JPS6247473B2 - - Google Patents

Info

Publication number
JPS6247473B2
JPS6247473B2 JP56128845A JP12884581A JPS6247473B2 JP S6247473 B2 JPS6247473 B2 JP S6247473B2 JP 56128845 A JP56128845 A JP 56128845A JP 12884581 A JP12884581 A JP 12884581A JP S6247473 B2 JPS6247473 B2 JP S6247473B2
Authority
JP
Japan
Prior art keywords
gas
bath
iron
oxygen
bath surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56128845A
Other languages
Japanese (ja)
Other versions
JPS5774390A (en
Inventor
Fuon Bookudandei Ruutoihi
Burotsutsuman Kaaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURETSUKUNERU TSUEE ERU AA TEHINOROGII GmbH
Original Assignee
KURETSUKUNERU TSUEE ERU AA TEHINOROGII GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURETSUKUNERU TSUEE ERU AA TEHINOROGII GmbH filed Critical KURETSUKUNERU TSUEE ERU AA TEHINOROGII GmbH
Publication of JPS5774390A publication Critical patent/JPS5774390A/en
Publication of JPS6247473B2 publication Critical patent/JPS6247473B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/57Gasification using molten salts or metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/305Afterburning
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2250/00Specific additives; Means for adding material different from burners or lances
    • C21C2250/02Hot oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Air Supply (AREA)

Description

【発明の詳細な説明】 本発明は、溶鉄が存在する鉄浴反応器内に炭素
を含む固体または液体燃料を供給し、その浴面に
少なくとも1部酸素からなるガスの噴流を吹付
け、その際燃料がガス化し、浴面の上のガス室に
集り、このガスをそこから導出する鉄浴反応器内
でガスを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves supplying a solid or liquid fuel containing carbon into an iron bath reactor in which molten iron is present, and spraying a jet of gas consisting at least partially of oxygen onto the bath surface. The present invention relates to a method for producing gas in an iron bath reactor, in which the fuel is gasified and collected in a gas chamber above the bath surface, from which this gas is withdrawn.

スラグ層を有する鉄浴または鋼浴反応器内で石
炭その他の炭素含有燃料をほぼCOおよびH2から
なるガスに連続的にガス化することはすでに古く
から公知である。***公開特許公報第2952434号
の方法によれば鉄浴の浴面上方にある吹製ランス
から酸素を浴面に吹付け、それによつて高温吹付
部が形成される。この高温吹付部へ固体の炭素含
有粉末をキヤリヤガスとともに吹込む。
The continuous gasification of coal or other carbon-containing fuels into a gas consisting essentially of CO and H 2 in iron or steel bath reactors with a slag bed has already been known for a long time. According to the method disclosed in German Published Patent Application No. 2952434, oxygen is blown onto the bath surface from a blowing lance located above the bath surface of the iron bath, thereby forming a high-temperature blown section. Solid carbon-containing powder is blown into this high-temperature blowing section together with a carrier gas.

さらに***特許第2520883号公報により石炭そ
の他の炭素含有燃料を浴面より下の鉄浴へ吹込む
方法が公知である。少なくとも1部酸素からなる
ガス噴流も浴面より下の鉄浴へ吹込まれ、その際
炭化水素によるジヤケツトがそのノズルの保護に
役立つ。
Furthermore, a method is known from German Patent No. 2520883 in which coal or other carbon-containing fuel is blown into the iron bath below the bath surface. A gas jet consisting at least in part of oxygen is also blown into the iron bath below the bath surface, the hydrocarbon jacket serving to protect the nozzle.

最後に***特許明細書第2520868号により鉄浴
に付加的に高カロリー石炭、結合していない炭
素、アルミニウム、ケイ素、炭化カルシウムまた
はこれらの混合物を場合によりガス化用石炭とは
別個に供給する方法が公知である。それによつて
石炭ガス化過程に熱が供給される。
Finally, German Patent Specification No. 2520868 describes a method in which the iron bath is additionally supplied with high-calorie coal, unbound carbon, aluminium, silicon, calcium carbide or mixtures thereof, optionally separately from the gasifying coal. is publicly known. Heat is thereby supplied to the coal gasification process.

これら公知法の欠点は低品位燃料とくに低カロ
リー炭のガス化が現在まで経済的に可能でないこ
とである。というのは低品位燃料はこの種の燃料
の場合鉄浴の温度を維持するため、高カロリー燃
料の添加を必要とするからである。さらに公知法
の場合、安価に入手しうる酸化用ガスたとえば空
気を使用し得ない。
A disadvantage of these known methods is that the gasification of low-grade fuels, especially low-calorie coal, is not economically possible to date. This is because low grade fuels require the addition of high calorie fuel in order to maintain the temperature of the iron bath with these types of fuels. Furthermore, the known method does not allow the use of inexpensively available oxidizing gases, such as air.

本発明の目的は公知方法の欠点を避け、摩砕し
た固体または液体の形の炭素および(または)炭
化水素を含むカロリーの低い燃料から鉄浴反応器
内で安価な酸化性ガスを使用して燃料ガスを経済
的に製造することができ、その際とくにガス化過
程の熱バランスを補償するため高カロリー燃料の
添加を必要としない方法を得ることである。
The object of the invention is to avoid the disadvantages of the known processes and to use inexpensive oxidizing gases in iron bath reactors from low-calorie fuels containing carbon and/or hydrocarbons in ground solid or liquid form. It is an object of the present invention to provide a process by which fuel gas can be produced economically and which does not require the addition of high-calorie fuels, in particular to compensate for the thermal balance of the gasification process.

