JPS6250227A - Transmission torque controlling device for four-wheel-drive vehicle - Google Patents

Transmission torque controlling device for four-wheel-drive vehicle

Info

Publication number
JPS6250227A
JPS6250227A JP19103385A JP19103385A JPS6250227A JP S6250227 A JPS6250227 A JP S6250227A JP 19103385 A JP19103385 A JP 19103385A JP 19103385 A JP19103385 A JP 19103385A JP S6250227 A JPS6250227 A JP S6250227A
Authority
JP
Japan
Prior art keywords
torque
steering angle
speed
control
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19103385A
Other languages
Japanese (ja)
Inventor
Kenichi Watanabe
憲一 渡辺
Hideji Hiruta
昼田 秀司
Manabu Hikita
引田 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP19103385A priority Critical patent/JPS6250227A/en
Priority to EP86111919A priority patent/EP0215352B1/en
Priority to DE8686111919T priority patent/DE3668586D1/en
Priority to US06/901,776 priority patent/US4709775A/en
Publication of JPS6250227A publication Critical patent/JPS6250227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To stabilize the high speed straight running performance so as to prevent a power transmission means from slipping with the provision of both the reduction of loss and the improved durability by configurating a controlling device in such a way that the transmitted torque amount of a power transmission means to be maximized when a car is running at a speed higher than the specified one with a small steering angle effected. CONSTITUTION:Such signals as Sv, Sa, and SDELTAn from a car speed sensor 15, a steering angle sensor 16, and a speed difference sensor 17 are inputted into a control unit 14 so as to allow Sa to form a judgement as to whether a car is running ahead or is making a turn. When the car is found to be running straight ahead, a control curve such as 11, 12, or 13 is selected based on a car speed by means of a control map M1 or an operation. Then the selected curve is checked up with the signal SDELTAn for the difference in rotation speed so as to determine controlling electric current 'i', and a hydraulic pressure proportional to the current is applied to a clutch 5 by a hydraulic control valve 13 so that the clutch 5 is joined so as to transmit the torque Tr. And when the car is running at a speed higher than the specified one while a steering angle is kept small, the hydraulic pressure is increased so that a front and a rear wheel are conditioned to the direct connection so as to allow the maximum transmitting capacity of the clutch 5 to be effected preventing a power transmission means from slipping.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、4輪駆動車の伝達トルク制御手段に関し、更
に詳細には、前後輪へのトルク配分比を一定に維持する
ことのできる4輪駆動車の伝達トルク制御手段に関する
。 。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a transmission torque control means for a four-wheel drive vehicle, and more specifically, to a four-wheel drive vehicle capable of maintaining a constant torque distribution ratio between front and rear wheels. The present invention relates to a transmission torque control means for a wheel drive vehicle. .

(従来の技術) 4輪駆動車としては、例えば実開昭56−122630
号公報に示されているようにエンジン、トランスミッシ
ョン等からなるパワープラントに直接接続された第1駆
動軸と、パワープラントにクラッチ機構等の動力伝達手
段を介して接続された第2駆動軸とを備え、上記クラッ
チ機構の締結と解除を制御することによって、2輪駆動
と4輪駆動の切換えを行なうことができるものが知られ
ている。
(Prior art) As a four-wheel drive vehicle, for example,
As shown in the publication, a first drive shaft is directly connected to a power plant consisting of an engine, a transmission, etc., and a second drive shaft is connected to the power plant via a power transmission means such as a clutch mechanism. There is known a vehicle that can switch between two-wheel drive and four-wheel drive by controlling the engagement and release of the clutch mechanism.

4輪駆動車における前後輪へのトルク配分比の調整は、
例えば上述の2輪駆動と4輪駆動の切換えを行なうクラ
ッチ機構の締結力を調節し、このクラッチ機構の伝達ト
ルク量を制御することによって行なうことができる。と
ころが、この機構により前後輪のトルク配分比を調整し
たときには、パワープラントの出力トルクが変動した場
合には、」−記クラッチの機構の締結力を調整し、その
伝達トルク量を変動させてやらなければトルク配分比を
一定に保つことはできない。これは、クラッチ機構の伝
達トルクが、その締結力の変動によってのみ変動するか
らである。
To adjust the torque distribution ratio between front and rear wheels in a four-wheel drive vehicle,
For example, this can be done by adjusting the engagement force of a clutch mechanism that switches between two-wheel drive and four-wheel drive as described above, and controlling the amount of torque transmitted by this clutch mechanism. However, when the torque distribution ratio between the front and rear wheels is adjusted using this mechanism, if the output torque of the power plant fluctuates, the engaging force of the clutch mechanism must be adjusted to vary the amount of transmitted torque. Otherwise, the torque distribution ratio cannot be kept constant. This is because the transmission torque of the clutch mechanism varies only due to variations in its engagement force.

