JPS6248972A - Method for increasing quantity of compressed gaseous body - Google Patents

Method for increasing quantity of compressed gaseous body

Info

Publication number
JPS6248972A
JPS6248972A JP18930985A JP18930985A JPS6248972A JP S6248972 A JPS6248972 A JP S6248972A JP 18930985 A JP18930985 A JP 18930985A JP 18930985 A JP18930985 A JP 18930985A JP S6248972 A JPS6248972 A JP S6248972A
Authority
JP
Japan
Prior art keywords
knudsen
gas
gaseous body
ejector
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18930985A
Other languages
Japanese (ja)
Inventor
Yoshihiko Shirakawa
白川 喜彦
Choichi Furuya
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIRAKAWA SEISAKUSHO KK
Original Assignee
SHIRAKAWA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIRAKAWA SEISAKUSHO KK filed Critical SHIRAKAWA SEISAKUSHO KK
Priority to JP18930985A priority Critical patent/JPS6248972A/en
Publication of JPS6248972A publication Critical patent/JPS6248972A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

PURPOSE:To increase the quantity of a compressed gaseous body with a simple construction and without need for using a rotary part and increasing power by introducing the gaseous body into said compressed gaseous body from a low pressure side, using a Knudsen diffusion effect. CONSTITUTION:A gaseous body 2 which is compressed by a compressor and reached a high temp., is discharged from an ejector nozzle 3, and fed into an ejector horn pipe 5. The ejector nozzle 3 and the inlet of the ejector horn pipe 5 are covered by a Knudsen film 1. This Knudsen film 1 is made of a resin film, a ceramic, etc., and makes the gaseous body pass through it and diffused from a low temp. and low pressure side to a high temp. and high pressure side, when there is difference in temp. between its inside and outside. And, by using the diffusion effect of this Knudsen film 1, the gaseous body is introduced from the outside of the Knudsen film 1 into its inside, and sucked into the ejector horn pipe 5, to increase the quantity of the compressed gaseous body.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、気体圧縮機の動力を増すことなくまた、圧
縮した圧力を損することなく圧縮気体を増大することが
できる。増量された気体は、粉塵等ゴミのないクリーン
な気体であり、増量する際騒音を全く発生させない機構
になっている。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention can increase the amount of compressed gas without increasing the power of the gas compressor and without losing the compressed pressure. The increased amount of gas is clean gas free of dust and other debris, and the mechanism is such that it does not generate any noise when increasing the amount.

〈従来の技術〉 従来、圧縮気体、たとえば圧縮空気の量を増大させるた
めには、往復動圧縮機にあっては、回転数を上げるとか
気筒数をふやす、気筒の怪を大きくする等の手段がとら
れ、これらはすべて動力増大の原因となっていた。又従
来のエジェクターで増量した場合は、圧力の減少が大き
く利用の範囲も限られたものになっていた。
<Prior Art> Conventionally, in order to increase the amount of compressed gas, for example, compressed air, in reciprocating compressors, methods such as increasing the rotation speed, increasing the number of cylinders, or increasing the size of the cylinders have been used. were taken, all of which caused an increase in power. In addition, when increasing the amount using a conventional ejector, the pressure decreases significantly and the range of use is limited.

〈発明が解決しようとする問題点〉 しかしながら、上記従来例においては、往復あるいは回
転運動の駆動のための機構が必要で、駆動部分の耐久性
に問題があり、駆動部分が騒音を発生するという欠点が
あった。
<Problems to be Solved by the Invention> However, in the above conventional example, a mechanism for driving reciprocating or rotational motion is required, and there are problems with the durability of the driving part, and the driving part generates noise. There were drawbacks.

またエジェクターで増量した場合には圧力が大幅にダウ
ンしてしまうという欠点があった。
Another disadvantage was that when increasing the amount using an ejector, the pressure would drop significantly.

〈問題点を解決するための手段〉 この発明の圧縮気体増量方法は、従来例の欠点を解消し
たもので、気体増量が大きく、しかも駆動機構や加圧す
ることは不必要で騒音を発することはありません。
<Means for Solving the Problems> The method of increasing the amount of compressed gas of the present invention eliminates the drawbacks of the conventional example, and increases the amount of gas by a large amount, does not require a drive mechanism or pressurization, and does not generate noise. there is no.