この目的はガス噴流をガス室を通して浴面へ吹
付け、ガス室を通過する際ガス噴流が製造された
ガスを吹込み、1部燃焼させ、かつ製造したガス
の燃焼の際発生する熱を鉄浴へ伝達するように、
製造されたガスを浴面へ同伴することによつて解
決される。
The purpose of this is to blow a gas jet through the gas chamber onto the bath surface, and as it passes through the gas chamber, the gas jet blows in the produced gas, combusts a part of it, and transfers the heat generated during the combustion of the produced gas to the iron. As if transmitting to the bath,
The solution is to entrain the produced gas to the bath surface.

この場合ガス噴流は浴面上のガス室をできるだ
け大きい区間通過する。ジエツト効果によつてガ
ス室内にある燃料ガス化によつて製造されたガス
は吹込まれ、同伴される。この効果はたとえば水
ジエツトポンプの場合にも生ずる。浴面へ向くガ
ス噴流は酸素を含むので、発生した可燃ガスの1
部は燃焼する。その際発生する燃は鉄浴へ伝達さ
れる。というのはガス噴流は高温の燃焼生成物を
浴面の方向へ向けるので、高温の燃焼生成物は浴
面と接触し、その熱を浴に与えるからである。
In this case, the gas jet passes through the gas chamber above the bath surface over as large a distance as possible. Due to the jet effect, the gas produced by the fuel gasification in the gas chamber is blown in and entrained. This effect also occurs, for example, in the case of water jet pumps. Since the gas jet directed toward the bath surface contains oxygen, 1 of the generated combustible gas
part burns. The combustion generated during this process is transferred to the iron bath. This is because the gas jet directs the hot combustion products towards the bath surface so that the hot combustion products come into contact with the bath surface and impart their heat to the bath.

酸化に作用するガス(酸素、空気等)の噴流を
本発明により浴面へ吹付けることによつて鉄浴反
応器内の熱バランスを著しく改善することができ
る。
By spraying jets of oxidizing gases (oxygen, air, etc.) onto the bath surface according to the invention, the thermal balance within the iron bath reactor can be significantly improved.

本発明の方法によりガス噴流として空気を使用
することができる。したがつて公知法の場合のよ
うに工業的純酸素を使用する必要がない。空気は
通常安価に入手され、簡単な手段で所要作業圧力
に圧縮することができる。この場合ガス化過程か
ら空気の加熱に必要な熱を取出さないように、空
気を予熱するのがとくに有利である。実際には
300〜400℃の予熱温度が適当なことが明らかにな
つた。この温度までは常用の導管等および遮断器
等を使用することができ、供給系の断熱も経済的
に実施することができる。
The method according to the invention makes it possible to use air as the gas jet. There is therefore no need to use industrially pure oxygen, as is the case with known methods. Air is usually inexpensively available and can be compressed to the required working pressure by simple means. In this case, it is particularly advantageous to preheat the air so that the heat necessary for heating the air is not extracted from the gasification process. in fact
It has been found that a preheating temperature of 300-400°C is appropriate. Up to this temperature, conventional conduits, circuit breakers, etc. can be used, and the supply system can be economically insulated.

しかしガス噴流を工業的純酸素から形成するこ
ともできる。これはとくに非常に低い発熱量の燃
料の場合有利である。ガス噴流中の酸素割合はし
たがつて経済的観点および使用燃料の品位によつ
てほぼ決定される。
However, the gas jet can also be formed from technically pure oxygen. This is particularly advantageous for fuels with very low heating values. The oxygen content in the gas jet is therefore largely determined by economic considerations and the quality of the fuel used.

固体または液体燃料は浴面より下の鉄浴へ吹込
むのが有利である。輸送のためキヤリヤガスたと
えば空気、チツ素、1酸化炭素、イナートガス等
が使用される。しかし燃料を浴面より上に導入す
ることもできる。
Advantageously, the solid or liquid fuel is blown into the iron bath below the bath surface. For transport, carrier gases such as air, nitrogen, carbon monoxide, inert gases, etc. are used. However, it is also possible to introduce the fuel above the bath surface.

ガス室を通つて浴面の上に吹付けられるガス噴
流の酸素はとくに燃料から製造したガスの1部の
燃焼に消費される。ガス化過程のための本来の酸
素供給はこれに反し有利に浴面より下にあるノズ
ルを通して行われる。このノズルはたとえば多数
の同心管からなり、ノズルの保護のために外側に
公知法で炭化水素が使用される。
The oxygen of the gas jet which is blown through the gas chamber onto the bath surface is consumed in particular in the combustion of a portion of the gas produced from the fuel. The actual oxygen supply for the gasification process, on the other hand, preferably takes place through a nozzle located below the bath surface. This nozzle consists, for example, of a number of concentric tubes, on the outside of which a hydrocarbon is used in a known manner to protect the nozzle.

