JPS6251918B2 - - Google Patents

Info

Publication number
JPS6251918B2
JPS6251918B2 JP11718882A JP11718882A JPS6251918B2 JP S6251918 B2 JPS6251918 B2 JP S6251918B2 JP 11718882 A JP11718882 A JP 11718882A JP 11718882 A JP11718882 A JP 11718882A JP S6251918 B2 JPS6251918 B2 JP S6251918B2
Authority
JP
Japan
Prior art keywords
silicon
ribbon
raw material
temperature part
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11718882A
Other languages
Japanese (ja)
Other versions
JPS598688A (en
Inventor
Kazufumi Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11718882A priority Critical patent/JPS598688A/en
Publication of JPS598688A publication Critical patent/JPS598688A/en
Priority to JP28473186A priority patent/JPS62153187A/en
Publication of JPS6251918B2 publication Critical patent/JPS6251918B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は、薄膜結晶の製造方法に関するもので
ある。さらに詳しくは、太陽電池等に用いる半導
体材料の低コスト化を目的としたリボン結晶製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing thin film crystals. More specifically, the present invention relates to a ribbon crystal manufacturing method aimed at reducing the cost of semiconductor materials used in solar cells and the like.

従来より、シリコン太陽電池の低コスト化を目
的としたリボン結晶の製造方法には、EFG
(Edge−defined Film−fed Growth)法や横引
き法等の直接溶融シリコンより単結晶を引き出す
方法や、レーザ・ゾーンリボン法(レーザを用い
たFZ(Floating Zone法))、さらには、フローテ
イング基板成長法等がある。
Traditionally, EFG has been used to manufacture ribbon crystals for the purpose of reducing the cost of silicon solar cells.
(Edge-defined Film-fed Growth) method and horizontal drawing method to directly draw single crystals from molten silicon, laser zone ribbon method (FZ (Floating Zone method) using a laser), and floating method. There are substrate growth methods, etc.

EFG法では、シリコン融液中へキヤピラリー
ダイを挿入し、このダイ内を濡れて上昇してくる
シリコン融液を、ダイ先端でシリコン単結晶リボ
ンと接触させ引上げる方法であるが、リボンの成
長速度、種結晶への電伝導、固液界面による凝固
潜熱の発生等を考えに入れた固液面形成の動的平
衡が保たれることが必要であり、これらの制御は
非常に困難な技術であつた。
In the EFG method, a capillary die is inserted into the silicon melt, and the silicon melt that wets the inside of the die and rises is brought into contact with a silicon single crystal ribbon at the tip of the die and pulled up. However, the growth rate of the ribbon is It is necessary to maintain a dynamic equilibrium of solid-liquid surface formation, taking into account electrical conduction to the seed crystal, generation of latent heat of solidification at the solid-liquid interface, etc., and controlling these is an extremely difficult technique. It was hot.

一方、横引き法では、ごく精密な液面の安全制
御、水平引出時の固液界面が広いことによる液面
の波立等が問題となつていた。
On the other hand, the horizontal drawing method has problems such as extremely precise safety control of the liquid level and ripples in the liquid level due to the wide solid-liquid interface during horizontal drawing.

また、レーザ・ゾーンリボン法は、成形された
多結晶シリコンをレーザを用い局部的に加熱溶
融、再結晶させる方法であるが、レーザをリボン
成長方向と直角に走査させなければならず、あま
り量産的とはいえない。
In addition, the laser zone ribbon method uses a laser to locally heat melt and recrystallize molded polycrystalline silicon, but the laser must be scanned perpendicular to the ribbon growth direction, making it difficult to mass-produce. I can't say it's on target.

また、フローテイング基板成長法は、シリコン
を飽和状態に含んだ溶融錫の液面にCVD法によ
りシリコン結晶をレオタクシー成長させ、温度勾
配をつけて規定の厚さに積つたシート状結晶を引
き出す方法であるが、CVD工程で時間がかかり
量産性に問題があつた。
In addition, in the floating substrate growth method, silicon crystals are grown by rheotaxis using the CVD method on the liquid surface of molten tin containing saturated silicon, and sheet-shaped crystals are pulled out to a specified thickness by creating a temperature gradient. However, the CVD process was time-consuming and had problems with mass production.

以上述べてきた従来のリボン結晶製造法の欠点
に鑑み、本発明は、高性能リボン結晶を低コスト
で製造することを目的とした薄膜結晶の製造方法
を提供するものである。さらに詳しくは、結晶原
料と媒体(展開物質または浮遊物質)の比重差や
不活性、融点差を利用して媒体表面でリボン結晶
を製造することを特徴とする。
In view of the drawbacks of the conventional ribbon crystal manufacturing methods described above, the present invention provides a thin film crystal manufacturing method aimed at manufacturing high performance ribbon crystals at low cost. More specifically, it is characterized by producing ribbon crystals on the surface of the medium by utilizing the difference in specific gravity, inertness, and difference in melting point between the crystal raw material and the medium (expanded substance or suspended substance).

