JPS6250989B2 - - Google Patents

Info

Publication number
JPS6250989B2
JPS6250989B2 JP17101279A JP17101279A JPS6250989B2 JP S6250989 B2 JPS6250989 B2 JP S6250989B2 JP 17101279 A JP17101279 A JP 17101279A JP 17101279 A JP17101279 A JP 17101279A JP S6250989 B2 JPS6250989 B2 JP S6250989B2
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
ion
ion implantation
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17101279A
Other languages
Japanese (ja)
Other versions
JPS5694772A (en
Inventor
Takashi Ito
Takao Nozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17101279A priority Critical patent/JPS5694772A/en
Publication of JPS5694772A publication Critical patent/JPS5694772A/en
Publication of JPS6250989B2 publication Critical patent/JPS6250989B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置、特にイオン注入を含む半
導体装置の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a method for manufacturing a semiconductor device including ion implantation.

半導体基体へ不純物を導入する手段としてイオ
ンを注入することは広く行われている。例えば、
MOS型FETのチヤネルしきい値を制御する方法
として、半導体の表面に局在して、正確に不純物
を導入できる方法としては他に類をみない有用性
が確認されている。この他ソース・ドレインの高
不純物層の形成、バイポーラトランジスタの製造
におけるベース、エミツタの形成にも有効に利用
されている。
Ion implantation is widely practiced as a means of introducing impurities into semiconductor substrates. for example,
As a method for controlling the channel threshold of MOS FETs, it has been confirmed that this method is uniquely useful as it allows for localized and accurate introduction of impurities into the surface of a semiconductor. In addition, it is effectively used to form highly impurity layers for sources and drains, and to form bases and emitters in the manufacture of bipolar transistors.

イオン注入工程は、一般に半導体表面が汚染さ
れることを避けるため、通常、第1図に示す様に
基体1の上にSiO2などの絶縁層2を付着し、こ
れを通して行うのが多い。3は例えば、ボロンイ
オンUB+であり、これが40KeVで加速されると、
500ÅのSiO2である2を通しては、1の中へ平均
的な深さ1000Åまで注入される。
In order to avoid contaminating the semiconductor surface, the ion implantation process is usually performed through an insulating layer 2 such as SiO 2 deposited on a substrate 1 as shown in FIG. 1. For example, 3 is boron ion UB+ , and when this is accelerated at 40KeV,
Through 2, 500 Å of SiO 2 is implanted into 1 to an average depth of 1000 Å.

第2図の4は基板へ注入されたイオンの分布を
示す。横軸は表面からの深さX、縦軸は不純物濃
度Ciを示す。MOSFETのチヤネルしきい値の制
御の場合は、2はゲート酸化膜であり、通常400
〜1500Åである場合が多い。注入工程を終了した
基体は、汚染を除くため洗浄されるが、この時2
の表面を20〜50Åエツチ除去去する必要がある。
4 in FIG. 2 shows the distribution of ions implanted into the substrate. The horizontal axis represents the depth X from the surface, and the vertical axis represents the impurity concentration Ci. In the case of MOSFET channel threshold control, 2 is the gate oxide film, usually 400
It is often ~1500 Å. After completing the implantation process, the substrate is cleaned to remove contamination.
It is necessary to etch away the surface by 20-50 Å.