浴面より下に供給する酸素量と浴面より上のガ
ス噴流により供給される酸素量の比は任意の範囲
に変化することができる。たとえば全酸素の80%
をガス噴流によつて上から供給し、20%だけを浴
面より下に導入することができ、または正反対に
鉄浴反応器に供給する酸素全量の80%を浴面より
下で吹込み、20%だけを上からガス噴流によつて
供給することもできる。しかし鉄浴反応器に供給
する酸素全量の少なくとも10%をガス噴流によつ
て浴面へ吹付けるのが熱収支に関する本発明の利
点を利用するために必要であることが明らかにな
つた。この比は100%まで上昇することができ
る。この場合意外にもガス噴流のこの酸素は鉄浴
内で燃料の酸化に使用されることが明らかになつ
た。鉄浴反応器の普通の作業性の場合、全酸素量
の約40〜90%はガス噴流を介して供給される。上
から供給する部分はすでに経済的理由からできる
だけ高く保たれる。というのはガス全量のこの部
分は一般に浴面より下にあるノズルのために必要
な圧力に比して低い圧力で吹込まれるからであ
る。
The ratio of the amount of oxygen supplied below the bath surface to the amount of oxygen supplied by the gas jet above the bath surface can be varied within any range. For example, 80% of total oxygen
can be supplied from above by a gas jet, with only 20% introduced below the bath surface, or, conversely, 80% of the total amount of oxygen supplied to the iron bath reactor can be blown below the bath surface, Only 20% can also be supplied from above by means of a gas jet. However, it has been found necessary to utilize the advantages of the invention with respect to heat balance that at least 10% of the total amount of oxygen fed to the iron bath reactor is blown onto the bath surface by means of gas jets. This ratio can rise up to 100%. It has now surprisingly been found that this oxygen in the gas jet is used for the oxidation of the fuel in the iron bath. In the case of normal operation of iron bath reactors, approximately 40-90% of the total amount of oxygen is supplied via the gas jet. The portion fed from above is already kept as high as possible for economic reasons. This is because this portion of the total gas volume is generally blown in at a low pressure compared to the pressure required for the nozzle below the bath surface.

多数のガス噴流を浴面へ向けるのが有利であ
る。吹付は浴面に対し大きい距離から行われ、衝
突位置はほぼ浴面の中心にある。浴面より上のガ
ス室内におけるガス噴流の走行区間が十分長いこ
とが重要である。通常ガス噴流のノズルと浴面の
間の最小距離は約2mなければならない。ノズル
は鉄浴反応器の上部範囲の耐火ライニング中に配
置される。ノズルは主として空気吹込の際は1重
管からなり、またはたとえば工業的純酸素使用の
際は2つの同心管からなる。同心管の場合酸素は
中心管を流れ、ノズル保護のためリングギヤツプ
にチツ素、1酸化炭素、イナートガス、炭化水素
等が少量(酸化ガスに対し0.1〜5%)導入され
る。
It is advantageous to direct a large number of gas jets onto the bath surface. Spraying is performed from a large distance to the bath surface, and the impact position is approximately at the center of the bath surface. It is important that the travel section of the gas jet in the gas chamber above the bath surface is sufficiently long. Usually the minimum distance between the nozzle of the gas jet and the bath surface should be about 2 m. The nozzle is placed in the refractory lining in the upper region of the iron bath reactor. The nozzle consists primarily of a single tube when blowing air or, for example, of two concentric tubes when using industrially pure oxygen. In the case of concentric tubes, oxygen flows through the center tube, and a small amount (0.1 to 5% of the oxidizing gas) of silicon, carbon monoxide, inert gas, hydrocarbon, etc. is introduced into the ring gap to protect the nozzle.

本発明の方法はたとえば発電用のボイラおよび
加熱装置で燃焼するためのほとんどイオウを含ま
ないガスをイオウ含有燃料から鉄浴反応器内で製
造するために有利に使用される。イオウはこの場
合鉄浴反応器内のCaO含有スラグによつて吸収さ
れる。所要の造滓剤とくにCaOは有利に粉末の形
で浴面より下の鉄浴へ導入する酸素含有ガスに負
荷される。造滓剤を燃料へ混合することまたは
CaOをキヤリヤガスにより別個に導入することは
同様本発明の範囲内である。形成されたスラグは
その中に含まれる燃料の灰分とともにバツチ的に
鉄浴反応器から排出し、または***特許明細書第
2520584号により熱バランスを改善するため溶融
状態で脱硫し、再びほぼ全量が鉄浴反応器に溶融
状態で供給される。
The process according to the invention is advantageously used, for example, for producing substantially sulfur-free gases from sulfur-containing fuels in iron bath reactors for combustion in boilers and heating devices for power generation. Sulfur is in this case absorbed by the CaO-containing slag in the iron bath reactor. The required slag forming agent, in particular CaO, is preferably loaded in powder form into the oxygen-containing gas which is introduced into the iron bath below the bath surface. Mixing the slag agent into the fuel or
It is likewise within the scope of the invention to separately introduce CaO by means of a carrier gas. The slag formed can be discharged from the iron bath reactor in batches together with the ash of the fuel contained therein, or as described in German Patent Specification No.
According to No. 2520584, it is desulfurized in the molten state to improve the heat balance, and almost the entire amount is again fed in the molten state to the iron bath reactor.