また、透過効率が高いため、膜の厚さを厚くすることが
出来るので、通常使用されている圧力(5〜8.5kg
/cm2 G)には十分耐えることが可能で、なおかつ
粉塵等のないクリーンな気体を増量することが可能で、
長期間にわたって使用することが出来る方法である。す
なわちこの発明の圧縮気体増量方法は、圧縮された高温
気体側と圧縮されていない常温常圧気体側の間に、クヌ
ーセン拡散することの出来る微細な貫通孔を無数に有す
る膜を介装し、常温常圧の気体を高温側へ移動させ、な
おかつエジェクターにて圧力を減少させることなく高圧
側へ送り込むことができる圧縮気体増量方法である。
In addition, because the permeation efficiency is high, the membrane thickness can be increased, so the pressure normally used (5 to 8.5 kg) can be increased.
/cm2G), and can increase the amount of clean gas without dust.
This is a method that can be used for a long period of time. That is, the method for increasing the amount of compressed gas of the present invention involves interposing a membrane having countless fine through holes that allow Knudsen diffusion between the compressed high-temperature gas side and the uncompressed normal temperature and normal pressure gas side, This is a method for increasing the amount of compressed gas that can move gas at room temperature and pressure to the high temperature side and send it to the high pressure side without reducing the pressure with an ejector.

〈実施例〉 以下この発明の圧縮気体増量方法を図面に基づいて説明
する。
<Example> The compressed gas increasing method of the present invention will be explained below based on the drawings.

第1図は、基本的な原理を示すもので、気体の通路1に
、クヌーセン膜2が設置されている。このクヌーセン膜
は下記条件の貫通孔を無数に有している。
FIG. 1 shows the basic principle, in which a Knudsen membrane 2 is installed in a gas passage 1. This Knudsen membrane has numerous through holes with the following conditions.

λ に=−>1 λ・・・気体分子の平均自由行路 a・・・貫通孔の径 このようなりヌーセン膜2は、その片側の表面が他方よ
り高温で膜の両側に温度差があるとクヌーセン拡散する
ことの出来る微細な気孔(貫通孔)を通じて気体が低温
側から高温側に大量に移動する。このときクヌーセン膜
2の膜厚を変えることにより移動量を調節することが出
来る。また、温度差が大きい程、多量の気体が移動する
λ = -> 1 λ...Mean free path of gas molecules a...Diameter of the through hole As shown above, the Nutsen membrane 2 has one surface that is hotter than the other and there is a temperature difference on both sides of the membrane. A large amount of gas moves from the low temperature side to the high temperature side through minute pores (through holes) that allow Knudsen diffusion. At this time, the amount of movement can be adjusted by changing the thickness of the Knudsen membrane 2. Furthermore, the larger the temperature difference, the more gas moves.

圧縮気体は、本実施例の空気にかぎられるものではなく
、水素()(2) 、ヘリウム(He) 、窒素(Ne
)、酸素(02) 、アルゴン(Δr)、塩素ガス(C
12)、等の気体にも良好に用いることができる。
The compressed gas is not limited to the air used in this example, but may also include hydrogen (2), helium (He), nitrogen (Ne
), oxygen (02), argon (Δr), chlorine gas (C
12), etc., can also be used satisfactorily.

この発明において使用されるクヌーセン膜は、樹脂膜あ
るいは複合材料膜、これらの構造物、セラミック製の膜
あるいは構造物などによって作成される。
The Knudsen membrane used in this invention is made of a resin membrane, a composite material membrane, a structure thereof, a ceramic membrane or structure, or the like.

使用される材料としては、ポリテトラフルオロエチレン
のディスパージョン、または、ファインパウダーとカー
ボンブラックなどの微量子とをソルベントナフサを使用
して混合し、金型やカレンダーロールを用いて1mm程
度の薄膜に成形した後、熱処理をしたり、ファインパウ
ダーをホットプレスしたり、または冷間プレス後に熱処
理することによって容易に製造することが出来る。
The material used is a dispersion of polytetrafluoroethylene, or a mixture of fine powder and trace amounts of carbon black, etc., using solvent naphtha, and the mixture is made into a thin film of about 1 mm using a mold or calender roll. It can be easily produced by heat treatment after molding, hot pressing of fine powder, or heat treatment after cold pressing.

熱処理の温度は300’ C〜400°C1好ましくは
約380’C程度である。
The temperature of the heat treatment is 300'C to 400'C, preferably about 380'C.

1μmないしは0.1μm以下の微細な気孔を有するク
ヌーセン膜は、隔壁の両側の温度が釣り合っている場合
は、何の現象も生じないが、両者間に。
Knudsen membranes with fine pores of 1 μm or 0.1 μm or less do not cause any phenomenon when the temperatures on both sides of the partition wall are balanced, but between the two.

