JPS6248987B2 - - Google Patents

Info

Publication number
JPS6248987B2
JPS6248987B2 JP58058384A JP5838483A JPS6248987B2 JP S6248987 B2 JPS6248987 B2 JP S6248987B2 JP 58058384 A JP58058384 A JP 58058384A JP 5838483 A JP5838483 A JP 5838483A JP S6248987 B2 JPS6248987 B2 JP S6248987B2
Authority
JP
Japan
Prior art keywords
weight
polyetherketone
potassium titanate
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58058384A
Other languages
Japanese (ja)
Other versions
JPS59182842A (en
Inventor
Teruo Tsumato
Haruo Hayashida
Hiroshi Ishida
Kazuo Hinobeta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5838483A priority Critical patent/JPS59182842A/en
Publication of JPS59182842A publication Critical patent/JPS59182842A/en
Publication of JPS6248987B2 publication Critical patent/JPS6248987B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、炭素繊維とチタン酸カリウム繊維を
配合することによつて、機械的性質のすぐれた強
化された成形品を与えるポリエーテルケトン組成
物に関する。 さらに詳しくは、広い温度範囲にわたつて寸法
安定性と高強度、高剛性が保持され、特に複雑な
形状を有する精密機械部品に適した樹脂組成物に
関する。 ポリエーテルケトンは耐熱性、難燃性、耐薬品
性などのすぐれたエンジニアリングプラスチツク
スとしてとくに電気部品や自動車部品などの用途
において注目されている。しかし該樹脂は樹脂単
独では機械的強度、剛性度が十分でなく、高い強
度、剛性度が要求される機械分野などにおいて
は、ガラス繊維などの繊維状強化剤を充填するこ
とにより強度や剛性度を改良した組成物の適用が
検討されている。 しかし、一つの製品の重量が10mg〜10gという
小型部品や肉厚が1mm以下のような薄肉部を含む
部品、歯車のように先端に鋭角部を含むような部
品では該ガラス繊維を、充填したものでは、薄肉
部や鋭角部などで長い繊維の流動が不十分で該繊
維の含有量が他の部分に比べて少なくなり、十分
な補強効果が得られず強度や剛性度不足を生じ
る。また該繊維の配向に基く異方性や反りが生
じ、精密な成形が困難である。 粉末状無機充填剤のみを充填したものでは、該
繊維のような成形品の箇所による充填剤の含有量
の差や異方性、反りについては軽微であるが、補
強効果が十分でなく、強度や剛性度が小さなもの
しか得られない。 本発明者はかかる状況に鑑みて上述の不都合を
解消し得る組成物について検討を重ねた結果、ポ
リエーテルケトンに炭素繊維とチタン酸カリウム
繊維を併用して配合することにより、薄肉部や鋭
角部を有し、精密な寸法精度の必要な成形品にお
いても良好な射出成形が可能となり、しかも得ら
れた成形品が、成形品の末端まで高い強度をも
ち、耐熱性にすぐれた成形材料として高い実用性
を有することを見い出し、本発明を完成するに至
つた。 本発明で用いるポリエーテルケトンは反復単位 を単独でまたは他の反復単位と一緒に含み、かつ
固有粘度が0.3ないし2.6が好ましく、さらに0.5な
いし1.8がより好ましい。 他の反復単位としては などを25wt%未満含み得るが25wt%以上含有し
た重合体は該ポリエーテルケトンの前記特性が失
なわれ好ましくない。また固有粘度は溶液100cm3
当り重合体0.1gを含む密度1.84g/cm3の濃硫酸
中の重合体溶液について25℃で測定した固有粘度
のことである。固有粘度の測定には溶媒流出時間
が約2分である粘度計を用いて行つた。この固有
粘度は重合体の分子量と一義的に対応する値であ
る。 本発明にかかるポリエーテルケトンの固有粘度
は0.3ないし2.6が好ましく、さらに好ましくは0.5
ないし1.8であるが、固有粘度が0.3未満では分子
量の低さ故に、耐熱性が低く、脆弱であり前記チ
タン酸カリウム繊維の配合によつても十分な強度
が得られない。固有粘度が2.6を超えると溶融粘
度が高いため溶融成形時の流動性が不十分であ
り、良好な成形品が得られない。固有粘度が0.3
から2.6の範囲のものが良好な表面外観とすぐれ
た物性、加工性が得られ好ましい。該ポリエーテ
ルケトンは特開昭54−90296などに開示された方
法により得られる。 また、本発明で使用し得る炭素繊維は、アクリ
ロニトリル系、ピツチ系等いずれのものでもよ
く、繊維長は0.1〜10mmのものが好ましいが、通
常樹脂充てん用として使用されている6mm程度の
長さを有するチヨツプドフアイバーやロービング
が用いられる。該炭素繊維は表面を種々の処理
剤、例えばエポキシ樹脂、ポリアミド樹脂、ポリ
カーボネート樹脂、ポリアセタール樹脂等で処理
したものを用いることが好ましいが、これらに限
定されるものではない。 本発明で使用されるチタン酸カリウム繊維は高
強度単結晶繊維(ウイスカー)の一種であり、化
学組成としてK2O・6TiO2、K2O・6TiO2・1/2
H2Oを基本とする針状結晶であり、代表的融点は
1300〜1350℃である。平均繊維長は5〜50μm、
平均繊維径は0.05〜1.0μmのものが適当される
が、平均繊維長は20〜30μm、平均繊維径は0.1
〜0.3μmのものが好ましい。該チタン酸カリウ
ム繊維は、通常無処理でも使用しうるが、ポリエ
ーテルケトンと親和性をもたせるために、アミノ
シラン、エポキシシラン等のシランカツプリング
剤、クロミツククロライド、その他目的に応じた
表面処理剤を使用することができる。 配合量としては、ポリエーテルケトン30〜90重
量%、炭素繊維5〜60重量%、チタン酸カリウム
繊維5〜60重量%(炭素繊維とチタン酸カリウム
繊維の合計量としては全樹脂組成物の10−70重量
%)配合したものが有効である。 すなわち、炭素繊維とチタン酸カリウム繊維の
合計量が樹脂組成物の70重量%を越え、ポリエー
テルケトンの量が30重量%未満の時は、混合が不
十分であり、均一な組成物が得られず、樹脂組成
物の流動性が失われ、成形が困難になる。また、
炭素繊維とチタン酸カリウム繊維の合計量が10%
未満の時は、十分な補強効果が得られない。 また、炭素繊維とチタン酸カリウム繊維の合計
量が10〜70重量%であつても、炭素繊維の量が5
重量%未満であれば強度改良効果が不十分であ
り、逆にチタン酸カリウム繊維の量が5重量%未
満であれば成形品の鋭角部、薄肉部での補強効果
や成形収縮率等の異方性の改良効果が十分でな
い。 また、炭素繊維の量が60重量%を越えると、ポ
リエーテルケトンと炭素繊維のかさ密度が著しく
異なるなどのため、混合が不十分となり、コンパ
ウンド化の工程が困難になり、均一な組成物が得
られない。チタン酸カリウム繊維の量が60重量%
を越えると組成物の流動性の著しい低下と得られ
た成形品の強度低下が顕著になる。 本発明にいう精密機械部品とは(1)一つの成形品
重量が10mg〜10g程度の小型部品、(2)肉厚が1mm
以下のような薄肉を含む部品や、(3)先端に鋭角部
を含むような部品で、特に時計、カメラ、複写機
等高度な寸法精度を要求される精密機器に使用さ
れ、例えば各種歯車、カム、ブツシング、プーリ
ー、軸等高い機械的強度を要求される部品をい
う。 本発明の樹脂組成物には、組成物本来の物性に
悪影響を与えない範囲で、その用途、目的に応じ
て難燃剤、熱安定剤、滑剤等の各種添加剤を一種
または二種以上添加することができる。 本発明にかかる樹脂組成物を得るための配合方
法としては、ポリエーテルケトンと炭素繊維、チ
タン酸カリウム繊維とを所定量混合したものを、
直接ホツパー口から投入し射出成形する方法や、
スクリユーフイーダー、テーブルフイーダー、ベ
ルトフイーダーのような計量装置にて、ポリエー
テルケトンと該繊維とを、それぞれ計量しなが
ら、一軸または多軸の押出機で溶融混練し、スト
ランドを押出し、カツターにてペレツト化したも
のを用いて、射出成形する方法などを公知の方法
で行うことができる。本発明にかかる樹脂組成物
は、適度の溶融流動性をもち、成形収縮率および
異方性が小さく、薄肉、鋭角部を含む複雑な成形
品においても良好な成形性を示し、得られた成形
品は高い強度、剛性度をもち、良好な耐熱性を有
するなどすぐれた特徴を備えた精密機械部品とし
て好適な成形材料である。 以下、実施例により本発明を具体的に説明する
が、これらは好適な態様の例示であつて、実施例
の組成物に限定されるものではない。 実施例 1〜6 反復単位