本発明の方法を使用する場合、たとえば使用燃
料に応じて下記の組成のガスが得られる。灰分約
10%およびイオウ1%のコークス1tをガス化する
ため、300℃に予熱した空気約2400m3を浴面より
下から鉄浴へ導入し、同時に同じ予熱温度の空気
2400m3を浴面へ吹付ける。溶鉄は約1400℃の温度
および約2%の炭素量を有する。コークスt当り
CO約25%、CO2約6%、N2約69%、イオウ約
0.002%からなる温度1400℃のガス5500m3が発生
する。ガスのダスト分は約2g/m3であり、直接
ボイラ装置で燃焼することができた。
When using the method of the invention, for example, depending on the fuel used, gases with the following compositions are obtained: Ash content approx.
To gasify 1 ton of coke containing 10% and 1% sulfur, approximately 2400 m3 of air preheated to 300°C is introduced into the iron bath from below the bath surface, and at the same time air at the same preheating temperature is introduced into the iron bath.
Spray 2400m3 onto the bath surface. Molten iron has a temperature of about 1400°C and a carbon content of about 2%. coke per ton
CO approx. 25%, CO 2 approx. 6%, N 2 approx. 69%, sulfur approx.
5500 m 3 of gas with a temperature of 1400 °C consisting of 0.002% is generated. The dust content of the gas was approximately 2 g/m 3 and could be directly combusted in the boiler equipment.

C78%、H5%、C7%、灰分5%のガス有煙炭
をガス化する場合、CO19.0%、H24.8%、CO24.6
%、N266.5%の組成のガスが発生した。
When gasifying bituminous coal with C78%, H5%, C7%, and ash content 5%, CO19.0%, H2 4.8%, CO2 4.6
%, a gas with a composition of 66.5% N2 was generated.

C64.0重量%、H4.9重量%、O23.6重量%、灰
分5.9重量%、イオウ0.4重量%および発熱量
5680Kcalの乾燥した低カロリー褐炭を300℃の空
気で本発明の方法により鉄浴反応器内でガス化す
る場合、CO21.4容量%、H26.2容量%、CO25.4容
量%、H2O6.2容量%、N260.7容量%、イウオ
20ppmおよび発熱量806kcal/m3のガスが得られ
る。脱硫のため石炭t当りCaO9Kgを鉄浴反応器
に供給する。
C64.0wt%, H4.9wt%, O23.6wt%, ash 5.9wt%, sulfur 0.4wt% and calorific value
When dry low-calorie brown coal of 5680 Kcal is gasified in an iron bath reactor by the method of the present invention with air at 300 °C, CO2 1.4% by volume, H2 6.2% by volume, CO2 5.4% by volume, H2O6 .2% by volume, N 2 60.7% by volume, IUO
A gas of 20 ppm and a calorific value of 806 kcal/m 3 is obtained. For desulfurization, 9 kg of CaO per ton of coal is fed into the iron bath reactor.

本発明による酸素の使用はN2含量の低い高カ
ロリーガスの要求が重視される場合または浴浴反
応器内のガス化のためとくに低カロリー燃料を使
用する場合つねに有利なことが実証された。鉄浴
反応器内のガス化にいかなる酸素キヤリヤガスま
たは純酸素を使用するかは主として経済的観点お
よび発生ガスの使用目的によつて決定される。本
発明の方法によればガス化の際および反応器のガ
ス室中で発生ガスの部分燃焼によりプロセスのエ
ネルギーバランスを補償する際ならびに種々の酸
素含有媒体を使用する際、なんら方法技術的問題
が発生しないことが明らかになつた。
The use of oxygen according to the invention has proven to be advantageous whenever the requirement for high-calorie gases with low N 2 content is emphasized or when particularly low-calorie fuels are used for gasification in bath reactors. The choice of oxygen carrier gas or pure oxygen for gasification in the iron bath reactor is determined primarily by economic considerations and the intended use of the generated gas. The process according to the invention does not pose any process-technical problems during gasification and when compensating the energy balance of the process by partial combustion of the generated gas in the gas chamber of the reactor and when using various oxygen-containing media. It became clear that this would not occur.

本発明のもう1つのとくに有利な形成によれば
反応容器内の溶湯に鉄を結合した形または結合し
ていない形で含む物質たとえば鉱石を供給し、溶
鉄(銑鉄)を製造すると同時にガスを製造する。
本発明の方法のこの形成によれば鉄浴反応器内で
製造したガスの部分的2次燃焼により発生した熱
は鉄を含む物質とくに鉱石の還元に少なくとも1
部使用される。反応器内の溶鉄には炭素を含む固
体または液体燃料ならびに酸素および造滓剤のほ
かに、鉄を少なくとも1部酸化物の形で含む付加
的物質たとえば鉱石が供給される。この本発明方
法の大きい経済的利点は小さい工業的費用をもつ
て鉱石を比較的少量の石炭で直接還元し、同時に
多方面に使用しうるガスが得られることである。
鉄鉱石の還元による鉄1tの製造には石炭(C78
%、H25%、H2O3%、灰分5%、O25%、S1%の
組成および発熱量HU7500Kcal/m3)約1.1tを必
要とする。同時に既略組成CO57%、CO214%、
H214%、H2O14%およびHU約2100Kcal/m3の工
業的に使用しうるガスが発生する。
According to another particularly advantageous embodiment of the invention, the molten metal in the reaction vessel is supplied with a substance containing iron in bound or unbound form, for example ore, so that the molten iron (pig iron) is produced and at the same time the gas is produced. do.
According to this embodiment of the process of the invention, the heat generated by the partial secondary combustion of the gas produced in the iron bath reactor can be used to reduce iron-containing substances, in particular ores, by at least one
part is used. In addition to a carbon-containing solid or liquid fuel as well as oxygen and a slag-forming agent, the molten iron in the reactor is supplied with additional substances, such as ore, which contain at least some iron in the form of oxides. The great economic advantage of the process according to the invention is that the ore can be directly reduced with a relatively small amount of coal with low industrial outlay, and at the same time a gas is obtained which can be used in many ways.
Coal (C78
%, H 2 5%, H 2 O 3%, ash 5%, O 2 5%, S 1% and calorific value H U 7500 Kcal/m 3 ) about 1.1 t. At the same time, the composition of CO 57%, CO 2 14%,
Industrially usable gases of 14% H 2 , 14% H 2 O and H U of about 2100 Kcal/m 3 are produced.