以下、本発明を実施例によつて詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 不活性ガス(例えばAr、He等)中で、第1図
bに示すような温度勾配をつけた第1図aの溶融
炉1の高温部側2に、結晶原料3(この場合は多
結晶シリコン、融点:1414℃比重:2.33)と展開
物質4(例えば前記シリコンに対して不活性で安
定で、しかもシリコンより低融点で比重の大きな
物質、二酸化ゲルマニウム:融点1116±4℃、比
重;3.1219又は二酸化スズ、融点;1127℃、比
重:6.915)を混合させた状態で投入溶融し、低
温部側5へ流してやる。このとき、結晶原料3と
開展物質4は、互いの比重差により上下に分離さ
れた状態となり、さらに低温部まで行く途中6で
展開物質上へ浮遊した結晶原料(この場合はシリ
コン)が、薄膜として再結晶化される。最後に低
温部端より固(シリコンリボン結晶)液(展開物
質)分離した状態で、結晶のみ引上げてやれば連
続してリボン状の結晶7を製造することができ
る。なお、このとき、シリコンリボン結晶中へ微
量のゲルマニウムやスズが混入しても同じ4族の
為、半導体特性に大きな影響は生じない。
Example In an inert gas (for example, Ar, He, etc.), a crystal raw material 3 (in this case Polycrystalline silicon, melting point: 1414°C, specific gravity: 2.33) and developing material 4 (for example, a substance that is inert and stable with respect to silicon, and has a lower melting point and higher specific gravity than silicon, germanium dioxide: melting point: 1116 ± 4°C, specific gravity) ;3.1219 or tin dioxide, melting point: 1127°C, specific gravity: 6.915) is mixed and melted, and then flowed to the low temperature section side 5. At this time, the crystal raw material 3 and the developed material 4 are separated into upper and lower parts due to the difference in their specific gravity, and the crystal raw material (silicon in this case) floating on the developed material 6 on the way to the low-temperature part is formed into a thin film. It is recrystallized as Finally, ribbon-shaped crystals 7 can be continuously produced by pulling up only the crystals in a state where the solid (silicon ribbon crystal) and liquid (deploying material) are separated from the end of the low-temperature part. At this time, even if a small amount of germanium or tin is mixed into the silicon ribbon crystal, it will not have a major effect on the semiconductor characteristics because they belong to the same group 4.

また、リボン結晶の厚みは結晶原料と展開物質
の混合比、あるいは引上げ速度で容易にコントロ
ールされる。
Further, the thickness of the ribbon crystal can be easily controlled by the mixing ratio of the crystal raw material and the developing material or the pulling speed.

さらに低温部端より溶融された状態で流出する
展開物質8は回収して、再び結晶原料を加えて高
温側より投入すれば非常に効率的である。
Furthermore, it is very efficient to collect the developing material 8 flowing out in a molten state from the end of the low temperature section, add the crystal raw material again, and charge it from the high temperature side.

以上、実施例で述べたように、本発明の方法
は、シリコン結晶原料に対して不活性、高密度、
低融点の媒体の融液表面のなめらかさを利用し、
その高温部表面でシリコン結晶原料の薄膜化を計
り、低温部で再結晶化及び固液分離を行うことを
特徴としており、いずれもリボン状のシリコン薄
膜結晶を低コスト、高歩留で大量に製造できる。
As described above in the examples, the method of the present invention provides inert, high-density,
Utilizing the smoothness of the melt surface of a medium with a low melting point,
It is characterized by thinning the silicon crystal raw material on the surface of the high-temperature part, and performing recrystallization and solid-liquid separation in the low-temperature part, both of which produce ribbon-shaped silicon thin film crystals in large quantities at low cost and high yield. Can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明の第1の実施例を説明するた
めの溶融炉の概略断面図、第1図bはその炉の温
度分布を示す図である。 1……溶融炉、2……高温部側、3……結晶原
料、4,8……展開物質、5……低温部側、7…
…リボン状結晶。
FIG. 1a is a schematic sectional view of a melting furnace for explaining a first embodiment of the present invention, and FIG. 1b is a diagram showing the temperature distribution of the furnace. 1...Melting furnace, 2...High temperature section side, 3...Crystal raw material, 4, 8...Development material, 5...Low temperature section side, 7...
...Ribbon-shaped crystal.

