JPS6252200A - Device for gaseous-phase epitaxial growth - Google Patents

Device for gaseous-phase epitaxial growth

Info

Publication number
JPS6252200A
JPS6252200A JP18884485A JP18884485A JPS6252200A JP S6252200 A JPS6252200 A JP S6252200A JP 18884485 A JP18884485 A JP 18884485A JP 18884485 A JP18884485 A JP 18884485A JP S6252200 A JPS6252200 A JP S6252200A
Authority
JP
Japan
Prior art keywords
epitaxial growth
reaction tube
reaction
gas
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18884485A
Other languages
Japanese (ja)
Inventor
Fumitoshi Toyokawa
豊川 文敏
Masao Mikami
三上 雅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18884485A priority Critical patent/JPS6252200A/en
Publication of JPS6252200A publication Critical patent/JPS6252200A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively produce uniform silicon epitaxial growth film in high mass productivity, by constituting a cylindrical reaction tube having a double pipe structure consisting of an outer pipe and an inner pipe having plural thin pores. CONSTITUTION:In a device for gaseous-phase epitaxial growth, a reaction tube has a double structure of the outer pipe 1 and the inner pipe 4 and the peripheral wall of the inner wall 4 is provided with the bored thin holes 5 from a position a little higher than the top of the substrate holder 7 to the vicinity of the bottom of the holder. The substrate holder 7 in which the silicon single crystal substrates 6 are piled at intervals is rotated at a prescribed number of rotation. Then, the temperature in the reaction tube is set at 1,100 deg.C while sending H2 from the gas inlets 2, 3 and 9, then SiH2Cl and HCl from the gas inlets 2 and 3 and H2 and PH3 from the gas inlet 9. The reaction is evacuated in vacuum from the exhaust vent 8 and the interior of the reaction is made 2Torr to form a silicon epitaxial growth film. A gas flow having uniform distribution can be fed to the surface of the substrates and the silicon epitaxial growth film having uniform thickness of film, electrical resistance, etc., can be inexpensively produced in high mass productivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気相エピタキシャル成長装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vapor phase epitaxial growth apparatus.

〔従来の技術〕[Conventional technology]

従来、この種のシリコンエピタキシャル成長装置は円筒
形反応管内に基板ホルダーを用い、多数枚のシリコン単
結晶基板を積み重ねる様に設置し、円筒形反応管に設け
られた導入口より SiL 、 5iH2−C4h 5
IHC13+ S I C11a  及びH2等の反応
ガスを導入し、シリコン単結晶基板表面にシリコンをエ
ピタキシャル成長させるものとなっていた。この種の7
リコンエビタキシヤル成長装置では、シリコンのエピタ
キシャル成長膜の膜厚、電気抵抗等を各基板内及び基板
間で均一にするため、反応ガスの導入方法に種々の工夫
がなされている。例としては第2図に示すように、多数
の細孔14を有するガス導入用ノズル13を、シリコン
単結晶基板15ヲのせた基板ホルダー19と円筒形反応
管12の内壁との間隙に設け、その細孔14よりシリコ
ン単結晶基板に向かって反応ガスを吹き出す方式の装置
が提案されている(Vαndimir S、 Ban 
a、nd Edwcxrd A、 Miller、 P
ro−ceeding of InterncLtio
nal Conterence on Chemicc
lVL:Lpor Deposition、 The 
Eleetrochemical Inc、+ 197
9p 102〜p 125” A New ReCLc
tor For 5ilicon EpitCLxy 
″) 。
Conventionally, this type of silicon epitaxial growth apparatus uses a substrate holder in a cylindrical reaction tube, and a large number of silicon single crystal substrates are stacked on top of each other.
Reactive gases such as IHC13+ S I C11a and H2 were introduced to grow silicon epitaxially on the surface of a silicon single crystal substrate. 7 of this kind
In the recon epitaxial growth apparatus, in order to make the film thickness, electrical resistance, etc. of the epitaxially grown silicon film uniform within each substrate and between substrates, various methods of introducing reactive gases have been devised. For example, as shown in FIG. 2, a gas introduction nozzle 13 having a large number of pores 14 is provided in the gap between a substrate holder 19 on which a silicon single crystal substrate 15 is placed and the inner wall of a cylindrical reaction tube 12. A device has been proposed in which a reactive gas is blown out from the pores 14 toward the silicon single crystal substrate (Vαndimir S, Ban
a, nd Edwcxrd A, Miller, P
ro-ceeding of InterncLtio
nal Conterence on Chemistry
lVL: Lpor Deposition, The
Eleetrochemical Inc., +197
9p 102~p 125” A New ReCLc
tor For 5ilicon EpitCLxy
″).