したがつて本発明の方法によれば鉄浴反応器内
のガス製造との組合せにより製鉄の経済化が達成
される。
Accordingly, the method of the present invention, in combination with gas production in an iron bath reactor, achieves economical steel production.

たとえば同様の過程を、鉄浴中で製造したガス
の部分的2次燃焼によるエネルギーの本発明によ
る再伝達なしに実施する場合、同じ石炭を使用し
て鉄鉱石から鉄1t製造するために石炭約3tを必要
とする。その際排ガスはCO70%、CO21%、H227
%、H2O1%の組成を有し、発熱量HUは約
2700Kcal/m2である。
For example, if a similar process is carried out without the inventive retransfer of energy by partial secondary combustion of the gas produced in an iron bath, then the same coal is used to produce 1 t of iron from iron ore. Requires 3t. At that time, the exhaust gas is CO 70%, CO 2 1%, H 2 27
%, H 2 O 1%, and the calorific value H U is approximately
It is 2700Kcal/ m2 .

たとえば***公開特許公報第2401909号による
鉄鉱石を還元して溶鉄を製造する公知多段法は、
発生したガスがその低い発熱量のため価格的に不
利な高カロリーガスの混合なしには限定された用
途にしか使用できない欠点を有する。この方法の
場合、鉄1tの製造に石炭約650Kgが必要である。
CO41%、CO230%、H2O18%、H210%の大略組
成および1100Kcal/m3の発熱量HUを有するガス
が発生する。
For example, a known multi-stage method for producing molten iron by reducing iron ore is disclosed in West German Published Patent Application No. 2401909.
The generated gas has the disadvantage that it can only be used for limited purposes without mixing with a high-calorie gas which is disadvantageous in terms of cost due to its low calorific value. In this method, approximately 650 kg of coal is required to produce 1 ton of iron.
A gas having an approximate composition of 1% CO, 30% CO 2 , 18% H 2 O, 10% H 2 and a calorific value H U of 1100 Kcal/m 3 is generated.

本発明の方法の場合、鉱石は鉄浴へ底部ノズル
から直接導入し、または上から浴へ吹込むことが
できる。本発明の有利な実施例によれば鉱石は少
なくとも1部は浴へ吹付ける酸素といつしよに添
加される。この作業法によればダスト状鉱石はガ
ス室内ですでに予熱および前環元され、それによ
つて方法の熱効率が上昇する。この効果をさらに
改善するため、鉱石粒子を含む噴流の拡大に役立
つ装置たとえば噴流が旋回してノズルを去る装置
を使用するのが有利である。
In the method of the invention, the ore can be introduced directly into the iron bath through the bottom nozzle or blown into the bath from above. According to a preferred embodiment of the invention, the ore is added at least in part simultaneously with the oxygen being blown into the bath. With this method of operation, the dusty ore is already preheated and prerecirculated in the gas chamber, thereby increasing the thermal efficiency of the process. In order to further improve this effect, it is advantageous to use devices that serve to widen the jet containing the ore particles, such as devices in which the jet swirls and leaves the nozzle.

鉄を少なくとも1部酸化物の形で含む装入材料
としては種々の品位の鉱石のほかに、とくに不完
全に還元した鉱石からなるペレツトおよびブリケ
ツトが適する。
In addition to ores of various grades, in particular pellets and briquettes of incompletely reduced ores are suitable as charge materials containing at least a portion of iron in the form of oxides.

本発明の方法は製造したガスを至近場所で燃料
ガスたとえば天然ガスの代用として使用しうる場
所にとくに有利に適用することができる。本発明
の方法により製造した1部2次燃焼したガスは主
として比較的高いCO分のため天然ガスとほぼ同
じフレーム温度を有し、それゆえ炉の装置の大き
い改造なしに天然ガスの代用として使用すること
ができる。
The method of the invention can be applied particularly advantageously in locations where the gas produced can be used nearby as a substitute for fuel gas, such as natural gas. The partially secondary combusted gas produced by the method of the invention has approximately the same flame temperature as natural gas, mainly due to its relatively high CO content, and can therefore be used as a substitute for natural gas without major modifications to the furnace equipment. can do.