10°C以上、望ましくは20’C以上の温度差がある
ときには、気体は分子レベルでクヌーセン拡散すること
のできる微細な気孔内を通過して高温側に自由に供給さ
れる。したがって、高温側に侵入してきた分子レベルの
気体は、クヌーセン膜のほぼ全面から急速に放出される
When there is a temperature difference of 10°C or more, preferably 20'C or more, gas is freely supplied to the high temperature side through fine pores that allow Knudsen diffusion at the molecular level. Therefore, the molecular level gas that has entered the high temperature side is rapidly released from almost the entire surface of the Knudsen membrane.

上記クヌーセン膜の材料としては、シリカ、アルミナ、
酸化チタン、あるいは窒化ケイ素などからなるセラミッ
ク材カーボン・ブラック、またはニッケル、コバルトな
どからなる金属材料などの超微粒子を集合した圧縮体、
あるいは焼結体やポリテトラフルオロエチレン、その他
の樹脂結着材(例えば穴径0.02μmのポリテトラフ
ルオロエチレン製の多孔質担体ボアテックス「登録商標
」ジャパンボアテックス社製)を用いて結合した成形体
、さらに、多孔質石英ガラス[コーニング社製バイコー
ルガラス(商品名)]などを使用することが出来る。
The materials for the above Knudsen membrane include silica, alumina,
A compressed body made up of ultrafine particles such as carbon black, a ceramic material made of titanium oxide or silicon nitride, or a metal material made of nickel, cobalt, etc.
Alternatively, bonding was performed using a sintered body, polytetrafluoroethylene, or other resin binding material (e.g., a porous carrier made of polytetrafluoroethylene with a hole diameter of 0.02 μm, Voretex "registered trademark", manufactured by Japan Voretex Co., Ltd.). A molded body, porous quartz glass [Vycor Glass (trade name) manufactured by Corning Incorporated], etc. can be used.

図2は、本発明の構造を表わすもので高温圧縮気体通路
2より供給される圧縮気体は、エジェクターノズル3を
通ってエジェクターラッパ管4より増量された圧縮気体
通路5を通って供給される。一方、クヌーセン膜は、高
温圧縮気体通路2とエジエクターノズル3及びエジェク
ターラッパ管4の一部分を覆う熱伝導性の良いCu等の
多孔質金属の外側に取り付けられる。さらにクヌーセン
膜の外側に気体を供給できるように穴のあいた板上に冷
却フィンを付ける。冷却フィンのかわりに、冷却水を流
せるように銅パイプを巻く等の改良をすることができる
。5〜7kg/cm2Gの圧力で運転される気体圧縮機
の吐出温度100’C〜200’ Cの温度と通常大気
温度30°Cとの差、約70’ C−170’ C1に
より、クヌーセン拡散された気体はクヌーセン膜1を通
じて内部へ供給され、ついでエジェクター効果により高
圧側に送り込まれる。
FIG. 2 shows the structure of the present invention. Compressed gas supplied from a high temperature compressed gas passage 2 passes through an ejector nozzle 3 and is supplied through an increased compressed gas passage 5 from an ejector wrapper tube 4. On the other hand, the Knudsen membrane is attached to the outside of a porous metal such as Cu having good thermal conductivity, which covers a portion of the high temperature compressed gas passage 2, the ejector nozzle 3, and the ejector wrapper tube 4. Furthermore, cooling fins are attached to the perforated plate so that gas can be supplied to the outside of the Knudsen membrane. Instead of cooling fins, improvements can be made such as wrapping copper pipes to allow cooling water to flow. Knudsen diffusion occurs due to the difference between the discharge temperature of a gas compressor operated at a pressure of 5 to 7 kg/cm2G of 100'C to 200'C and the normal atmospheric temperature of 30°C, approximately 70'C - 170'C1. The gas is supplied to the inside through the Knudsen membrane 1, and then sent to the high pressure side by the ejector effect.

当然のことながら、気体圧縮機がアンロードした場合は
、クヌーセン膜に圧力がかかることがあるが、製造過程
において100〜600kg/ c m2 Gの圧力で
ホットプレスされたクヌーセン膜は、高い圧力に耐える
ことが出来るので、膜が破壊されることはない。
Naturally, when the gas compressor unloads, pressure may be applied to the Knudsen membrane, but the Knudsen membrane, which was hot-pressed at a pressure of 100 to 600 kg/cm2 G during the manufacturing process, will not be exposed to high pressure. The membrane will not be destroyed because it can withstand it.

