状をなして露出する形
状であればその他の適当な形状にすることができる。
In use, it is attached to the surface of the vibrating body 4, such as an iron panel, by magnetic attraction. 1' The permanent magnet 2 in Figs. 1 and 2 has a rectangular parallelepiped or cubic shape, but it may be mounted in any other suitable shape as long as it is exposed in a planar shape. I can do it.

さらに、前記高分子材料3としては、通常の高分子材料
の他、金属粉、マイカあるいは砂などを充填して内部ロ
スの増強を図った高損失高分子材料、あるいは鉄粉など
の磁性体粉を混入して磁性化した磁性高分子材料などを
使用することができる。
Furthermore, the polymer material 3 may include, in addition to ordinary polymer materials, high-loss polymer materials filled with metal powder, mica, or sand to increase internal loss, or magnetic powder such as iron powder. It is possible to use a magnetic polymer material that has been made magnetized by mixing with it.

第1図および第2図の実施例によれば、永久磁石2と振
動面(振動体4の表面)との間並びに高分子材料3と振
動面との間で界面摩擦が生じ、これによって振動エネル
ギーが熱エネルギーに変換され、振動体4の振動が低減
される。
According to the embodiments shown in FIGS. 1 and 2, interfacial friction occurs between the permanent magnet 2 and the vibrating surface (the surface of the vibrating body 4) and between the polymeric material 3 and the vibrating surface, which causes vibration. The energy is converted into thermal energy, and the vibration of the vibrating body 4 is reduced.

また、各永久磁石2の表面が高分子材料3で被われてい
るので、該永久磁石を機械的衝撃による損傷から保護す
ることができる。
Further, since the surface of each permanent magnet 2 is covered with the polymer material 3, the permanent magnet can be protected from damage due to mechanical impact.

さらに、ゴムまたはプラスチック等から成る高分子材料
3の内部ロスによる割振効果も利用することができる。
Furthermore, it is also possible to utilize the distribution effect due to the internal loss of the polymeric material 3 made of rubber, plastic, or the like.

特に、前記高分子材料3として、金属粉、マイカあるい
は砂などを充填して内部ロスの増強を図った高損失高分
子材料を使用すれば、前記界面摩擦に加え、振動面から
の振動で高分子材料に屈曲振動がイIニし、内部1−1
スによる振動エネルギーの熱]−不ルギーへの変換能力
を向−1−させるごとができ、もって、割振々J果をさ
らに向上させることができる。
In particular, if a high-loss polymer material filled with metal powder, mica, or sand is used as the polymer material 3 to increase internal loss, in addition to the interfacial friction, the vibration from the vibrating surface will increase the Bending vibration occurs in the molecular material, internal 1-1
It is possible to improve the ability to convert vibrational energy into heat by the heat source, thereby further improving the efficiency of allotment.

一方、iif記高分子材料3として、鉄粉などの磁性体
粉を混入して磁性化した磁性高分子相*1を使用すれば
、マグネットダンパー1と振動体4の振動面との固着力
が増強され、界面摩擦に上る割振効果を一層向」〕さ干
ることができる。
On the other hand, if a magnetic polymer phase *1 magnetized by mixing magnetic powder such as iron powder is used as the polymer material 3 described in iif, the adhesion force between the magnetic damper 1 and the vibration surface of the vibrating body 4 can be increased. This can further reduce the allocation effect on interfacial friction.

さらに、複数の永久磁石゛2を高分子材料3で鎖状に連
結した帯状のマグネットダンパーを構成すれば、モール
ドを使用せずとも、ある程度までは所望の形状配置で自
由に絹付けることができ、しかも接着剤を必要としない
ので、施I性の向上を図ることもできる。
Furthermore, if a band-shaped magnetic damper is constructed by connecting a plurality of permanent magnets 2 in a chain with a polymeric material 3, the magnetic damper can be freely attached to a desired shape and arrangement to a certain extent without using a mold. Moreover, since no adhesive is required, it is possible to improve the ease of application.