次に本発明の方法を容量60tの転炉形の反応容
器に適用した例を説明する。転炉の底部に内径28
mmのノズルが10本設置される。このノズルの2つ
からの炭粉350Kg/minを吹込み、その際キヤリ
ヤガスとしてはチツ素、2酸化炭素または転炉自
体からの還元ガスを使用することができる。3つ
のノズルから酸素を鉱石とともに吹込み、他の5
つのノズルから1部造滓剤たとえば石灰を負荷し
た酸素を供給する。転炉の上の円錐形部に設置し
た側面ノズルから酸素の約50%を浴へ導入する。
前記組成の石炭およびFe2O385%の鉱石により炭
素含量約3%の鉄20t/hが製造される。鉄鉱石
1450Kgを同時溶解する場合、石炭1tをガス化する
ために必要な酸素量は580m3である。CO約57%、
CO214%、H214%、H2O14%の組成および
2100Kcal/m3の発熱量HUを有する石炭ガスまた
は燃料ガスが発生する。
Next, an example in which the method of the present invention is applied to a converter-type reaction vessel with a capacity of 60 tons will be explained. Inner diameter 28 at the bottom of the converter
Ten mm nozzles will be installed. 350 kg/min of coal powder is injected from two of these nozzles, the carrier gas being nitrogen, carbon dioxide or reducing gas from the converter itself. Oxygen is injected with the ore from three nozzles, and the other five
Oxygen partially loaded with slag agent, for example lime, is fed through two nozzles. Approximately 50% of the oxygen is introduced into the bath through a side nozzle installed in the cone above the converter.
Coal of the above composition and ore of 85% Fe 2 O 3 produce 20 t/h of iron with a carbon content of approximately 3%. Iron ore
When melting 1450 kg at the same time, the amount of oxygen required to gasify 1 ton of coal is 580 m3 . CO approx. 57%,
Composition of CO 2 14%, H 2 14%, H 2 O 14% and
Coal gas or fuel gas is generated with a heating value H U of 2100 Kcal/m 3 .

反応容器を同時に転炉として使用するように形
成し、その中で直接鋼を製造することも本発明の
範囲内である。この目的で普通の鉄浴反応器作業
の間の炭素含量約2〜3%は出鋼前そのつど約
0.05%に低下され、約20tの部分量が排出され
る。転炉内には約50tの量が残り、これは次に少
し石炭過剰の酸素と石炭の同時的吹込によつて
徐々に再び連続作業に望ましい2〜3%の炭素量
に加炭される。この作業法の場合、炭素を完全に
除去精練する前に、すなわちほぼ残留炭素含量
0.5〜2%のときにスラグを鉄浴から排滓するの
が有利なことが明らかになつた。引続き新たに形
成された、排出された鋼浴と平衡する新スラグは
転炉内に残る。
It is also within the scope of the invention to configure the reaction vessel to simultaneously serve as a converter and to produce steel directly therein. For this purpose, during normal iron bath reactor operation the carbon content is about 2-3% in each case before tapping.
It is reduced to 0.05% and a partial amount of approximately 20t is discharged. A quantity of approximately 50 tons remains in the converter, which is then gradually carburized again by simultaneous injection of oxygen and coal with a slight excess of coal to a carbon content of 2-3%, which is desirable for continuous operation. In this working method, before scouring to completely remove carbon, i.e. approximately the residual carbon content is
It has proven advantageous to drain the slag from the iron bath when the content is between 0.5 and 2%. Subsequently, the newly formed new slag, which is in equilibrium with the discharged steel bath, remains in the converter.

次に本発明を図面により説明する。 Next, the present invention will be explained with reference to the drawings.

気密に閉鎖されたほぼなし形の反応容器20は
約半分まで溶鉄浴21で充てんされ、したがつて
浴面22は反応容器20の約半分の高さにある。
反応容器の底部には微細に摩砕した石炭24を導
人するノズル23が設置される。さらに反応容器
20の底部には酸素ノズル25があり、このノズ
ルからノズル23とは別個に酸素が溶鉄21へ導
入される。実際にはこの酸素ノズル25はノズル
保護のため炭化水素用のリングギヤツプで包囲さ
れる。
The hermetically closed, substantially empty reaction vessel 20 is filled approximately half way with a molten iron bath 21, so that the bath level 22 is approximately half the height of the reaction vessel 20.
A nozzle 23 for guiding finely ground coal 24 is installed at the bottom of the reaction vessel. Furthermore, there is an oxygen nozzle 25 at the bottom of the reaction vessel 20, through which oxygen is introduced into the molten iron 21 separately from the nozzle 23. In practice, this oxygen nozzle 25 is surrounded by a hydrocarbon ring gap to protect the nozzle.

転炉の上部範囲には2つのノズル26および2
7が反応容器20の壁を貫通して設置される。こ
のノズルは空気を供給し、浴面20のほぼ中心部
に向う噴流29を形成する。ノズル26および2
7の出口孔は浴面より約2m上にある。
In the upper region of the converter there are two nozzles 26 and 2
7 is installed through the wall of the reaction vessel 20. This nozzle supplies air and forms a jet 29 directed approximately toward the center of the bath surface 20. Nozzles 26 and 2
The outlet hole 7 is located approximately 2 m above the bath surface.

ガス噴流29は浴面22の上にあるガス室30
を通過し、そのジエツト効果によりすでに石炭2
4のガス化によつて製造されたガス31を同伴す
る。ガス噴流29の含有酸素によつてこのガスの
1部は燃焼する。燃焼熱の1部は浴面22を通し
て鉄浴21へ伝達される。
The gas jet 29 flows into a gas chamber 30 above the bath surface 22.
, and due to its jet effect, coal 2 is already
The gas 31 produced by the gasification of 4 is entrained. Due to the oxygen content of the gas jet 29, a portion of this gas is combusted. A portion of the combustion heat is transferred to the iron bath 21 through the bath surface 22.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は鉄浴反応器の縦断面図である。 20……反応容器、21……鉄浴、22……浴
面、23,25,26,27……ノズル、24…
…石炭、29……ガス噴流、30……ガス室、3
1……ガス。
The drawing is a longitudinal cross-sectional view of an iron bath reactor. 20... Reaction container, 21... Iron bath, 22... Bath surface, 23, 25, 26, 27... Nozzle, 24...
...Coal, 29...Gas jet, 30...Gas chamber, 3
1...Gas.