パワープラント出力トルクの変動に伴ないクラッチ機構
の伝達トルク量を制御するには、例えばパワープラント
出力トルクをトルク検出器を用いて検出し、この検出量
に基づきクラッチ機構の締結力を調整してやればよい。
In order to control the amount of torque transmitted by the clutch mechanism as the power plant output torque fluctuates, for example, the power plant output torque can be detected using a torque detector, and the engagement force of the clutch mechanism can be adjusted based on this detected amount. good.

ところが、上記トルク検出器は極めて高価なものであり
、このため装置全体が高価なものとなってしまうという
問題がある。
However, the torque detector described above is extremely expensive, so there is a problem in that the entire device becomes expensive.

そこで、この問題を解決するため、パワープラント出力
トルクの変動に伴ない前後輪の回転速度差が変動するこ
とを利用して、この回転速度差に基づき、上記動力伝達
手段の伝達トルク量を調整し、これによって前後輪のト
ルク配分比を所望の値に維持することができる。
Therefore, in order to solve this problem, we took advantage of the fact that the rotational speed difference between the front and rear wheels fluctuates as the power plant output torque fluctuates, and adjusted the amount of torque transmitted by the power transmission means based on this rotational speed difference. However, this allows the torque distribution ratio between the front and rear wheels to be maintained at a desired value.

すなわち、パワープラントからのトルクを前後輪にそれ
ぞれ伝達するトルク伝達経路の少なくとも一方に、トル
ク伝達量可変の動力伝達手段が設けられ、この動力伝達
手段を可変制御して前後輪へのトルク配分を制御する4
輪駆動車の伝達トルク制御装置において、車速を検出す
る車速検出手段、舵角を検出する舵角検出手段、前後輪
回転速度差を検出する回転速度差検出手段、および前記
3つの検出手段からの出力信号を受け、前記3つの検出
手段からの出力信号に基づき、前後輪トルク配分比が常
に所望の一定の配分比になるように、前記動力伝達手段
のトルク伝達量を制御する制御手段を設けることにより
、トルク配分比が所定の値に維持される。
That is, at least one of the torque transmission paths that transmits torque from the power plant to the front and rear wheels is provided with a power transmission means that can vary the amount of torque transmission, and this power transmission means is variably controlled to distribute the torque to the front and rear wheels. control 4
In a transmission torque control device for a wheel drive vehicle, a vehicle speed detection means for detecting vehicle speed, a steering angle detection means for detecting a steering angle, a rotational speed difference detection means for detecting a difference in rotational speed between front and rear wheels, and a Control means is provided for receiving the output signal and controlling the amount of torque transmitted by the power transmission means so that the front and rear wheel torque distribution ratio always becomes a desired constant distribution ratio based on the output signals from the three detection means. As a result, the torque distribution ratio is maintained at a predetermined value.

(発明が解決しようとする問題点) しかし、上述したような構成をとると、高速走行状態で
かつ舵角が小さい場合に、前後輪が直結状態でないと、
走行が不安定であり、また、動力伝達手段のスベリによ
り損失が大きく、耐久性が悪いという問題がある。
(Problems to be Solved by the Invention) However, with the configuration described above, when the vehicle is running at high speed and the steering angle is small, if the front and rear wheels are not directly connected,
There are problems in that running is unstable, loss is large due to slippage of the power transmission means, and durability is poor.

そこで、本発明は、前後輪へのトルクの配分を前後輪回
転差に応じて制御するようになった4輪駆動車において
、設定車速具」−の高速走行状態でかつ舵角が小さい場
合に、高速直進性が安定し、動力伝達手段のスベリ防止
により低損失、耐久性を向上することを目的とする。
Therefore, the present invention provides a four-wheel drive vehicle in which the distribution of torque between the front and rear wheels is controlled according to the rotation difference between the front and rear wheels. The purpose is to achieve stable high-speed straight-line performance, reduce loss, and improve durability by preventing slippage of the power transmission means.

(問題点を解決するための手段) 本発明においては、制御手段は、設定車速以上の高速走
行状態でかつ舵角が小さい場合には、前記動力伝達手段
のトルク伝達量を最大値にするように構成される。
(Means for Solving the Problems) In the present invention, the control means controls the torque transmission amount of the power transmission means to a maximum value when the vehicle is running at a high speed higher than a set speed and the steering angle is small. It is composed of

(前後輪の回転速度差に応じて前後輪のトルク配分比を
制御する原理) まず、リヤ側に上記動力伝達手段を設け、パワープラン
ト出力トルクをT 、、フロントおよびリヤ側トルクを
それぞれT f 1’rr %目標リヤトルク配分率を
1」とすると、次のような式が成り立つ。
(Principle of controlling the torque distribution ratio between the front and rear wheels according to the rotational speed difference between the front and rear wheels) First, the above-mentioned power transmission means is provided on the rear side, and the power plant output torque is T, and the front and rear side torques are respectively Tf. 1'rr% If the target rear torque distribution rate is 1'', then the following equation holds true.