高性能な集積回路を作るためには、MOSFET
のゲート絶縁膜は、前述の値より薄くする必要が
ある。例えば100Åとする場合は、前述の洗浄工
程における減少分を見込んでおかなければならな
いが、エツチングでは、均一なエツチが難しく、
さらに、うすいゲート絶縁膜が必要になるほどエ
ツチングの不均一性による膜厚のばらつき、従つ
てFET特性のばらつきは大きくなる。これを解
決する1つの方法は、うすいゲート絶縁膜の上に
ゲートとなるべき、多結晶SiやMo等の金属を付
着後、ゲート金属とゲート絶縁膜を通して基板ま
で達する様に注入エネルギーを選んでイオン注入
すればよいが、ゲート金属の厚さは、通常3000Å
以上であり、これを通してイオン注入するために
は、ボロンイオンの場合で100KeV以上のエネル
ギーが必要である。一般に注入エネルギーが大き
くなると、イオンの注入深さの分布も広がること
が知られており、この工程を経た素子は必ずしも
一般的な注入工程によるEFTの特性と同じでな
い。
MOSFETs are needed to create high-performance integrated circuits.
The gate insulating film must be thinner than the above value. For example, when setting the thickness to 100 Å, it is necessary to take into account the reduction in the cleaning process mentioned above, but with etching, uniform etching is difficult.
Furthermore, the thinner the gate insulating film is required, the greater the variation in film thickness due to non-uniform etching, and therefore the greater the variation in FET characteristics. One way to solve this problem is to deposit a metal such as polycrystalline Si or Mo to form the gate on a thin gate insulating film, and then select the implantation energy so that it reaches the substrate through the gate metal and gate insulating film. Ion implantation is sufficient, but the thickness of the gate metal is usually 3000Å.
This is the above, and in order to implant ions through this, an energy of 100 KeV or more is required for boron ions. It is generally known that as the implantation energy increases, the distribution of ion implantation depth also widens, and devices that undergo this process do not necessarily have the same characteristics as EFT produced by a general implantation process.

本発明は、この様な不都合をなくすべき方法で
あつて、今後、100Å程度のゲート絶縁膜が必要
とされ、基体表面に極く浅く不純物を局在させる
必要のある素子で、有効な手法になるものであ
る。
The present invention is a method to eliminate such inconveniences, and is an effective method for devices that will require gate insulating films of about 100 Å in thickness and localize impurities extremely shallowly on the substrate surface. It is what it is.

本発明の工程は、第3図a,b,cに示されて
いる様に半導体基体1の上へ絶縁層2を生成し、
2の表面に、半導体または金属5を付着し(第3
図a)、5及び2を通して1の表面へイオン6を
注入し(第3図b)、しかる後に半導体または金
属8を5の上へ付着し(第3図c)、5及び8を
パターン形成することにより、半導体装置の配線
として用いるものである。なお、7はイオン注入
領域を示す。本発明によれば、イオン注入は、5
の上から行うので2が汚染されることなく、注入
後充分な洗浄を行うことが可能である。また、5
の厚さは、注入工程における汚染が2へ到達しな
い程度に充分薄くできるので、注入イオンエネル
ギーは、従来方法より、わずかに高くすればよ
く、結果として、第4図の9に示す様な鋭い分布
を得ることができる。また配線は5及び8が使用
されるから、その厚さは8によつて任意に決定で
き、配線抵抗も充分低くできる。
The process of the invention includes producing an insulating layer 2 on a semiconductor substrate 1 as shown in FIGS. 3a, b, c,
A semiconductor or metal 5 is attached to the surface of 2 (3rd
Figure a), implanting ions 6 into the surface of 1 through 5 and 2 (Figure 3b), then depositing a semiconductor or metal 8 on top of 5 (Figure 3c), patterning 5 and 8. By doing so, it can be used as wiring for semiconductor devices. Note that 7 indicates an ion implantation region. According to the invention, the ion implantation is performed by
Since the injection is carried out from above, it is possible to perform sufficient cleaning after injection without contaminating 2. Also, 5
Since the thickness of 2 can be made sufficiently thin so that contamination during the implantation process does not reach 2, the implanted ion energy only needs to be slightly higher than in the conventional method, resulting in a sharp ion beam as shown at 9 in Figure 4. distribution can be obtained. Further, since the wires 5 and 8 are used, the thickness can be arbitrarily determined by the wires 8, and the wire resistance can be made sufficiently low.