第3図および第4図は各永久磁石2の形状を円柱体に変
更した点のみで前述の実施例と異なるマグ不ソI・ダン
パー1を示す。
FIGS. 3 and 4 show a magnetic damper 1 that differs from the previous embodiment only in that the shape of each permanent magnet 2 is changed to a cylindrical body.

本実施例のその他の部分は前述の実施例と実質上同じで
あり、それぞれ対応する部分を同一参照番号で表示しそ
の詳細説明を省略する。
The other parts of this embodiment are substantially the same as those of the previous embodiment, and corresponding parts are designated by the same reference numerals and detailed explanation thereof will be omitted.

前述の説明からも明らかなどと(、第3図および第4図
の実施例によっても、同様の各種変更構造を採用するこ
とができ、それぞれにおいて同様の作用tar果を達成
することができる。
As is clear from the foregoing description, various similar modified structures can be employed in the embodiments of FIGS. 3 and 4, and similar effects can be achieved in each.

第5図は本発明のさらに他の実施例に係るマグネットダ
ンパーを示す。
FIG. 5 shows a magnetic damper according to yet another embodiment of the invention.

第5図の実施例は、第1図および第2図の実施例または
第3図および第4図の実施例に係るマグネットダンパー
1の表面(取付は面とは反対の面)に、板状の質量であ
る拘束層5を付加したものである。
The embodiment shown in FIG. 5 has a plate-shaped This is the addition of a constraining layer 5 having a mass of .

すなわち、第5図のマグネットダンパー1は、複数個(
図示の例では5個)の金属系の永久磁石2をゴムまたは
プラスチックなどの高分子材料3で連結し複合化すると
ともに、その表面に金属、硬質ゴムあるいは硬質プラス
チックなどの板状の質量としての拘束層5を設けた構造
になっている。
That is, the magnetic damper 1 shown in FIG.
In the illustrated example, five metallic permanent magnets 2 are connected with a polymeric material 3 such as rubber or plastic to form a composite, and a plate-like mass of metal, hard rubber, or hard plastic is attached to the surface of the composite. It has a structure in which a constraining layer 5 is provided.

この拘束層5は、通常、接着等で固着されるが、鉄など
磁性材で形成する場合は永久磁石2の磁石吸引力を利用
して固着さ−)遍ることもできる。
This restraining layer 5 is usually fixed by adhesive or the like, but if it is made of a magnetic material such as iron, it can also be fixed by using the magnetic attraction force of the permanent magnet 2.

この第5図の実施例によれば、前述の各実施例の作用効
果を達成できる他、質量としての拘束層5を設けたので
、振動面からの振動による高分子材料3の剪断歪みを増
加させることができ、これによって振動低減能力をさら
に向−Lさ・けることができる。
According to the embodiment shown in FIG. 5, in addition to achieving the effects of each of the embodiments described above, the restraining layer 5 as a mass is provided, so that the shear strain of the polymer material 3 due to vibration from the vibration surface is increased. This allows the vibration reduction ability to be further improved.

この第5図の構造においても、高分子材料3として前述
のような高t0失高分子材料または磁性高分子材料を使
用することにより、前述と同じ作用が得られ、制振効果
の一層の向−1−を達成することができる。
In the structure shown in FIG. 5 as well, by using a high t0 loss polymer material or a magnetic polymer material as described above as the polymer material 3, the same effect as described above can be obtained, and the damping effect can be further improved. -1- can be achieved.

第6図および第7図は本発明によるマグネットダンパー
をギヤに適用する場合を例示する平面図および断面図で
ある。
FIGS. 6 and 7 are a plan view and a sectional view illustrating the case where the magnetic damper according to the present invention is applied to a gear.

第6図および第7図において、鉄などの磁性材で作られ
たギヤ6の側面(図示の例では外周歯形7に近い部分)
に環状の溝8が形成され、該溝8内に帯状または予め環
状に成形されたマグネットダンパー1が取付けられてい
る。
In FIGS. 6 and 7, the side surface of the gear 6 made of magnetic material such as iron (in the illustrated example, the part near the outer tooth profile 7)
An annular groove 8 is formed in the groove 8, and a magnetic damper 1, which is formed into a belt shape or a ring shape in advance, is attached within the groove 8.