T、 −Tf + Tr−・−・−・(1)T、  =
 u TP−−−−−−C2)また、フロントおよびリ
ヤ駆動力をそれぞれF f % Fr %フロントおよ
びリヤタイヤスリップ比をS f 1Sr %フロント
およびリヤタイヤ角速度をωf、 7、フロントおよび
リヤ接地荷重をω N f % Nr %フロントおよびリヤタイヤ動的有
効半径をRf%Rr%左右を平均してのフロントおよび
リア車体速度をV f 、V(、駆動係数をμ、タイヤ
のスリップ特性により決る定数をkとすると、次の式が
成り立つ。なお、上記、駆動係数μ、定数には第9図に
示すような使用するタイヤ固有のスリップ特性から求め
られる値で μ−F/N (F ;駆動力、N;接地荷重)k−μ/
S(S;スリップ率) である。
T, −Tf + Tr−・−・−・(1)T, =
u TP------C2) Also, the front and rear driving forces are F f % Fr %, the front and rear tire slip ratios are S f 1Sr %, the front and rear tire angular velocities are ωf, 7, and the front and rear ground contact loads are ω N f % Nr % The dynamic effective radius of the front and rear tires is Rf % Rr % The average front and rear vehicle speed for the left and right sides is V f , V (, the drive coefficient is μ, and the constant determined by the tire slip characteristics is k Then, the following formula holds true.In addition, the drive coefficient μ and the constant mentioned above are the values determined from the slip characteristics specific to the tires used, as shown in Figure 9, and are μ−F/N (F; driving force, N ; ground load) k-μ/
S (S; slip rate).

F、=μN r −k S r N r  ・・・・・
・(4)Fr −μNr −k SrN、  ・=−・
・−(5)更に、フロントおよびリヤギヤ比(ペロペラ
シャフト/ハーフシャフト)をG、 、G、、フロント
およびリヤ側のペロペラシャフトの各速度をnf 、n
r  とそれぞれすると、トルクと角回転速度の関係は
、次の式で表わすことができる。
F,=μN r −k S r N r ・・・・・・
・(4)Fr −μNr −k SrN, ・=−・
・-(5) Furthermore, the front and rear gear ratios (pellet shaft/half shaft) are G, , G, and the respective speeds of the front and rear propeller shafts are nf and n
The relationship between torque and angular rotational speed can be expressed by the following equation.

nf −Gf ω、       ・・・・・・(10
)n・ −〇r ω、       ・・・・・・(1
1)式(4)、(6)、(8)、(10)から・・・・
・・(12) 式(5)、(7)、(9)、(11)から式(12)か
ら ・・・・・・(14) 式(13)から ・・・・・・(15) フロントとリヤの車体速度比tは、 ■、 t−□      ・・・・・・(I6)■。
nf −Gf ω, ・・・・・・(10
) n・−〇r ω, ・・・・・・(1
1) From formulas (4), (6), (8), (10)...
...(12) From equations (5), (7), (9), (11) to equation (12)...(14) From equation (13)...(15) The front and rear vehicle speed ratio t is ■, t-□ ......(I6)■.

で表わすことができる。式(14)、(15)、(16
)から・・・・・・(17) リヤトルクよ各回転速度上の関係は、式(3)、(17
)から次のように表わすことができる。
It can be expressed as Equations (14), (15), (16
) to...(17) The relationship between rear torque and each rotational speed is expressed by equations (3) and (17
), it can be expressed as follows.

、°、T、  − ・・・・・・ (18) リヤトルクと前後輪の回転速度差を△nの関係は次のよ
うに示すことができる。
, °, T, - (18) The relationship between the rear torque and the rotational speed difference between the front and rear wheels △n can be expressed as follows.

Δn = nf −nr      −(19)、’、
n、=n、−八n     へ・−・−(20)式(1
8)、(20)より z、!11j j ← 従って、車両の走行条件(例えば車速やコーナリング)
に応じて予め設定した目標リヤトルク配分率Uを一定と
するには、前後輪回転速度差△n、フロント側プロペラ
シャフト角速度η、および車体速度比tを測定し、上記
式(21)にあてはめ、リヤ側トルクTrを得られた値
とすればよい。なお、舵角を一定にした場合、および車
速を一定にした場合の上記式(21)から得られたリヤ
側トルクTrと回転速度差△nの関係を第1図、第2図
に示した。
Δn = nf - nr - (19),',
n, = n, -8n to - - (20) formula (1
8) From (20), z,! 11j j ← Therefore, the driving conditions of the vehicle (e.g. vehicle speed and cornering)
In order to keep the target rear torque distribution ratio U set in advance in accordance with The value obtained as the rear side torque Tr may be used. The relationship between the rear side torque Tr obtained from the above equation (21) and the rotational speed difference △n when the steering angle is constant and when the vehicle speed is constant is shown in Figures 1 and 2. .