次に本発明の実施例としてMOS FETの製造工
程を第5図a乃至fを用いて説明する。3〜5
Ω・cm程度の抵抗率をもつP型のSi基体10上
に、FETを作成すべき領域を除いてフイールド
SiO211を第5図aのように約8000Å生成す
る。次にゲートSiO212を100Å生成し(第5図
b)、続いて、多結晶Si13を500Å付着する。次
に30KeVのエネルギーでボロンイオン14
11B+)を4×1012cm-2注入する(第5図c)。こ
れにより、13及び12を通してボロンイオンは
基板10の中へ1000Åの深さまで急峻な分布で注
入される。シリコンの場合イオン注入後でも安定
で、この段階で表面のライトエツチングをしても
よいが、これを実施しなくてもよい。次に、不純
物をドープした多結晶Si15を3000Å付着し(第
5図d)、15及び13をパターン形成し、16
のゲート電極を形づくる。次に、ひ素(AS+)イ
オン17を150KeVのエネルギーで4×1015cm-2
注入し、18及び19に示されているソース、ド
レイン領域及び16へのドーピングを完成する
(第5図e)。次に熱処理を経た後、PSGの被覆2
0をし各領域への接続穴をあけ、Al電極のソー
ス、ドレイン電極21,22を形成する(第5図
f)。第5図の工程により製造したFETは100Å
の非常にうすいゲート絶縁膜をもつているにもか
かわらず、安定性に優れており、均一な高利得の
特性を示した。その理由はゲートSiO2の汚染が
全くなく、さらに注入イオンの分布が表面に局在
して理論値に近い形状をしているため素子の最適
設計に近い形に製造できたためである。以上の例
からわかるように本発明の実用的価値は大きいと
考えられる。
Next, the manufacturing process of a MOS FET as an embodiment of the present invention will be explained using FIGS. 5a to 5f. 3-5
A field is formed on a P-type Si substrate 10 with a resistivity of about Ω・cm except for the area where the FET is to be fabricated.
SiO 2 11 is formed to a thickness of about 8000 Å as shown in FIG. 5a. Next, a gate SiO 2 12 of 100 Å is formed (FIG. 5b), and then a polycrystalline Si 13 of 500 Å is deposited. Next, with an energy of 30 KeV, boron ion 14
Inject 4×10 12 cm -2 of ( 11 B + ) (Figure 5c). As a result, boron ions are implanted into the substrate 10 through 13 and 12 to a depth of 1000 Å with a steep distribution. In the case of silicon, it is stable even after ion implantation, and the surface may be lightly etched at this stage, but this is not necessary. Next, 3000 Å of polycrystalline Si 15 doped with impurities was deposited (Fig. 5d), patterns 15 and 13 were formed, and 16
form the gate electrode. Next, arsenic (AS + ) ions 17 were irradiated with 4×10 15 cm -2 at an energy of 150 KeV.
The implantation completes the source and drain regions shown at 18 and 19 and the doping of 16 (FIG. 5e). Next, after heat treatment, PSG coating 2
0 and make connection holes to each region to form source and drain electrodes 21 and 22 of the Al electrode (FIG. 5f). The FET manufactured by the process shown in Figure 5 is 100Å.
Despite having an extremely thin gate insulating film, it exhibited excellent stability and uniform high gain characteristics. The reason for this is that there is no contamination of the gate SiO 2 , and the distribution of implanted ions is localized on the surface and has a shape close to the theoretical value, making it possible to manufacture the device in a shape close to the optimal design. As can be seen from the above examples, the present invention is considered to have great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のイオン注入工程の断面図、第2
図は、そのイオン分布である。第3図a,b,c
は本発明の説明図であり、第4図はそのイオン分
布例である。第5図は、本発明の1実施例であつ
て、MOSFETの製造工程を示す各工程の断面図
である。 図中、1,10は半導体基板、2,12は酸化
膜、5,13は第1の半導体または金属、7,1
8,19はイオン注入領域、8,15は第2の半
導体または金属、11はフイールド酸化膜、16
は多層ゲート電極、20はPSG膜、21と22は
それぞれソース、ドレイン電極である。
Figure 1 is a cross-sectional view of the conventional ion implantation process;
The figure shows the ion distribution. Figure 3 a, b, c
is an explanatory diagram of the present invention, and FIG. 4 is an example of the ion distribution thereof. FIG. 5 is an embodiment of the present invention, and is a cross-sectional view of each step showing the manufacturing process of a MOSFET. In the figure, 1 and 10 are semiconductor substrates, 2 and 12 are oxide films, 5 and 13 are first semiconductors or metals, and 7 and 1
8 and 19 are ion implantation regions, 8 and 15 are second semiconductors or metals, 11 is a field oxide film, and 16
2 is a multilayer gate electrode, 20 is a PSG film, and 21 and 22 are source and drain electrodes, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基体上へ付着した絶縁膜及び該絶縁膜
上に付着した第1の半導体または金属層を通し
て、該半導体基体へイオンを注入せしめ、しかる
後、同じまたは他の第2の半導体または金属層を
重ね、第1及び第2の半導体または金属層をパタ
ーン形成することを特徴とする半導体装置の製造
方法。
1. Implanting ions into the semiconductor substrate through an insulating film deposited on the semiconductor substrate and a first semiconductor or metal layer deposited on the insulating film, and then implanting the same or another second semiconductor or metal layer. 1. A method of manufacturing a semiconductor device, comprising overlapping and patterning first and second semiconductor or metal layers.
JP17101279A 1979-12-28 1979-12-28 Manufacturing method of semiconductor device Granted JPS5694772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17101279A JPS5694772A (en) 1979-12-28 1979-12-28 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17101279A JPS5694772A (en) 1979-12-28 1979-12-28 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5694772A JPS5694772A (en) 1981-07-31
JPS6250989B2 true JPS6250989B2 (en) 1987-10-28