Claims (1)

【特許請求の範囲】 1 溶融鉄浴が存在する鉄浴反応器内に炭素を含
む固体または液体燃料を供給し、その浴面へ少な
くとも1部酸素からなるガス噴流を吹付け、その
際燃料がガス化し、浴面の上に集まり、そこから
このガスを導出する鉄浴反応器内でガスを製造す
る方法において、ガス噴流をガス室を通して浴面
へ吹付け、ガス室を通過する際ガス噴流が製造さ
れたガスを吸引し、1部燃焼させ、かつ製造した
ガスの燃焼によつて発生した熱が鉄浴へ伝達され
るように、製造されたガスを浴面まで同伴するこ
とを特徴とする鉄浴反応器内でガスを製造する方
法。 2 浴面へ向けたガス噴流が工業的純酸素からな
る特許請求の範囲第1項記載の方法。 3 ガス室を通して浴面へ吹付けるガス噴流が空
気からなる特許請求の範囲第1項記載の方法。 4 ガス室を通して浴面へ吹付けるガス噴流に対
し付加的に、浴面より下に少なくとも1部酸素か
らなるガスを鉄浴へ導入する特許請求の範囲第1
項〜第3項の1つに記載の方法。 5 浴面へ吹付ける酸素の量が鉄浴反応器に供給
する全酸素量の少なくとも10%である特許請求の
範囲第4項記載の方法。 6 ガス室を通つて浴面に向うガス噴流を予熱す
る特許請求の範囲第1項〜第5項の1つに記載の
方法。 7 浴面より下に導入するガスを予熱する特許請
求の範囲第1項〜第6項の1つに記載の方法。 8 燃料を浴面より下の鉄浴へ導入する特許請求
の範囲第1項〜第7項の1つに記載の方法。 9 ガス室内のガス噴流の長さが2mより大きい
特許請求の範囲第1項〜第8項の1つに記載の方
法。 10 鉄浴反応器内でガスと同時に、鉄を少なく
とも1部酸化物の形で含む物質から溶鉄を製造す
る特許請求の範囲第1項〜第9項の1つに記載の
方法。 11 鉄を少なくとも1部酸化物の形で含む物質
としてとくに鉱石、1部前還元した鉱石たとえば
ペレツトおよび(または)ブリケツトを鉄浴反応
器に供給する特許請求の範囲第1項〜第10項の
1つに記載の方法。 12 鉄を少なくとも1部酸化物の形で含む物質
とくに鉱石を酸化ガスとくに酸素とともに溶湯へ
吹込む特許請求の範囲第1項〜第11項の1つに
記載の方法。 13 反応容器内で、製造した炭素を含む鉄を鋼
に精練する特許請求の範囲第1項〜第12項の1
つに記載の方法。
[Claims] 1. A solid or liquid fuel containing carbon is supplied into an iron bath reactor in which a molten iron bath exists, and a gas jet consisting of at least a portion of oxygen is blown onto the surface of the bath. A method of producing gas in an iron bath reactor in which it is gasified, collects on the bath surface, and from which this gas is derived, in which a jet of gas is blown through a gas chamber onto the bath surface, and as it passes through the gas chamber, the gas jet It is characterized by sucking the produced gas, combusting a part of it, and entraining the produced gas to the bath surface so that the heat generated by the combustion of the produced gas is transferred to the iron bath. A method of producing gas in an iron bath reactor. 2. The method according to claim 1, wherein the gas jet directed toward the bath surface comprises industrially pure oxygen. 3. The method according to claim 1, wherein the gas jet blown onto the bath surface through the gas chamber is air. 4. In addition to the gas jet blown through the gas chamber onto the bath surface, a gas consisting of at least part of oxygen is introduced into the iron bath below the bath surface.
3. The method according to one of paragraphs 3 to 3. 5. The method of claim 4, wherein the amount of oxygen blown onto the bath surface is at least 10% of the total amount of oxygen supplied to the iron bath reactor. 6. Method according to one of claims 1 to 5, in which the gas jet is preheated through the gas chamber towards the bath surface. 7. The method according to one of claims 1 to 6, in which the gas introduced below the bath surface is preheated. 8. A method according to one of claims 1 to 7, in which the fuel is introduced into the iron bath below the bath surface. 9. Method according to one of claims 1 to 8, in which the length of the gas jet in the gas chamber is greater than 2 m. 10. Process according to one of claims 1 to 9, in which molten iron is produced simultaneously with gas in an iron bath reactor from a material containing at least a portion of iron in oxide form. 11. In particular, ores, partially prereduced ores, such as pellets and/or briquettes, are fed to the iron bath reactor as substances containing at least a part of iron in the form of oxides. The method described in one. 12. Process according to one of claims 1 to 11, characterized in that a substance, in particular an ore, containing at least a portion of iron in the form of an oxide is blown into the melt together with an oxidizing gas, in particular oxygen. 13 Claims 1 to 12-1 in which the produced iron containing carbon is refined into steel in a reaction vessel.
The method described in.
JP56128845A 1980-08-22 1981-08-19 Manufacture of gas in iron bath reactor Granted JPS5774390A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19803031680 DE3031680A1 (en) 1980-08-22 1980-08-22 METHOD FOR GAS GENERATION

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1007876A Division JPH0762162B2 (en) 1980-08-22 1989-01-18 Method for producing gas and molten iron in an iron bath reactor

Publications (2)