なお、前輪の間隔をbl、後輪の間隔をb2 、前後輪
の間隔をl、転舵状態の内側の前輪の舵角をα1、外側
の前輪の舵角をα2、回転中心から内側および外側の前
輪および内側および外側の後輪への距離をそれぞれR1
、R2、R3、R4とすると、車体速度比tは次のよう
に表わすことができる。
In addition, the distance between the front wheels is bl, the distance between the rear wheels is b2, the distance between the front and rear wheels is l, the steering angle of the inside front wheel in the steered state is α1, the steering angle of the outside front wheel is α2, and the inside and outside from the rotation center. R1 is the distance to the front wheel and the inner and outer rear wheels respectively.
, R2, R3, and R4, the vehicle speed ratio t can be expressed as follows.

従って、舵角がわかれば、車体速度比tは知ることがで
きる。
Therefore, if the steering angle is known, the vehicle speed ratio t can be known.

(発明の効果) 以上説明した構成の本発明の4輪駆動車の伝達トルク制
御装置においては、エンジンの出力トルクが変化したと
しても、前後輪回転速度差、車速および車体速度比を測
定し、これらの測定値に基づいて動力伝達手段のトルク
伝達量を制御するだけで、前後輪のトルク配分比を一定
に維持することができ、従って高価なトルクセンサ等を
用ことなく、高精度な前後輪のトルク配分制御が行なえ
る。更に、設定車速以上の高速走行状態でかつ舵角が小
さい場合に、動力伝達手段のトルク伝達量を最大値にし
て動力伝達手段のスベリが生じないようにしているので
、高速直進性が安定し、装置の低損失、耐久性を向上で
きる。
(Effects of the Invention) In the transmission torque control device for a four-wheel drive vehicle of the present invention having the configuration described above, even if the output torque of the engine changes, the front and rear wheel rotational speed difference, vehicle speed, and vehicle body speed ratio are measured, By simply controlling the amount of torque transmitted by the power transmission means based on these measured values, the torque distribution ratio between the front and rear wheels can be maintained constant. Torque distribution control between wheels can be performed. Furthermore, when the vehicle is running at a high speed higher than the set vehicle speed and the steering angle is small, the torque transmission amount of the power transmission means is set to the maximum value to prevent slippage of the power transmission means, which stabilizes high-speed straight running. , it can improve the low loss and durability of the device.

(実施例) 以下、添付図面を参照しつつ本発明の好ましい実施例に
よる4輪駆動車の伝達トルク制御装置について説明する
(Embodiment) Hereinafter, a transmission torque control device for a four-wheel drive vehicle according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

第3図および第4図は、本発明の一実施例を示すもので
ある。第3図において、符号1はパワープラントを示し
、このパワープラント1はエンジンおよびトランスミッ
ション等からなっている。
3 and 4 show an embodiment of the present invention. In FIG. 3, reference numeral 1 indicates a power plant, and this power plant 1 consists of an engine, a transmission, and the like.

このパワープラント1の出力軸2には、歯車列3を介し
てフロント側プロペラシャフト4が連結されているとと
もに、動力伝達手段である油圧式可変クラッチ5を介し
てリヤ側プロペラシャフト6が接続されている。フロン
ト側プロペラシャフト4はファイナルギヤユニット7を
介して前輪8にリヤ側プロペラシャフト6はファイナル
ギヤユニット9を介して後輪10にそれぞれ接続されて
いる。以上の構成において、クラッチ5へ加える作動油
の圧力を変化させて、クラッチ5の伝達トルク量を変化
させ、これにより前後輪のトルク配分比を調整する。
A front propeller shaft 4 is connected to the output shaft 2 of the power plant 1 via a gear train 3, and a rear propeller shaft 6 is connected via a hydraulic variable clutch 5, which is a power transmission means. ing. The front propeller shaft 4 is connected to a front wheel 8 via a final gear unit 7, and the rear propeller shaft 6 is connected to a rear wheel 10 via a final gear unit 9. In the above configuration, the pressure of the hydraulic oil applied to the clutch 5 is changed to change the amount of torque transmitted by the clutch 5, thereby adjusting the torque distribution ratio between the front and rear wheels.

次に、第4図を参照しつつ、上記クラッチ5のための油
圧制御系について説明する。図に示すように、油タンク
11内の作動油は、ポンプ12によって吸い」二げられ
、所定の圧力で吐出され、油圧制御弁13を介して、ク
ラッチ5の作動油室5aに供給される。油圧制御弁13
は、制御ユニット14で制御されて、その作動油圧が調
整される。これによって、クラッチ5の作動油室5aへ
の作動油の圧力が調整され、クラッチ5の締結力が制御
される。
Next, a hydraulic control system for the clutch 5 will be explained with reference to FIG. As shown in the figure, the hydraulic oil in the oil tank 11 is sucked in by the pump 12, discharged at a predetermined pressure, and supplied to the hydraulic oil chamber 5a of the clutch 5 via the hydraulic control valve 13. . Hydraulic control valve 13
is controlled by a control unit 14, and its working oil pressure is adjusted. As a result, the pressure of the hydraulic oil in the hydraulic oil chamber 5a of the clutch 5 is adjusted, and the engagement force of the clutch 5 is controlled.