The present invention relates to a polyetherketone composition that provides reinforced molded articles with excellent mechanical properties by blending carbon fibers and potassium titanate fibers. More specifically, the present invention relates to a resin composition that maintains dimensional stability, high strength, and high rigidity over a wide temperature range, and is particularly suitable for precision mechanical parts having complex shapes. Polyetherketone is attracting attention as an engineering plastic with excellent heat resistance, flame retardance, and chemical resistance, especially for applications such as electrical parts and automobile parts. However, the resin alone does not have sufficient mechanical strength and rigidity, and in the mechanical field where high strength and rigidity are required, it is necessary to fill it with a fibrous reinforcing agent such as glass fiber to increase the strength and rigidity. The application of compositions with improved properties is being considered. However, for small parts weighing 10mg to 10g, parts with thin parts with a wall thickness of 1mm or less, and parts with sharp edges such as gears, the glass fiber is not filled. In materials, the flow of long fibers is insufficient in thin-walled parts and sharp corners, and the fiber content is lower than in other parts, resulting in insufficient reinforcing effects and insufficient strength and rigidity. Furthermore, anisotropy and warpage occur due to the orientation of the fibers, making precise molding difficult. If only a powdered inorganic filler is used, the differences in filler content depending on the location of the molded product such as fibers, anisotropy, and warping are slight, but the reinforcing effect is not sufficient and the strength is Only small stiffness and stiffness can be obtained. In view of this situation, the inventors of the present invention have repeatedly investigated compositions that can eliminate the above-mentioned disadvantages, and have found that by blending polyetherketone with carbon fibers and potassium titanate fibers, thin-walled areas and sharp-angled areas can be improved. This enables good injection molding even for molded products that require precise dimensional accuracy, and the resulting molded products have high strength all the way to the ends of the molded product, making it highly rated as a molding material with excellent heat resistance. The present inventors have discovered that the present invention is practical and have completed the present invention. The polyetherketone used in the present invention is a repeating unit alone or together with other repeating units, and the intrinsic viscosity is preferably from 0.3 to 2.6, more preferably from 0.5 to 1.8. Other repeating units include Polymers containing 25 wt% or more of polyetherketone are not preferred because they lose the properties described above. Also, the intrinsic viscosity of the solution is 100 cm 3
It is the intrinsic viscosity measured at 25° C. for a polymer solution in concentrated sulfuric acid having a density of 1.84 g/cm 3 and containing 0.1 g of polymer per solution. The intrinsic viscosity was measured using a viscometer with a solvent flow time of about 2 minutes. This intrinsic viscosity is a value that uniquely corresponds to the molecular weight of the polymer. The intrinsic viscosity of the polyetherketone according to the present invention is preferably 0.3 to 2.6, more preferably 0.5.
However, if the intrinsic viscosity is less than 0.3, the molecular weight is low, so the heat resistance is low and brittle, and sufficient strength cannot be obtained even when the potassium titanate fiber is blended. If the intrinsic viscosity exceeds 2.6, the melt viscosity is high, resulting in insufficient fluidity during melt molding, making it impossible to obtain a good molded product. Intrinsic viscosity is 0.3
A value in the range from 2.6 to 2.6 is preferable because it provides good surface appearance, excellent physical properties, and processability. The polyetherketone can be obtained by the method disclosed in JP-A-54-90296. Furthermore, the carbon fibers that can be used in the present invention may be of any type, such as acrylonitrile type or pitch type, and the fiber length is preferably 0.1 to 10 mm, but the length of about 6 mm, which is usually used for resin filling, is fine. Chopped fibers and rovings are used. It is preferable to use carbon fibers whose surfaces have been treated with various treatment agents such as epoxy resin, polyamide resin, polycarbonate resin, polyacetal resin, etc., but the present invention is not limited thereto. The potassium titanate fiber used in the present invention is a type of high-strength single crystal fiber (whisker), and its chemical composition is K 2 O 6TiO 2 , K 2 O 6TiO 2 1/2