図示の例では、多数の永久磁石2を高分子材料3で鎖4
kに連結し複合化したマグネットダンパー1が1つの環
状のa8の全体に取付けられているが、このマグネット
ダンパー1の配置は必要に応し適宜選定することができ
るものである。
In the illustrated example, a large number of permanent magnets 2 are connected to a chain 4 using a polymeric material 3.
Although a composite magnetic damper 1 connected to k is attached to the entirety of one annular a8, the arrangement of this magnetic damper 1 can be appropriately selected as necessary.

以上説明したマグネットダンパー1によれば、鉄等の磁
性体から成る振動面に吸着させることにより振動または
騒音を効果的に低減させることができる。
According to the magnetic damper 1 described above, vibration or noise can be effectively reduced by adhering to a vibrating surface made of a magnetic material such as iron.

次に、本発明に係るマグネットダンパーの実験例につい
て説明する。
Next, an experimental example of the magnetic damper according to the present invention will be explained.

第8図は試験装置を、第9図は試験サンプルを、第10
図は試験結果をそれぞれ示す。
Figure 8 shows the test equipment, Figure 9 shows the test sample, and Figure 10 shows the test equipment.
The figures show the test results, respectively.

第8図において、中25mm、、−JUさ300 ml
、厚さ5 xwrの鉄板11を振動体とし、これを糸1
2で吊り下げ、振り子13を鉄板11の背面に衝突させ
て衝撃力Fを加えた。
In Figure 8, the medium is 25 mm, -JU is 300 ml.
, an iron plate 11 with a thickness of 5 xwr is used as a vibrating body, and this is used as a string 1
2, and the pendulum 13 collided with the back surface of the iron plate 11 to apply an impact force F.

鉄板11の前方に設置したマイクロフォン14で隼音し
、これをマイクロフォンアンプ15を介してリアルタイ
ムアナライザー16で周波数解析し、ハードコピー17
で音圧レベルを記録した。
A microphone 14 installed in front of the iron plate 11 makes a sound, and the frequency is analyzed by a real-time analyzer 16 via a microphone amplifier 15, and a hard copy 17 is generated.
The sound pressure level was recorded.

第9図において、試験サンプルとして、鉄板のみのサン
プルA、単体のフェライト系永久磁石を鉄板前面に吸着
させたサンプルB、フェライト系永久磁石をゴムで連結
複合化したマグネットダンパーを鉄板前面に吸着させた
サンプルC、フェライト系永久磁石を磁性ゴムで連結複
合化したマグネットダンパーを鉄板前面に吸着させたサ
ンプルDの4種類を採用した。
In Figure 9, the test samples are Sample A, which has only an iron plate, Sample B, which has a single ferrite permanent magnet adsorbed on the front surface of the iron plate, and Sample B, which has a composite ferrite permanent magnet connected with rubber. Four types were adopted: Sample C, which had a composite ferrite permanent magnet connected with magnetic rubber, and Sample D, which had a magnetic damper made of a composite of ferrite permanent magnets connected with magnetic rubber and attached to the front surface of the iron plate.

サンプルB、C,Dにおけるフェライト系永久磁石とし
ては、直径IQmm、高さ5inの円柱状のものを使用
し、これを8個等間隔に配列した。
As the ferrite permanent magnets in Samples B, C, and D, cylindrical magnets with a diameter of IQ mm and a height of 5 inches were used, and eight of them were arranged at equal intervals.

これらの試験サンプルA−Dのうち、その構造からも明
らかなごとく、サンプルCおよびサンプルDは本発明の
実施品であり、他は比較用(または従来)のサンプルで
ある。
Of these test samples A-D, as is clear from their structures, samples C and D are products of the present invention, and the others are comparative (or conventional) samples.

第10図はこれらの試験サンプルA−Dを第8図の試験
装置で振動させ、その音圧レベルの測定結果を示すグラ
フである。
FIG. 10 is a graph showing the measurement results of the sound pressure level when these test samples A to D were vibrated using the testing apparatus of FIG. 8.