」1記制御ユニット14には、車速を検出し、車速信号
Sv を出力する車速センサ15、舵角を検出し、舵角
信号Sαを出力する舵角センサ16、およびフロント側
およびリヤ側プロペラシャフト4.6の回転速度差Δn
を検出し、速度差信号SΔ。を出力する速度差センサ1
7が接続されている。なお、上記車速センサ15として
は、フロント側プロペラシャフト4の回転速度を検出す
る回転速度センサを用いることができる。また、回転速
度差△。を求めるには、上記速度差センサを用いずに、
リヤ側プロペラシャフト6の回転速度を検出する回転速
度センサを制御ユニット14に接続し、該制御ユニット
で演算するようにしてもよい。
1. The control unit 14 includes a vehicle speed sensor 15 that detects the vehicle speed and outputs a vehicle speed signal Sv, a steering angle sensor 16 that detects the steering angle and outputs a steering angle signal Sα, and front and rear propeller shafts. 4.6 rotational speed difference Δn
is detected, and the speed difference signal SΔ. Speed difference sensor 1 that outputs
7 is connected. Note that as the vehicle speed sensor 15, a rotational speed sensor that detects the rotational speed of the front propeller shaft 4 can be used. Also, the rotational speed difference △. To find it, without using the speed difference sensor mentioned above,
A rotation speed sensor for detecting the rotation speed of the rear propeller shaft 6 may be connected to the control unit 14, and the control unit may perform the calculation.

制御ユニット14は、上記3つの信号SV%Sαおよび
5Illl!1oを人力し、予め記憶している次のよう
な第1および第2の制御マツプM1、M2に従い制御電
流iを油圧制御弁13に供給する。
The control unit 14 outputs the three signals SV%Sα and 5Illll! 1o manually, and a control current i is supplied to the hydraulic control valve 13 according to the following first and second control maps M1 and M2 stored in advance.

これらの第1および第2制御マツプM、  およびM2
 は、第1図および第2図に示された特性図に基づいて
定められたものであり、縦軸が制御電流1を、横軸が回
転速度差△9を示している。第1制御マツプM1  は
直進時用のものであり、車速か速くなるにつれて回転速
度差大側に移動する複数木の制御線f!、1.12.1
3を備えている。一方、第2制御マツプM2 は、転舵
時用のものであり、舵角が大きくなるにつれて回転速度
差大側に移動する複数本の制御線14、β5.16を備
えている。
These first and second control maps M, and M2
is determined based on the characteristic diagrams shown in FIGS. 1 and 2, where the vertical axis shows the control current 1 and the horizontal axis shows the rotational speed difference Δ9. The first control map M1 is for straight-ahead driving, and the multi-tree control line f! moves toward the side where the rotational speed difference is larger as the vehicle speed increases. , 1.12.1
It has 3. On the other hand, the second control map M2 is for steering, and includes a plurality of control lines 14 and β5.16 that move toward the larger rotational speed difference side as the steering angle increases.

また、設定車速以上の高速走行状態でかつ舵角が小さい
場合には、クラッチSのトルク伝達量を最大値としてい
る。
Further, when the vehicle is running at a high speed higher than the set vehicle speed and the steering angle is small, the torque transmission amount of the clutch S is set to the maximum value.

次に、上記伝達トルク制御装置の作動について説明する
Next, the operation of the transmission torque control device will be explained.

制御ユニット14は、まず各センサ15.16.17か
ら車速信号Sv、舵角信号Sαおよび回転速度差信号S
△0を入力し、舵角信号Sαから直進状態か転舵状態か
を判断し、直進状態のときには第1制御マツプM1 を
、転舵状態のときには第2制御マツプM2をそれぞれ読
み出す。まず、直進状態のときの制御について説明する
と、上記車速信号Sv に応じて第1制御マツプM1 
から適切な制御線β1、β2またはβ3を選択し、回転
速度差信号SΔ。をこの制御線に照して制御電流1を決
定する。この制御電流1は、油圧制御弁13に供給され
、この油圧制御弁13は、この制御電流iに応じて、該
電流jに比例した圧力Pの作動油をクラッチ5に供給す
る。クラッチ5は、この作動油の圧力Pに応じた圧力で
締結され、その締結圧力に比例したトルクTrlJヤ側
プロペラシャフト6に伝達する。
The control unit 14 first receives the vehicle speed signal Sv, steering angle signal Sα, and rotational speed difference signal S from each sensor 15, 16, 17.
Δ0 is input, and it is determined from the steering angle signal Sα whether the vehicle is in a straight-ahead state or a steered state, and when the vehicle is in a straight-ahead state, the first control map M1 is read out, and when the vehicle is in a steered state, the second control map M2 is read out. First, to explain the control when the vehicle is traveling straight, the first control map M1 is set according to the vehicle speed signal Sv.
Select an appropriate control line β1, β2 or β3 from the rotational speed difference signal SΔ. The control current 1 is determined by referring to this control line. This control current 1 is supplied to a hydraulic control valve 13, and this hydraulic control valve 13 supplies hydraulic oil at a pressure P proportional to the current j to the clutch 5 in accordance with this control current i. The clutch 5 is engaged at a pressure corresponding to the pressure P of the hydraulic oil, and transmits a torque TrlJ proportional to the engagement pressure to the propeller shaft 6 on the opposite side.