It is a needle-shaped crystal based on H 2 O, and its typical melting point is
The temperature is 1300-1350℃. Average fiber length is 5-50μm,
The average fiber diameter is suitably 0.05 to 1.0 μm, the average fiber length is 20 to 30 μm, and the average fiber diameter is 0.1
~0.3 μm is preferred. The potassium titanate fibers can normally be used without treatment, but in order to have an affinity with polyetherketone, they may be treated with a silane coupling agent such as aminosilane or epoxysilane, chromic chloride, or other surface treatment agent depending on the purpose. can be used. The blending amounts are 30-90% by weight of polyetherketone, 5-60% by weight of carbon fiber, and 5-60% by weight of potassium titanate fiber (the total amount of carbon fiber and potassium titanate fiber is 10% by weight of the total resin composition). -70% by weight) is effective. In other words, when the total amount of carbon fibers and potassium titanate fibers exceeds 70% by weight of the resin composition and the amount of polyetherketone is less than 30% by weight, mixing is insufficient and a uniform composition cannot be obtained. As a result, the resin composition loses its fluidity and becomes difficult to mold. Also,
Total amount of carbon fiber and potassium titanate fiber is 10%
When it is less than 1, sufficient reinforcing effect cannot be obtained. Furthermore, even if the total amount of carbon fiber and potassium titanate fiber is 10 to 70% by weight, the amount of carbon fiber is 5% by weight.
If the amount of potassium titanate fiber is less than 5% by weight, the strength improvement effect will be insufficient, and conversely, if the amount of potassium titanate fiber is less than 5% by weight, there will be differences in the reinforcing effect and molding shrinkage rate at sharp corners and thin parts of the molded product. The effect of improving directionality is not sufficient. Additionally, if the amount of carbon fiber exceeds 60% by weight, the bulk density of polyetherketone and carbon fiber will be significantly different, resulting in insufficient mixing, making the compounding process difficult, and making it difficult to form a uniform composition. I can't get it. The amount of potassium titanate fiber is 60% by weight
If it exceeds this amount, the fluidity of the composition will be significantly reduced and the strength of the molded article obtained will be significantly reduced. The precision mechanical parts referred to in the present invention are (1) small parts with a molded product weight of about 10 mg to 10 g, (2) a wall thickness of 1 mm.
Parts with thin walls such as the following, and (3) parts with sharp edges at the tip, which are used in precision equipment that requires a high degree of dimensional accuracy, such as watches, cameras, and copiers, such as various gears, etc. Parts that require high mechanical strength, such as cams, bushings, pulleys, and shafts. Depending on the use and purpose, one or more additives such as flame retardants, heat stabilizers, and lubricants may be added to the resin composition of the present invention within a range that does not adversely affect the original physical properties of the composition. be able to. As a blending method for obtaining the resin composition according to the present invention, a predetermined amount of polyetherketone, carbon fiber, and potassium titanate fiber are mixed,
There are methods for injection molding by directly introducing the material from the hopper opening,
Using a measuring device such as a screw feeder, table feeder, or belt feeder, polyetherketone and the fibers are melt-kneaded using a single-screw or multi-screw extruder while weighing each, and extruded into a strand. The pellets formed into pellets using a cutter may be injection molded using known methods. The resin composition according to the present invention has appropriate melt flowability, low molding shrinkage rate and anisotropy, and exhibits good moldability even in complex molded products including thin walls and acute corners. The product has excellent characteristics such as high strength, rigidity, and good heat resistance, making it a suitable molding material for precision machine parts. Hereinafter, the present invention will be specifically explained with reference to Examples, but these are illustrative of preferred embodiments and are not limited to the compositions of Examples. Examples 1-6 Repeating units