このグラフの横軸はオクターブバンド中心周波】1 数を表し、縦軸は音圧レベル(dBC)を表し、グラフ
中の各折れ線は各試験サンプルの測定値を示す。すなわ
ち、折れ線AはサンプルA(比較品)、折れ線Bはサン
プルB(従来品)、折れ線CはサンプルC(本発明品)
、折れ線りはサンプルD(本発明品)の測定結果を示す
The horizontal axis of this graph represents the octave band center frequency [1], the vertical axis represents the sound pressure level (dBC), and each line in the graph represents the measured value of each test sample. That is, polyline A is sample A (comparative product), polyline B is sample B (conventional product), and polyline C is sample C (inventive product).
, the broken line indicates the measurement results of sample D (product of the present invention).

この試験結果からも明らかなごとく、本発明のマグネッ
トダンパーを振動体表面に吸着させることにより、割振
能力を顕著に向上させうろことが確認された。
As is clear from the test results, it was confirmed that by adhering the magnetic damper of the present invention to the surface of the vibrating body, the allocation ability was significantly improved.

〔効果〕〔effect〕

以上の説明から明らかなごとく、本発明によれば、すぐ
れた制振効果を発揮することができ、しかも耐衝撃性に
すぐれたマグネットダンパーが得られる。
As is clear from the above description, according to the present invention, it is possible to obtain a magnetic damper that can exhibit excellent vibration damping effects and has excellent impact resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るマグネットダンパーの
平面図、第2図は第1図中の線■−■に沿った断面図、
第3図は本発明の他の実施例に係るマグネットダンパー
の平面図、第4図は第3図中の線IV−IVに沿った断
面図、第5図は本発明のさらに他の実施例に係るマグネ
ットダンパーの第2図または第4図に相当する部分の断
面図、第6図は本発明によるマグネットダンパーをギヤ
に適用した使用例を示す平面図、第7図は第6図中の線
■−■に沿った断面図、第8図はマグネットダンパーの
割振能力を測定する試験装置を例示する説明図、第9図
は比較試験に使用したマグネットダンパーの各種試験サ
ンプルを示す縦断面図、第10図は第9図の試験サンプ
ルを第8図の試験装置で試験した結果を示すグラフであ
る。 1−−−−−マグネットダンパー、2−・−永久磁石、
3−−−−−−一高分子材料、5−−−−−−−拘束層
。 代理人 弁理士  大 音 康 毅 −目 第8図 第6図 図
FIG. 1 is a plan view of a magnetic damper according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line ■-■ in FIG.
FIG. 3 is a plan view of a magnetic damper according to another embodiment of the present invention, FIG. 4 is a sectional view taken along line IV-IV in FIG. 3, and FIG. 5 is a further embodiment of the present invention. FIG. 6 is a plan view showing an example of use of the magnetic damper according to the present invention applied to a gear, and FIG. 7 is a cross-sectional view of a portion corresponding to FIG. 2 or FIG. A cross-sectional view taken along the line ■-■, Figure 8 is an explanatory view illustrating a test device for measuring the allocation ability of a magnetic damper, and Figure 9 is a longitudinal cross-sectional view showing various test samples of magnetic dampers used in comparative tests. , FIG. 10 is a graph showing the results of testing the test sample of FIG. 9 using the testing apparatus of FIG. 8. 1----Magnetic damper, 2--Permanent magnet,
3-------- one polymeric material, 5---- constraining layer. Agent Patent Attorney Yasushi Ooto - Eyes Figure 8 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)金属系の永久磁石をゴムまたはプラスチックなど
の高分子材料で連結し複合化したことを特徴とするマグ
ネットダンパー。
(1) A magnetic damper characterized by a composite structure in which metallic permanent magnets are connected with a polymeric material such as rubber or plastic.
(2)前記高分子材料が金属粉、マイカあるいは砂など
を充填し内部ロスを増強した高分子材料であることを特
徴とする特許請求の範囲第1項記載のマグネットダンパ
ー。
(2) The magnetic damper according to claim 1, wherein the polymer material is a polymer material filled with metal powder, mica, sand, etc. to increase internal loss.
(3)前記高分子材料が鉄粉などを混合し磁性化したゴ
ムマグネットまたはプラスチックマグネットなどの高分
子材料であることを特徴とする特許請求の範囲第1項記
載のマグネットダンパー。
(3) The magnetic damper according to claim 1, wherein the polymer material is a polymer material such as a rubber magnet or a plastic magnet made magnetic by mixing iron powder or the like.
(4)金属系の永久磁石をゴムまたはプラスチックなど
の高分子材料で連結し複合するとともに、その表面に金
属、硬質ゴムあるいは硬質プラスチックなどの板状の質
量としての拘束層を設けたことを特徴とするマグネット
ダンパー。
(4) The feature is that metallic permanent magnets are connected and composited with a polymeric material such as rubber or plastic, and a restraining layer in the form of a plate-like mass of metal, hard rubber, or hard plastic is provided on the surface of the magnet. Magnetic damper.
JP19120785A 1985-08-30 1985-08-30 Magnet damper Pending JPS6252235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19120785A JPS6252235A (en) 1985-08-30 1985-08-30 Magnet damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19120785A JPS6252235A (en) 1985-08-30 1985-08-30 Magnet damper