図において11は架台、16はガス導入口、17は排気
口、18は高周波加熱ヒーターである。
In the figure, 11 is a frame, 16 is a gas inlet, 17 is an exhaust port, and 18 is a high frequency heater.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のシリコンエビタキノヤル成長装!テハ均
一なシリコンエピタキシャル成長膜を得るために、ノズ
ルの細孔から吹き出す反応ガスをシリコン単結晶基板表
面で均一に分布させる必要があシ、このためにはノズル
細孔の形状、大きさ、数、位置を調整し、かつノズルに
首振り運動をさせる駆動機構を付加する等、構造及び機
構が複雑になるという欠点がある。また、この複雑さが
原因となり、均一な膜厚、電気抵抗等の特性を有するノ
リコンエピタキシャル成長膜を再現性良く成長させるに
は困難が多いという欠点がある。さらに反応ガスを全て
混合した後に高温に保たれた反応管内に導入するため、
気相反応によりシリコン微粒子が発生し、エピタキシャ
ル成長しようとするシリコン単結晶基板を汚染するとい
う欠点がある。
The conventional silicone growth device mentioned above! In order to obtain a uniform silicon epitaxially grown film, it is necessary to uniformly distribute the reaction gas blown out from the nozzle pores on the silicon single crystal substrate surface. There is a drawback that the structure and mechanism become complicated, as a drive mechanism is added to adjust the position and swing the nozzle. Moreover, due to this complexity, there is a drawback that it is difficult to grow a Noricon epitaxially grown film with characteristics such as uniform film thickness and electrical resistance with good reproducibility. Furthermore, after all the reaction gases are mixed, they are introduced into the reaction tube kept at high temperature.
There is a drawback that silicon fine particles are generated by the gas phase reaction and contaminate the silicon single crystal substrate on which epitaxial growth is to be performed.

本発明は前記問題点を解消するもので、半導体単結晶基
板表面に均一な分布をもつガス流を供給する気相エピタ
キシャル成長装置を提供するものである。
The present invention solves the above problems and provides a vapor phase epitaxial growth apparatus that supplies a gas flow with a uniform distribution to the surface of a semiconductor single crystal substrate.

〔問題点全解決するための手段〕[Means to solve all problems]

本発明の気相エピタキシャル成長装置は加熱装置内に設
置された円筒形反応管を外管と、複数のガス導入用細孔
を有する内管との2重管構造としたことを特徴とするも
のである。
The vapor phase epitaxial growth apparatus of the present invention is characterized in that the cylindrical reaction tube installed in the heating device has a double tube structure consisting of an outer tube and an inner tube having a plurality of gas introduction pores. be.

〔実施例〕〔Example〕

次に、本発明の一実施例について図面を参照して説明す
る。
Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of an embodiment of the present invention.

第1図において、1は反応管外管であり、ガス導入口2
及び3を備えている。4は反応管内管であり、その周壁
には細孔5が複数設けられている。
In Fig. 1, 1 is an outer tube of the reaction tube, and a gas inlet 2
and 3. 4 is a reaction tube inner tube, and a plurality of pores 5 are provided in its peripheral wall.

細孔5ば、シリコン単結晶基板6を水平に保持し中心軸
のまわりに回転可能な基板ホルダー7の上端よりやや上
部から基板ホルダー7の下端付近にわたって開孔されて
いる。また、反応管内管4には、排気口8が設けられ、
反応管内管4の内部にはガス導入口9が設けられている
。シリコン単結晶基板6は抵抗加熱装置10によって加
熱される・なお、反応管外管11反応管内管2.基板ホ
ルダー7及びガス導入口9は反応管内部が減圧されても
真空気密が保てるように架台11に固定されている。
The pore 5 is opened from slightly above the upper end of the substrate holder 7, which holds the silicon single crystal substrate 6 horizontally and is rotatable around the central axis, to near the lower end of the substrate holder 7. Further, the reaction tube inner tube 4 is provided with an exhaust port 8,
A gas inlet 9 is provided inside the reaction tube inner tube 4 . The silicon single crystal substrate 6 is heated by a resistance heating device 10.The reaction tube outer tube 11 the reaction tube inner tube 2. The substrate holder 7 and the gas inlet 9 are fixed to a pedestal 11 so that vacuum tightness can be maintained even if the inside of the reaction tube is reduced in pressure.

以下に成長実験の一例を示す。An example of a growth experiment is shown below.