【式】を有し、 固有粘度が0.8であるポリエーテルケトンに、断
面直径9μで平均繊維長6mmの炭素繊維(米ハー
キユレス社製マグナマイト1810AS)と断面直径
0.2μで平均繊維長20μのチタン酸カリウム繊維
(大塚化学薬品製テイスヒーD)を表1に示した
配合比に混合し、混合物をそれぞれ押出機(池具
鉄工製二軸押出機PCM―30)で360℃で溶融混練
して押出しを行い、ストランドを水冷、切断して
ペレツトを得た。 得られたペレツトを射出成形(住友―ネスター
ル47/28射出成形機、シリンダー温度380℃、金
型温度170℃)し、成形収縮率測定用試験片、曲
げ試験片、熱変形温度測定試験片、歯車を得た。 成形収縮率測定用試験片は64×64×3mmの平板
を使用し、ゲートは64mmの一辺に1mmの厚さを有
するフイルムゲートが設けられている。溶融体の
流れ方向をMD(Machine Direction)、直角方向
をTD(Transverse Direction)で表示した。 曲げ強度、曲げ弾性率はASTM D―790、熱
変形温度はASTM D―648に準拠して測定し
た。 歯車については、軸径1.0mmφ、歯車のピツチ
円径10mmφ、歯厚1.5mm、歯巾0.8mmのものについ
て、0.4mmφのピンゲートを設け、4個取りにて
成形した。 表1にみられるように、本発明組成物は成形収
縮率の絶対値が小さく、かつ異方性も少なく、良
好な成形性を示すとともに、高い曲げ強度、曲げ
弾性率を有し、実施例記載の歯車のような薄肉部
を有する小型で複雑な成形品においても高い強度
を有している。また熱変形温度が極めて高いた
め、広い温度範囲で使用することができ、精密機
械部品としてすぐれた成形材料であることがわか
る。 比較例 1〜4 実施例中の炭素繊維、チタン酸カリウム繊維の
組成を有効な範囲以外の各種配合比について同様
の検討を行つた結果を表1に示す。 成形性、異方性、耐熱変形性、歯車強度、反り
などに問題があり、精密機械部品用材料として不
十分である。
Polyetherketone has the following formula and has an intrinsic viscosity of 0.8, carbon fiber (Magnamite 1810AS manufactured by Hercules Co., Ltd., USA) with a cross-sectional diameter of 9μ and an average fiber length of 6 mm, and a cross-sectional diameter of
Potassium titanate fibers of 0.2 μm and average fiber length of 20 μm (TEISH D manufactured by Otsuka Chemicals) were mixed at the compounding ratio shown in Table 1, and each mixture was extruded using an extruder (twin-screw extruder PCM-30 manufactured by Ikegu Iron Works). The mixture was melt-kneaded and extruded at 360°C, and the strands were water-cooled and cut to obtain pellets. The obtained pellets were injection molded (Sumitomo Nestal 47/28 injection molding machine, cylinder temperature 380°C, mold temperature 170°C), and molding shrinkage rate measurement test pieces, bending test pieces, heat distortion temperature measurement test pieces, I got a gear. A flat plate of 64 x 64 x 3 mm was used as the test piece for measuring the molding shrinkage rate, and a film gate with a thickness of 1 mm was provided on one side of the 64 mm. The flow direction of the melt is expressed as MD (Machine Direction), and the perpendicular direction is expressed as TD (Transverse Direction). Bending strength and flexural modulus were measured in accordance with ASTM D-790, and heat distortion temperature was measured in accordance with ASTM D-648. Regarding the gear, a gear having a shaft diameter of 1.0 mmφ, a pitch circle diameter of 10 mmφ, a tooth thickness of 1.5 mm, and a tooth width of 0.8 mm was provided with a pin gate of 0.4 mmφ and molded in four pieces. As shown in Table 1, the composition of the present invention has a small absolute value of molding shrinkage rate, little anisotropy, good moldability, high bending strength and bending elastic modulus, and It has high strength even in small and complex molded products with thin wall parts, such as the gear described above. Furthermore, since the heat distortion temperature is extremely high, it can be used in a wide temperature range, making it an excellent molding material for precision mechanical parts. Comparative Examples 1 to 4 Table 1 shows the results of similar studies on various blending ratios of the carbon fibers and potassium titanate fibers in the Examples, other than the effective range. It has problems with moldability, anisotropy, heat deformation resistance, gear strength, warpage, etc., and is unsatisfactory as a material for precision machine parts.