一方転舵状態のときには、上記舵角信号Sαに応じて第
2制御マツプから適切な制御線n、 、 425または
16 を選択し、回転速度差信号SΔ。をこの制御線に
照して制御電流1を決定し、以下、上記と同様の制御を
行なう。以上により、回転速度差Δ。を知って、後輪の
トルク配分率Uを一定に維持する。なお、後輪のトルク
配分立Uは車両の諸元に応じて予め設定した固定値ある
いは車両の走行条件に応じて変更される値とすることが
できる。また、上記制御は、制御マツプを用いて制御電
流1を求める形式のものについて説明したが、演算によ
って求める形式のものであってもよい。
On the other hand, in the steering state, an appropriate control line n, , 425 or 16 is selected from the second control map according to the steering angle signal Sα, and the rotational speed difference signal SΔ is determined. The control current 1 is determined by referring to this control line, and the same control as above is performed thereafter. As a result of the above, the rotational speed difference Δ. Knowing this, the torque distribution ratio U of the rear wheels can be maintained constant. Note that the torque distribution setting U for the rear wheels can be a fixed value that is preset according to the specifications of the vehicle or a value that is changed according to the driving conditions of the vehicle. Moreover, although the above-mentioned control has been described using a control map to determine the control current 1, it may also be determined by calculation.

また、設定車速以上の高速走行状態でかつ舵角が小さい
場合には、前後輪が直結状態となるように、クラッチ5
のトルク伝達量を最大値としている。これを第9図のフ
ローチャートに基づいて説明すると、スタート100で
始まり、ステップ102で車速■〉所定車速■、である
と、ステップ104に進み、ステップ104で舵角αく
所定舵角α。であると、ステップ106で制御電流1−
最大制御電流iつ、8とする。なお、ステップ102で
車速■≦■、である場合、ステップ104で舵角α≧α
0である場合には、ステップ108に進み、通常のトル
ク配分社制御がなされる。そして、前記ステップ106
で制御電流l−最大制御電流imaxであると、第10
Δ、IOB、IOC図のグラフに示すように、動力伝達
手段への作動油の圧力Pが最大圧力p maX となり
、リヤ側トルクTが最大トルクT II a M  と
なる。リヤ側トルクT = T、、。
In addition, when the vehicle is running at a high speed higher than the set vehicle speed and the steering angle is small, the clutch 5 is set so that the front and rear wheels are directly connected.
The torque transmission amount is set as the maximum value. This will be explained based on the flowchart of FIG. 9. It starts with a start 100, and in step 102, if the vehicle speed ■>predetermined vehicle speed ■, the process proceeds to step 104, and in step 104, the steering angle α is changed to the predetermined steering angle α. Then, in step 106, the control current 1-
The maximum control current i is 8. Note that if the vehicle speed ■≦■ is determined in step 102, the steering angle α≧α is determined in step 104.
If it is 0, the process proceeds to step 108, where normal torque distribution control is performed. Then, step 106
If the control current l - maximum control current imax, then the 10th
As shown in the graphs of Δ, IOB, and IOC, the pressure P of the hydraulic oil to the power transmission means becomes the maximum pressure p maX , and the rear side torque T becomes the maximum torque T II a M . Rear side torque T = T,.

のときには、動力伝達手段のスベリが生じにくくなり、
実際上前後輪が直結状態になる。このように前後輪を直
結状態とすることにより、高速直進性が安定し、また、
動力伝達手段のスベリ防止により低損失、耐久性を向上
することができる。
When , the power transmission means is less likely to slip,
In reality, the front and rear wheels are directly connected. By directly connecting the front and rear wheels in this way, high-speed straight-line performance is stabilized, and
By preventing slippage of the power transmission means, loss can be reduced and durability can be improved.