図3は、クヌーセン膜の形状を蛇腹のように折りたたん
で表面積を大きくし、増量される気体の景を多くした例
を示す。
FIG. 3 shows an example in which the Knudsen membrane is folded into a bellows-like shape to increase the surface area and increase the view of the gas to be increased.

この場合、耐圧強度が落ちるので金網やパンチングメタ
ル等で補強するのが望ましい。また、カーボン・ブラッ
クを含有するポリテトラフルオロエチレンを用いたクヌ
ーセン膜の膜厚と、大気の移動量及び水素との関係を第
4図に示す。
In this case, it is desirable to reinforce with wire mesh, punched metal, etc., since the pressure resistance will be reduced. Further, FIG. 4 shows the relationship between the film thickness of a Knudsen film using polytetrafluoroethylene containing carbon black, the amount of air movement, and hydrogen.

ここで明らかなように、膜厚が1mm前後の場合に最大
の気体移動が得られた。
As is clear here, the maximum gas movement was obtained when the film thickness was around 1 mm.

さらに、シリカ粉末とポリテトラフレオロエチレンとの
混合体を用い、その厚さを1mmとした場合、大気と温
度差との移動量を第7図に示す。
Furthermore, when a mixture of silica powder and polytetrafluoroethylene is used and its thickness is 1 mm, the amount of movement between the atmosphere and the temperature difference is shown in FIG.

〈発明の効果〉 この発明の圧縮気体増量方法は、以上のように構成した
ので、構造が簡単で、しかも製作が容易であり、回転部
分がないため低コストの方法である。
<Effects of the Invention> Since the compressed gas increasing method of the present invention is constructed as described above, it has a simple structure, is easy to manufacture, and is a low-cost method since there are no rotating parts.

また、増量された気体は常温なので、高温側の温度を下
げることができ、通常具備されている、アフタークーラ
の負荷を軽くすることが出来る。また、ヒートパイプ等
、高速伝達手段を用いて、離れた場所でクリーンエヤを
発生させることも出来る。
Furthermore, since the increased amount of gas is at room temperature, the temperature on the high temperature side can be lowered, and the load on the normally provided aftercooler can be reduced. Additionally, clean air can be generated at a remote location using a high-speed transmission means such as a heat pipe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明方法の原理を示す概略図。 第2図は、この発明方法の構成を示す。 第3図は、この発明方法の応用例を示す。 第4図は、この発明に使用しているクヌーセン膜の膜厚
と、移動量の比を示す。 第5図は、膜厚、と気体(大気)の移動量との関係を示
すグラフ。 第6図は、温度差と気体(大気)の移動量との関係を示
すグラフ。 第7図は、気体の移動量によって生じる差圧と温度差と
の関係を示すグラフ。 1、クヌーセン膜 2、通路(高温高圧入口側) 3、エジェクターノズル 4、エジェクターラッパ管 5、増量された圧縮気体出口 6、伝熱媒体 7、冷却フィン 第1図 2通路 第2図 第3図 第4図 脹3 第5図 臘3 第6図 逼魅
FIG. 1 is a schematic diagram showing the principle of the method of this invention. FIG. 2 shows the configuration of the method of this invention. FIG. 3 shows an example of application of the method of this invention. FIG. 4 shows the thickness of the Knudsen membrane used in this invention and the ratio of the amount of movement. FIG. 5 is a graph showing the relationship between film thickness and the amount of gas (atmosphere) movement. FIG. 6 is a graph showing the relationship between temperature difference and the amount of gas (atmosphere) movement. FIG. 7 is a graph showing the relationship between the differential pressure and temperature difference caused by the amount of gas movement. 1. Knudsen membrane 2, passage (high temperature and high pressure inlet side) 3. Ejector nozzle 4, ejector wrapper tube 5, increased compressed gas outlet 6, heat transfer medium 7, cooling fins Fig. 1 Fig. 2 Passage Fig. 2 Fig. 3 Fig. 4 脹 3 Fig. 5 臘 3 Fig. 6

Claims (1)