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A) 下式()で表わされる反復単位のみを
含み、又は、75重量%を超える割合の該反復単
位と下式()〜()で表わされる反復単位
の1種もしくは2種以上の25重量%未満とを含
み、且つ、固有粘度が0.3〜2.6であるポリエー
テルケトン30〜90重量%、 (B) 平均繊維長が0.1〜10mmの炭素繊維5〜60重
量%および (C) 平均繊維長が5〜50μmで平均繊維径が0.05
〜1.0μmのチタン酸カリウム繊維5〜60重量
%を含有してなるポリエーテルケトン強化組成
物。
[Scope of Claims] 1 (A) Contains only the repeating unit represented by the following formula (), or contains more than 75% by weight of the repeating unit and one of the repeating units represented by the following formulas () to (). 30 to 90% by weight of polyetherketone containing less than 25% by weight of the species or two or more species, and having an intrinsic viscosity of 0.3 to 2.6; (B) 5 to 60% by weight of carbon fibers with an average fiber length of 0.1 to 10 mm and (C) 5 to 60% by weight of carbon fibers with an average fiber length of 5 to 50 μm and an average fiber diameter of 0.05
A polyetherketone reinforced composition comprising 5-60% by weight of ~1.0 μm potassium titanate fibers.
JP5838483A 1983-04-01 1983-04-01 Reinforced polyether ketone composition Granted JPS59182842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5838483A JPS59182842A (en) 1983-04-01 1983-04-01 Reinforced polyether ketone composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5838483A JPS59182842A (en) 1983-04-01 1983-04-01 Reinforced polyether ketone composition