また、上記実施例においては、フロント側プロペラシャ
フト4をパワープラント1の出力軸2に常に連結させ、
リヤ側プロペラシャフト6と出力軸2の間にクラッチ5
を設けたものについて説明したが、これを逆にしてもよ
く、更に、第7図に示すように2つ目のクラッチ20お
よび歯車列21を出力軸2とフロント側プロペラシャフ
ト4の間に設けて、直結するプロペラシャフトを選択で
きるようにしてもよい。なお、この場合には、第2の油
圧制御弁22を設ける必要がある。
Further, in the above embodiment, the front propeller shaft 4 is always connected to the output shaft 2 of the power plant 1,
A clutch 5 is installed between the rear propeller shaft 6 and the output shaft 2.
Although the explanation has been given on a case where a second clutch 20 and a gear train 21 are provided between the output shaft 2 and the front propeller shaft 4, this may be reversed. It may also be possible to select the propeller shaft to be directly connected. Note that in this case, it is necessary to provide the second hydraulic control valve 22.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、トルク配分率一定、舵角一定どしたときの伝
達トルクT、−回転速度差△口特性を示すグラフ、 第2図は、トルク配分率一定、車速一定としたときの伝
達トルクT、−回転速度差△n特性を示すグラフ、 第3図は、4輪駆動車の駆動系を示す概略図、第4図は
、本発明の一実施例による伝達トルク制御装置の概略図
、 第5図および第6図は、それぞれ上記伝達トルク制御装
置における伝達トルク制御に用いられる第1および第2
制御マツプを示すグラフ、第7図は、本発明の他の実施
例による伝達トルり制御装置の概略図、 第8図は、タイヤ固有のスリップ特性を示す特性図、 第9図は、車速及び舵角に基づいて制御電流1”Ima
x にする流れを示すフローチャート、第10Δ、IO
B、IOC図は、それぞれ、最大制御電流、最大圧力、
最大トルクを示すグラフである。 1・・・・・・パワープラント  2・・・・・・出力
軸4・・・・・・フロント側プロペラシャフト5・・・
・・・クラッチ 6・・・・・・リヤ側プロペラシャフト13・・・・・
・油圧制御弁  14・・・・・・制御コーニ・ソト莞
10A図 見10δ図 回転法度差A几 飽10C図 回転速度差Δ几 手続補正書 特許庁長官 宇 賀 道 部 殿 2、発明の名称   4輪駆動車の伝達トルク制御装置
3、補正をする者 事件との関係  出願人 名称 (313)マツダ株式会社 4、代理人 5、補正命令の日付  自   発 1、明細書第7頁第3行および第5行の“ペロペラ”を
「プロペラ」に訂正する。 2、 同書第10頁の式 %式% を次のように改める。 r、’、Tr= ・・・・・・ (1B)   J 3、同書第10頁全体を次のように改める。 4、 同書第13頁第1行の 1AO
Fig. 1 is a graph showing the transmitted torque T when the torque distribution ratio is constant and the steering angle is constant, and -rotational speed difference △ mouth characteristics. Fig. 2 is a graph showing the transmitted torque when the torque distribution ratio is constant and the vehicle speed is constant. A graph showing T, - rotational speed difference Δn characteristics; FIG. 3 is a schematic diagram showing a drive system of a four-wheel drive vehicle; FIG. 4 is a schematic diagram of a transmission torque control device according to an embodiment of the present invention; FIG. 5 and FIG. 6 respectively show the first and second components used for transmission torque control in the transmission torque control device.
A graph showing a control map, FIG. 7 is a schematic diagram of a transmission torque control device according to another embodiment of the present invention, FIG. 8 is a characteristic diagram showing tire-specific slip characteristics, and FIG. 9 is a graph showing vehicle speed and Control current 1”Ima based on steering angle
Flowchart showing the flow of making x, 10th Δ, IO
B, IOC diagram shows maximum control current, maximum pressure,
It is a graph showing maximum torque. 1... Power plant 2... Output shaft 4... Front propeller shaft 5...
...Clutch 6...Rear propeller shaft 13...
・Hydraulic control valve 14... Control Koni Soto Kan 10A Diagram 10δ Diagram Rotational law difference A 10C Diagram Rotational speed difference Δ 几 Procedural amendment Commissioner Uga Michibu 2, Title of the invention Transmission torque control device for four-wheel drive vehicles 3, relationship with the case of the person making the amendment Applicant name (313) Mazda Motor Corporation 4, Agent 5, Date of amendment order Proprietor 1, Specification, page 7, line 3 And in the 5th line, "peropera" is corrected to "propeller". 2. The formula % formula % on page 10 of the same book is revised as follows. r, ', Tr= ...... (1B) J 3, the entire page 10 of the same book is revised as follows. 4. 1AO, page 13, line 1 of the same book

Claims (1)