【特許請求の範囲】 圧縮された高温気体側と圧縮されていない常温気体側と
の間にクヌーセン拡散することの出来る微細な貫通孔を
無数に有する膜を介装し、低温側から高温側へ動力を必
要とせず、新鮮でクリーンな気体を移動させ、なおかつ
エジェクターにより低圧側から高圧側へ送りこむことの
出来る圧縮気体増量方法。 K=λ/a>1 λ・・・気体分子の平均自由行路 a・・・貫通孔の径(例えば球を過ぎる流れでは球の直
径、管を通る流れでは管径)
[Claims] A membrane having countless fine through holes that allow Knudsen diffusion is interposed between the compressed high-temperature gas side and the uncompressed room-temperature gas side, from the low-temperature side to the high-temperature side. A compressed gas increase method that does not require power, moves fresh and clean gas, and can be sent from the low pressure side to the high pressure side using an ejector. K=λ/a>1 λ...Mean free path of gas molecules a...Diameter of the through hole (for example, the diameter of the sphere for flow past a sphere, the diameter of the tube for flow through a tube)
JP18930985A 1985-08-28 1985-08-28 Method for increasing quantity of compressed gaseous body Pending JPS6248972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18930985A JPS6248972A (en) 1985-08-28 1985-08-28 Method for increasing quantity of compressed gaseous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18930985A JPS6248972A (en) 1985-08-28 1985-08-28 Method for increasing quantity of compressed gaseous body

Publications (1)

Publication Number Publication Date
JPS6248972A true JPS6248972A (en) 1987-03-03

Family

ID=16239185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18930985A Pending JPS6248972A (en) 1985-08-28 1985-08-28 Method for increasing quantity of compressed gaseous body

Country Status (1)

Country Link
JP (1) JPS6248972A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06211961A (en) * 1992-11-11 1994-08-02 Dainichiseika Color & Chem Mfg Co Ltd Fine epoxy resin particle and its production
JP2010005514A (en) * 2008-06-25 2010-01-14 Shin Etsu Polymer Co Ltd Selective permeable material and air-conditioning system
JP2010190227A (en) * 2004-03-23 2010-09-02 Osaka Vacuum Ltd Pump device and pump unit thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130519A (en) * 1983-09-05 1984-07-27 Mitsutoshi Kashiwajima Device for transporting and compressing gas by using porous material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130519A (en) * 1983-09-05 1984-07-27 Mitsutoshi Kashiwajima Device for transporting and compressing gas by using porous material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06211961A (en) * 1992-11-11 1994-08-02 Dainichiseika Color & Chem Mfg Co Ltd Fine epoxy resin particle and its production
JP2010190227A (en) * 2004-03-23 2010-09-02 Osaka Vacuum Ltd Pump device and pump unit thereof
JP2010005514A (en) * 2008-06-25 2010-01-14 Shin Etsu Polymer Co Ltd Selective permeable material and air-conditioning system

Similar Documents

Publication Publication Date Title
EP0461852B1 (en) Mobile engines, air-intake system therefor, and method of operating them
US5147417A (en) Air-intake system for mobile engines
EP0461853B1 (en) Residential furnaces, air-intake system therefor, and method of operating them
JP4979156B2 (en) Composite porous media
AU706663B2 (en) Oxygen permeable mixed conductor membranes
KR100517888B1 (en) Filter medium and air filter unit using the same
ES2379736T3 (en) Composite material ionic oxygen transport membrane
AU753144B2 (en) High temperature adsorption process
KR20050085302A (en) Porous sintered composite materials
RU94042904A (en) Porous polytetrafluoroethylene film and method of its production
JPS63104629A (en) Method and apparatus for separating air
JPH1015067A (en) Control means for molecule filtering on-board oxygen generator
JPS6248972A (en) Method for increasing quantity of compressed gaseous body
JPS59131779A (en) Cryo-pump
JP2000211073A (en) Laminate for adsorbent-including container and adsorbent-including container using the same
CN106145046B (en) A kind of modularization oxygenerator based on doughnut ceramic oxygen-permeable membrane
JPH01131004A (en) Production of hydrogen-separating membrane
JP3855799B2 (en) Mixed conductive oxygen separation membrane having catalyst layer on membrane surface and method for producing oxygen using the same
JPS61169680A (en) Gas transferring device
JP6303386B2 (en) Thermal transition flow pump system
TWI255259B (en) Vacuum composite glass panel manufacture process and mechanism
JPH06239674A (en) Porous ceramic film, gas-separation membrane using the film and their production
JPH0252527B2 (en)
JP2002292234A (en) Structure permeable to oxygen and device for manufacturing oxygen
SU915934A1 (en) Method of producing sorbing element