Publications (1)

Publication Number Publication Date
JPS6252235A true JPS6252235A (en) 1987-03-06

Family

ID=16270683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19120785A Pending JPS6252235A (en) 1985-08-30 1985-08-30 Magnet damper

Country Status (1)

Country Link
JP (1) JPS6252235A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295641A (en) * 1990-04-13 1991-12-26 Nippon Sekisoo Kogyo Kk Steel plate restricting type vibration damping material
JP2008225158A (en) * 2007-03-14 2008-09-25 Hoya Corp Stage device and camera shake correcting device using the stage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110486B1 (en) * 1969-12-20 1976-04-05
JPS6139131B2 (en) * 1977-05-31 1986-09-02 Gen Motors Corp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110486B1 (en) * 1969-12-20 1976-04-05
JPS6139131B2 (en) * 1977-05-31 1986-09-02 Gen Motors Corp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295641A (en) * 1990-04-13 1991-12-26 Nippon Sekisoo Kogyo Kk Steel plate restricting type vibration damping material
JP2008225158A (en) * 2007-03-14 2008-09-25 Hoya Corp Stage device and camera shake correcting device using the stage device

Similar Documents

Publication Publication Date Title
Ginder et al. Magnetorheological elastomers in tunable vibration absorbers
US3817356A (en) Vibration damping
Jung et al. Dynamic characterization of magneto-rheological elastomers in shear mode
Jones et al. Technique for measuring damping properties of thin viscoelastic layers
JPH061884U (en) Vibration suppression actuator
JPS6252235A (en) Magnet damper
Rajpal et al. Experimental investigation of 3D-printed polymer-based MR sandwich beam under discretized magnetic field
Ochs et al. Transmissibility across simply supported thin plates. I. Rectangular and square plates with and without damping layers
Hui et al. New floating floor design with optimum isolator location
JPS61243858A (en) Composite silicone gel material
CN110486400A (en) Band gap wave arrestment subtracts vibration isolation element
JPS6330628A (en) Vibroisolating supporting device
Tomlinson The use of constrained layer damping in vibration control
JPH0830956B2 (en) Magnetic composite type damping material
JPS63111339A (en) Vibration damping device
JPS60241539A (en) Magnetic fluid damper
JPS60237241A (en) Engine mount for small boat
Kordonskii et al. Viscoelastic properties of magnetorheological fluids
JP2929362B2 (en) Construction method of coral block and coral structure
JPS629046A (en) Method for restraining vibration of magnetic body
NARONGDET Fabrication and evaluation of passive vibration control of seismic isolation damped by AC magnet field
Chonan Random vibration of a prestressed, orthotropic, thick rectangular plate on a generalized flexible foundation
JPH01226299A (en) Vibration device
Dickens Investigation of asymmetrical vibration isolators for maritime machinery applications
Winnicki et al. Geometric factors affecting hydrophone performance