基板ホルダー7に直径150朋のシリコン単結晶基板を
8朋間隔で50枚設置し、基板ホルダーを10rpmで
回転させる。次に、ガス導入口2,3及び9よりH2を
501/朋で流しながら反応管内温度を1100°Cと
し、その後ガス導入口2,3よりS 1H2C12をo
、sx/i、HCAをo、s gmin 、ガス導入口
9より迅を4 l/Tu!I 、 PH3k O,08
1J/mmを流し、排気口8より真空排気して反応管内
部f 2torrとして成長した・その結果、50枚全
てのシリコン単結晶基板におけるエピタキシャル成長膜
の膜厚は±3係、電気抵抗の分布は±5%であった。又
、微粒子欠陥のないエピタキシャル膜であった。本成長
実験では、加熱装置として抵抗加熱ヒーターを用いたが
、高周波加熱、ランプ加熱の方式を用いても良い。また
、ガス導入時に際し、ガス導入口9より5iH2C12
゜HCl、ガス導入口2,3よりH2、PH3を導入し
ても同様の結果が得られた。また、反応管外管に設けら
れガス導入口は2ケ所であったが、基板ホルダーが長い
場合、3ケ所以上ガス導入口を設け、反応管内管の細孔
より均一なガス流を放出する必要がある。
Fifty silicon single crystal substrates each having a diameter of 150 mm were placed on the substrate holder 7 at intervals of 8 mm, and the substrate holder was rotated at 10 rpm. Next, the temperature inside the reaction tube was set to 1100°C while flowing H2 at a rate of 501/h from gas inlets 2, 3, and 9, and then, S 1H2C12 was introduced through gas inlets 2, 3, and 9.
, sx/i, HCA o, s gmin, 4 l/Tu from gas inlet 9! I, PH3k O, 08
1 J/mm, the reaction tube was evacuated through the exhaust port 8, and the inside of the reaction tube was grown at f 2 torr. As a result, the thickness of the epitaxially grown film on all 50 silicon single crystal substrates was ±3 factors, and the distribution of electrical resistance was It was ±5%. Furthermore, the epitaxial film was free of particulate defects. In this growth experiment, a resistance heater was used as the heating device, but high frequency heating or lamp heating may also be used. Also, when introducing gas, 5iH2C12
Similar results were obtained even when HCl and H2 and PH3 were introduced from the gas inlets 2 and 3. In addition, the outer tube of the reaction tube had two gas inlet ports, but if the substrate holder is long, it is necessary to install three or more gas inlet ports to release a uniform gas flow from the pores of the inner tube of the reaction tube. There is.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は円筒形反応管を、外管と複
数の細孔を有する内管との2重管構造にし、その間隙及
び別途内管に設けたガス導入口を通して異なる原料ガス
を個別に導入することにより、多数枚のシリコン単結晶
基板をある間隔で積み重ね設置する縦型加熱方式を用い
た量産性の高いエピタキシャル成長装置を提供できるも
のであり、シリコンエピタキシャル基板を極めて量産性
良く、安価に作製でき、エピタキシャル基板の応用を著
しく拡大できる効果がある。近年、LSIの高集積化伴
って、シリコン単結晶の高品質化が強く求められている
が、エピタキシャル基板は通常のバルク基板と比較して
著しく高品質基板であり、従来、バルク基板が用いられ
ていたMOSデバイスにもエピタキシャル基板が用いら
れるようになってきており、本発明の工業的価値は甚大
である。
As explained above, the present invention has a cylindrical reaction tube with a double tube structure consisting of an outer tube and an inner tube having a plurality of pores, and different raw material gases are introduced through the gap between the outer tube and the gas inlet separately provided in the inner tube. By introducing these individually, it is possible to provide an epitaxial growth device that uses a vertical heating method in which a large number of silicon single crystal substrates are stacked at certain intervals, and is highly suitable for mass production. It can be manufactured at low cost and has the effect of significantly expanding the applications of epitaxial substrates. In recent years, as LSIs have become more highly integrated, there has been a strong demand for higher quality silicon single crystals, but epitaxial substrates are of significantly higher quality than ordinary bulk substrates, and bulk substrates have traditionally been used. Epitaxial substrates have come to be used even in MOS devices that were previously used, and the industrial value of the present invention is enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による気相エピタキシャル成長装置の縦
断面図、第2図は従来の気相エビタキンヤル成長装置の
縦断面図である。 1 ・反応管外管    2・・・ガス導入口3・・ガ
ス導入口    4・・・反応管内管5・・・細孔  
      6・・・シリコン単結晶基板7・・・基板
ホルダー   8・・・排気口9・・・ガス導入口  
  10・・・抵抗加熱装置11・・架台 特許出願人  日本電気株式会社 一二とグ゛ 第1図
FIG. 1 is a longitudinal sectional view of a vapor phase epitaxial growth apparatus according to the present invention, and FIG. 2 is a longitudinal sectional view of a conventional vapor phase epitaxial growth apparatus. 1 ・Reaction tube outer tube 2 ・ Gas inlet 3 ・ Gas inlet 4 ・ Reaction tube inner tube 5 ・ Pore
6...Silicon single crystal substrate 7...Substrate holder 8...Exhaust port 9...Gas inlet
10... Resistance heating device 11... Frame Patent applicant NEC Corporation 12 and 1 Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)縦型加熱装置に設置された反応管の中に複数枚の
半導体基板を間隔をもたせて積み重ねるように設置する
気相エピタキシャル成長装置において、反応管を外管と
ガス導入用細孔が複数設けられた内管との2重管構造と
したことを特徴とする気相エピタキシャル成長装置。
(1) In a vapor phase epitaxial growth device in which multiple semiconductor substrates are stacked at intervals in a reaction tube installed in a vertical heating device, the reaction tube has an outer tube and multiple gas introduction pores. A vapor phase epitaxial growth apparatus characterized by having a double tube structure with an inner tube provided.
JP18884485A 1985-08-28 1985-08-28 Device for gaseous-phase epitaxial growth Pending JPS6252200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18884485A JPS6252200A (en) 1985-08-28 1985-08-28 Device for gaseous-phase epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18884485A JPS6252200A (en) 1985-08-28 1985-08-28 Device for gaseous-phase epitaxial growth