【特許請求の範囲】[Claims] パワープラントからのトルクを前後輪にそれぞれ伝達す
るトルク伝達経路の少なくとも一方に、トルク伝達量可
変の動力伝達手段が設けられ、この動力伝達手段を可変
制御して前後輪へのトルク配分を制御する4輪駆動車の
伝達トルク制御装置において、車速を検出する車速検出
手段、舵角を検出する舵角検出手段、前後輪回転速度差
を検出する回転速度差検出手段、および前記3つの検出
手段からの出力信号を受け、前記3つの検出手段からの
出力信号に基づき、前後輪トルク配分比が常に所望の一
定の配分比になるように、前記動力伝達手段のトルク伝
達量を制御する制御手段を備えており、該制御手段は、
設定車速以上の高速走行状態でかつ舵角が小さい場合に
は、前記動力伝達手段のトルク伝達量を最大値とするよ
うに構成されている4輪駆動車の伝達トルク制御装置。
At least one of the torque transmission paths that transmits torque from the power plant to the front and rear wheels is provided with a power transmission means that can change the amount of torque transmission, and the power transmission means is variably controlled to control torque distribution to the front and rear wheels. In a transmission torque control device for a four-wheel drive vehicle, a vehicle speed detection means for detecting vehicle speed, a steering angle detection means for detecting a steering angle, a rotational speed difference detection means for detecting a difference in rotational speed between front and rear wheels, and the above three detection means. control means for receiving the output signals from the three detection means and controlling the amount of torque transmitted by the power transmission means so that the front and rear wheel torque distribution ratio always becomes a desired constant distribution ratio; The control means includes:
A transmission torque control device for a four-wheel drive vehicle, wherein the transmission torque control device for a four-wheel drive vehicle is configured to set the amount of torque transmitted by the power transmission means to a maximum value when the vehicle is running at a high speed equal to or higher than a set vehicle speed and the steering angle is small.
JP19103385A 1985-08-30 1985-08-30 Transmission torque controlling device for four-wheel-drive vehicle Pending JPS6250227A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19103385A JPS6250227A (en) 1985-08-30 1985-08-30 Transmission torque controlling device for four-wheel-drive vehicle
EP86111919A EP0215352B1 (en) 1985-08-30 1986-08-28 Torque control system for vehicles
DE8686111919T DE3668586D1 (en) 1985-08-30 1986-08-28 TORQUE CONTROL SYSTEM FOR VEHICLES.
US06/901,776 US4709775A (en) 1985-08-30 1986-08-29 Torque control system for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19103385A JPS6250227A (en) 1985-08-30 1985-08-30 Transmission torque controlling device for four-wheel-drive vehicle

Publications (1)

Publication Number Publication Date
JPS6250227A true JPS6250227A (en) 1987-03-04

Family

ID=16267777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19103385A Pending JPS6250227A (en) 1985-08-30 1985-08-30 Transmission torque controlling device for four-wheel-drive vehicle

Country Status (1)

Country Link
JP (1) JPS6250227A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249831A (en) * 1985-04-30 1986-11-07 Fuji Heavy Ind Ltd Hydraulic control unit for four-wheel driving device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249831A (en) * 1985-04-30 1986-11-07 Fuji Heavy Ind Ltd Hydraulic control unit for four-wheel driving device

Similar Documents

Publication Publication Date Title
US5301769A (en) Vehicle power distribution and control system
US6817434B1 (en) Active hydraulically actuated on-demand wheel end assembly
JPH0616061A (en) Four wheel drive control device
US6145614A (en) Four-wheel drive vehicle having differential-limiting control
JP3004283B2 (en) Unequal torque distribution control device for four-wheel drive vehicle
US5752575A (en) Torque distribution control system in vehicle
US6691016B1 (en) Method for reducing the wheel slip of a motor vehicle
JPS6250227A (en) Transmission torque controlling device for four-wheel-drive vehicle
JP3292040B2 (en) Power transmission control device for left and right wheels for vehicles
JPS6259125A (en) Transmission torque controller for four-wheel drive car
JPS6250231A (en) Transmission torque controlling device for four-wheel-drive vehicle
JPH0567443B2 (en)
JPH03118230A (en) Unequal torque distribution control device for four-wheel drive vehicle
JPS6259126A (en) Transmission torque controller for four-wheel drive car
JPS6253232A (en) Transmitted torque control device for four-wheel drive vehicle
JPS6250226A (en) Transmission torque controlling device for four-wheel-drive vehicle
JPS58178040A (en) Diff lock apparatus
JPS6250228A (en) Transmission torque controlling device for four-wheel-drive vehicle
JPS6250230A (en) Transmission torque controlling device for four-wheel-drive vehicle
JP2720679B2 (en) Four-wheel control four-wheel drive vehicle
JPH1071867A (en) Drive force control device for vehicle
JPS6277231A (en) Automatic shifting device for 4-wheel-drive vehicle
JP2690099B2 (en) Transmission torque control device for four-wheel drive vehicle
JP2882471B2 (en) Display device of power transmission control device for vehicle
JPH0592729A (en) Transmission for four wheel drive vehicle