Family

ID=15915453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17101279A Granted JPS5694772A (en) 1979-12-28 1979-12-28 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5694772A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01173757A (en) * 1987-12-28 1989-07-10 Fujitsu Ltd Manufacture of mis semiconductor device

Also Published As

Publication number Publication date
JPS5694772A (en) 1981-07-31

Similar Documents

Publication Publication Date Title
US4635347A (en) Method of fabricating titanium silicide gate electrodes and interconnections
JPH04225529A (en) Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
JPS6336147B2 (en)
JPS59111358A (en) Method of producing cmos structure
US4502894A (en) Method of fabricating polycrystalline silicon resistors in integrated circuit structures using outdiffusion
US4560421A (en) Semiconductor device and method of manufacturing the same
CA1237537A (en) Method of making mosfets using silicate glass layer as gate edge masking for ion implantation
JPS6046831B2 (en) Manufacturing method of semiconductor device
US4783423A (en) Fabrication of a semiconductor device containing deep emitter and another transistor with shallow doped region
JPH04305978A (en) Mos semiconductor device for electric power and manufacture thereof
JPS60113472A (en) Manufacture of semiconductor device
JPH0521448A (en) Manufacture of semiconductor device
JPS6250989B2 (en)
JP2002518827A (en) Method of manufacturing semiconductor device including MOS transistor
JPH0298143A (en) Manufacture of ldd structure polysilicon thin film transistor
JP3328600B2 (en) Fabrication process for bipolar and BICMOS devices
JPH1064898A (en) Manufacturing method of semiconductor device
JPS6161544B2 (en)
JPH0412629B2 (en)
JPS6161268B2 (en)
KR0167667B1 (en) Method of fabricating semiconductor
KR880001956B1 (en) Method of producing semiconductor integrated circuit
JPH02244715A (en) Manufacture of semiconductor device
KR960002083B1 (en) Making method of mosfet
JPH10223559A (en) Manufacture of semiconductor device