Claims (1)

【特許請求の範囲】[Claims] 1 シリコン結晶原料と前記シリコン結晶原料に
対して不活性で前記シリコンよりも低融点、高比
重を有する媒体を混合させて、少なくとも前記シ
リコン結晶原料の融点より高い温度部分と低い温
度部分を有する溶融炉の前記高い温度部分に投入
し、前記溶融炉内の媒体融液の前記低い温度部分
で固液分離され、かつ表面で再結晶化された薄膜
を前記低い温度部分の媒体融液の表面から取り出
すことを特徴とする薄膜結晶の製造方法。
1 Melting a silicon crystal raw material and a medium that is inert to the silicon crystal raw material and has a lower melting point and higher specific gravity than the silicon, and has at least a temperature part higher and a lower temperature part than the melting point of the silicon crystal raw material. A thin film that is introduced into the high temperature part of the furnace, solid-liquid separated in the low temperature part of the medium melt in the melting furnace, and recrystallized on the surface is removed from the surface of the medium melt in the low temperature part. A method for producing a thin film crystal, characterized by taking it out.
JP11718882A 1982-07-06 1982-07-06 Preparation of thin film crystal Granted JPS598688A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11718882A JPS598688A (en) 1982-07-06 1982-07-06 Preparation of thin film crystal
JP28473186A JPS62153187A (en) 1982-07-06 1986-11-28 Production of thin-film crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11718882A JPS598688A (en) 1982-07-06 1982-07-06 Preparation of thin film crystal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP28473186A Division JPS62153187A (en) 1982-07-06 1986-11-28 Production of thin-film crystal

Publications (2)

Publication Number Publication Date
JPS598688A JPS598688A (en) 1984-01-17
JPS6251918B2 true JPS6251918B2 (en) 1987-11-02

Family

ID=14705580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11718882A Granted JPS598688A (en) 1982-07-06 1982-07-06 Preparation of thin film crystal

Country Status (1)

Country Link
JP (1) JPS598688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103025924A (en) * 2010-05-06 2013-04-03 瓦里安半导体设备公司 Removing a sheet from the surface of a melt using elasticity and buoyancy

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855087B2 (en) * 2008-03-14 2010-12-21 Varian Semiconductor Equipment Associates, Inc. Floating sheet production apparatus and method
US7816153B2 (en) 2008-06-05 2010-10-19 Varian Semiconductor Equipment Associates, Inc. Method and apparatus for producing a dislocation-free crystalline sheet
US9567691B2 (en) 2008-06-20 2017-02-14 Varian Semiconductor Equipment Associates, Inc. Melt purification and delivery system
US8545624B2 (en) 2008-06-20 2013-10-01 Varian Semiconductor Equipment Associates, Inc. Method for continuous formation of a purified sheet from a melt
US7998224B2 (en) * 2008-10-21 2011-08-16 Varian Semiconductor Equipment Associates, Inc. Removal of a sheet from a production apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103025924A (en) * 2010-05-06 2013-04-03 瓦里安半导体设备公司 Removing a sheet from the surface of a melt using elasticity and buoyancy
CN103025924B (en) * 2010-05-06 2016-04-06 瓦里安半导体设备公司 Elasticity and buoyancy is utilized to move apart sheet material from melt surface

Also Published As

Publication number Publication date
JPS598688A (en) 1984-01-17

Similar Documents

Publication Publication Date Title
US4329195A (en) Lateral pulling growth of crystal ribbons
CN102260903B (en) Method for growing thin silicon crystals
Kudo Improvements in the horizontal ribbon growth technique for single crystal silicon
CN103046116B (en) Form the device of plate
CN104846437B (en) What resistivity was evenly distributed mixes gallium crystalline silicon and preparation method thereof
JPS6251918B2 (en)
US4957712A (en) Apparatus for manufacturing single silicon crystal
US4585493A (en) Grain-driven zone-melting of silicon films on insulating substrates
US4721688A (en) Method of growing crystals
JPS62153187A (en) Production of thin-film crystal
JPS598695A (en) Crystal growth apparatus
JPS60176995A (en) Preparation of single crystal
JPS6236096A (en) Production of single crystal and device therefor
JP2834558B2 (en) Compound semiconductor single crystal growth method
JPH0329039B2 (en)
GB2059292A (en) Growing silicon films on substrates
JPH085760B2 (en) Method for producing Hgl-xo Cdxo Te crystal ingot
JPS6111913B2 (en)
JP2535773B2 (en) Method and apparatus for producing oxide single crystal
JPS62223088A (en) Method for growing compound single crystal
JP3042168B2 (en) Single crystal manufacturing equipment
JPH05139884A (en) Production of single crystal
JPS55140792A (en) Manufacture of 3-5 group compound semiconductor single crystal
JPH0483789A (en) Production of lamellar single crystal
Kou Edge-defined contact heater apparatus and method for floating zone crystal growth