Publications (1)

Publication Number Publication Date
JPS6252200A true JPS6252200A (en) 1987-03-06

Family

ID=16230828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18884485A Pending JPS6252200A (en) 1985-08-28 1985-08-28 Device for gaseous-phase epitaxial growth

Country Status (1)

Country Link
JP (1) JPS6252200A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183266U (en) * 1987-05-18 1988-11-25
JPS6423525A (en) * 1987-07-20 1989-01-26 Toyoko Kagaku Kk Vertical-type low-pressure vapor growth equipment
JPH01119017A (en) * 1987-10-31 1989-05-11 Tokyo Electron Ltd Manufacture of silicon single crystal
EP0385382A2 (en) * 1989-02-27 1990-09-05 Heinrich Dr. Söhlbrand Process and apparatus for the thermal treatment of semiconducting materials
CN104178806A (en) * 2014-08-20 2014-12-03 中国科学院半导体研究所 Suspended double-side epitaxial growth device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183266U (en) * 1987-05-18 1988-11-25
JPS6423525A (en) * 1987-07-20 1989-01-26 Toyoko Kagaku Kk Vertical-type low-pressure vapor growth equipment
JPH01119017A (en) * 1987-10-31 1989-05-11 Tokyo Electron Ltd Manufacture of silicon single crystal
EP0385382A2 (en) * 1989-02-27 1990-09-05 Heinrich Dr. Söhlbrand Process and apparatus for the thermal treatment of semiconducting materials
EP0385382A3 (en) * 1989-02-27 1991-08-28 Heinrich Dr. Söhlbrand Process and apparatus for the thermal treatment of semiconducting materials
CN104178806A (en) * 2014-08-20 2014-12-03 中国科学院半导体研究所 Suspended double-side epitaxial growth device

Similar Documents

Publication Publication Date Title
JPH06302528A (en) Vapor deposition of silicon nitride thin film
JPS6364993A (en) Method for growing elemental semiconductor single crystal thin film
JPH09330884A (en) Epitaxial growth device
JPS6042823A (en) Method for forming thin film
JPH051380A (en) Silicon carbide film forming method
EP0164928A2 (en) Vertical hot wall CVD reactor
JPS6252200A (en) Device for gaseous-phase epitaxial growth
JPS6365639B2 (en)
JPH0658880B2 (en) Vapor phase epitaxial growth system
JPH0616491B2 (en) Vapor phase epitaxial growth system
JPH0547669A (en) Vapor growth apparatus
JPH08250430A (en) Manufacture of single-crystal thin film
JPS6212697A (en) Production of silicon carbide single crystal film
JPH02212393A (en) Vapor growth method and its device
JPH0410410A (en) Thin film processing equipment
JPH05275679A (en) Manufacture of semiconductor device
JPS6369220A (en) Manufacture of group iv semiconductor thin film
JPH0616495B2 (en) Silicon vapor phase epitaxial growth method
JPS58169907A (en) Apparatus for producting thin film
JPH01119017A (en) Manufacture of silicon single crystal
JPS6153197A (en) Crystal growth device
JPH02146725A (en) Organic metal vapor growth device
JPH01292811A (en) Method and apparatus for vapor growth
JPS63300512A (en) Chemical vapor deposition apparatus
JPH01188494A (en) Method and apparatus for vapor phase growth