Publications (2)

Publication Number Publication Date
JPS59182842A JPS59182842A (en) 1984-10-17
JPS6248987B2 true JPS6248987B2 (en) 1987-10-16

Family

ID=13082834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5838483A Granted JPS59182842A (en) 1983-04-01 1983-04-01 Reinforced polyether ketone composition

Country Status (1)

Country Link
JP (1) JPS59182842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108587U (en) * 1986-12-31 1988-07-13

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186535A (en) * 1984-03-05 1985-09-24 Otsuka Chem Co Ltd Thermoplastic synthetic resin composition
JPS61275348A (en) * 1985-05-29 1986-12-05 Sumitomo Chem Co Ltd Polyether ketone resin composition
JPS61290464A (en) * 1985-06-18 1986-12-20 Sutaaraito Kogyo Kk Stripping claw for fixing
JPS63301258A (en) * 1987-05-29 1988-12-08 Otsuka Chem Co Ltd Resin composition for scroll type compressor member and production of scroll type compressor member
DE3904342A1 (en) * 1989-02-14 1990-08-16 Hoechst Ag FIBER REINFORCED THERMOPLASTIC COMPOSITE MATERIAL AND MOLDED BODIES MADE THEREOF

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884258A (en) * 1981-11-16 1983-05-20 Seiko Epson Corp Gear for compact precision measuring instrument

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884258A (en) * 1981-11-16 1983-05-20 Seiko Epson Corp Gear for compact precision measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108587U (en) * 1986-12-31 1988-07-13

Also Published As

Publication number Publication date
JPS59182842A (en) 1984-10-17

Similar Documents

Publication Publication Date Title
EP0094773B1 (en) Polyamide resin composition
JP2610671B2 (en) Fiber reinforced thermoplastic resin composition
KR920010613B1 (en) Reinforced molding resin composition
JP3169951B2 (en) High strength polyamide resin composition and method for producing the same
GB1587894A (en) Thermoplastic resin compositions
EP0765910A2 (en) Polyacetal resin composition
JP3074696B2 (en) Liquid crystal polyester resin composition
JP2005133047A (en) Composite resin of aromatic polyetheretherketoneketone
JPS6248987B2 (en)
JPS60168742A (en) Carbon-filler-containing vinylidene fluoride resin composition
JPS63137956A (en) Polyamide resin for molding
CN111073287A (en) Low-warpage and high-mechanical-property carbon fiber reinforced polyphenylene sulfide composite material and preparation method thereof
KR101354695B1 (en) Polypropylene resin composition, preparation method of the same and resin molded aritcle
JPS6251982B2 (en)
JPH0415825B2 (en)
KR930008196B1 (en) Polyphenylene sulfide resin composition
JPH06145519A (en) Heat-resistant conductive resin composition
JPS59157150A (en) Polyether ketone resin composition
JP2690775B2 (en) Polyamide resin composition
JPS6033852B2 (en) Polyamide resin composition for molding
JPS59182853A (en) Polyether sulfone resin composition
JPH05112672A (en) Fiber-reinforced thermoplastic resin composition
JPH0159300B2 (en)
JP2761563B2 (en) Polyetherimide resin composition
JPH0641427A (en) Polyphenylene sulfide resin composition