Publication Number Publication Date
JPS5774390A JPS5774390A (en) 1982-05-10
JPS6247473B2 true JPS6247473B2 (en) 1987-10-08

Family

ID=6110175

Family Applications (2)

Application Number Title Priority Date Filing Date
JP56128845A Granted JPS5774390A (en) 1980-08-22 1981-08-19 Manufacture of gas in iron bath reactor
JP1007876A Expired - Lifetime JPH0762162B2 (en) 1980-08-22 1989-01-18 Method for producing gas and molten iron in an iron bath reactor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP1007876A Expired - Lifetime JPH0762162B2 (en) 1980-08-22 1989-01-18 Method for producing gas and molten iron in an iron bath reactor

Country Status (20)

Country Link
JP (2) JPS5774390A (en)
AT (1) AT385053B (en)
AU (1) AU539665B2 (en)
BE (1) BE890047A (en)
BR (1) BR8105352A (en)
CA (1) CA1181238A (en)
CS (1) CS253561B2 (en)
DE (1) DE3031680A1 (en)
ES (1) ES8206615A1 (en)
FR (1) FR2488903B1 (en)
GB (1) GB2082624B (en)
HU (1) HU188685B (en)
IT (1) IT1137764B (en)
LU (1) LU83573A1 (en)
MX (1) MX157845A (en)
NL (1) NL193320C (en)
PL (1) PL130522B1 (en)
SE (1) SE8104704L (en)
SU (1) SU1148566A3 (en)
ZA (1) ZA815676B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU535363B2 (en) * 1980-12-01 1984-03-15 Sumitomo Metal Industries Ltd. Gasification of solid carbonaceous material
DE3111168A1 (en) * 1981-03-21 1982-10-21 Klöckner-Humboldt-Deutz AG, 5000 Köln METHOD AND DEVICE FOR PRODUCING A GAS HAVING ESSENTIAL H (DOWN ARROW) 2 (DOWN ARROW) AND CO
DE3219562C2 (en) * 1982-05-25 1985-01-10 Klöckner-Werke AG, 4100 Duisburg Process for supplying coal to a steelworks
SE435732B (en) * 1983-03-02 1984-10-15 Ips Interproject Service Ab PROCEDURE FOR THE MANUFACTURING OF IRON
DE3318005C2 (en) * 1983-05-18 1986-02-20 Klöckner CRA Technologie GmbH, 4100 Duisburg Process for making iron
JPS6058488A (en) * 1983-09-07 1985-04-04 Sumitomo Metal Ind Ltd Gasification of carbonaceous matter
US4582479A (en) * 1984-12-31 1986-04-15 The Cadre Corporation Fuel cooled oxy-fuel burner
US4599107A (en) * 1985-05-20 1986-07-08 Union Carbide Corporation Method for controlling secondary top-blown oxygen in subsurface pneumatic steel refining
JPS62142712A (en) * 1985-12-18 1987-06-26 Nippon Kokan Kk <Nkk> Manufacture of steel or iron by converter or by smelting and reducing furnace
US4647019A (en) * 1986-04-01 1987-03-03 Union Carbide Corporation Very small refining vessel
US4708738A (en) * 1986-04-01 1987-11-24 Union Carbide Corporation Method for refining very small heats of molten metal
ATE105872T1 (en) * 1988-02-12 1994-06-15 Kloeckner Cra Patent METHOD AND DEVICE FOR AFTERCOMBUSTION.
DE69010901T2 (en) * 1989-06-02 1994-11-24 CRA Services Ltd., Melbourne, Victoria PRODUCTION OF REMOTE ALLOY IN A MELT BATH REACTOR.
ES2090157T3 (en) * 1990-03-13 1996-10-16 Cra Services A PROCEDURE FOR PRODUCING METALS AND METAL ALLOYS IN A REDUCED CONTAINER IN CAST STATE.
KR100267206B1 (en) * 1992-06-29 2000-11-01 테리 에이. 매튜스 Treatment of waste
GB2281311B (en) * 1993-03-29 1996-09-04 Boc Group Plc Metallurgical processes and apparatus
EP0790291B1 (en) * 1996-02-16 2001-07-18 Thermoselect Aktiengesellschaft Process for operating a high-temperature reactor for the treatment of waste products
WO2001054774A1 (en) * 2000-01-28 2001-08-02 Tribovent Verfahrensentwicklung Gmbh Method for burning metal- or metal oxide containing fuels, especially petroleum coke
US8696774B2 (en) 2010-01-07 2014-04-15 General Electric Company Gasification system and method using fuel injectors
US9102882B2 (en) 2012-09-04 2015-08-11 General Electric Company Gasification system and method
MX2015005090A (en) 2012-10-24 2015-11-13 Primetals Technologies Austria GmbH Method and device for supplying energy into a scrap metal pile in an electric arc furnace.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105906A (en) * 1976-03-02 1977-09-06 Kawasaki Heavy Ind Ltd Apparatus for gasifying coal by use of molten metallurgical slag
JPS5456015A (en) * 1977-10-12 1979-05-04 Nippon Steel Corp Manufacture of molten iron in converter
JPS54109016A (en) * 1977-12-10 1979-08-27 Maximilianshuette Eisenwerk Improvement of heat balance in steel making
JPS54125203A (en) * 1978-03-23 1979-09-28 Sumitomo Metal Ind Ltd Production of gas

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE474594C (en) * 1923-12-19 1929-04-09 Eisen Und Stahlwerk Hoesch Akt Process to increase the temperature and the reducing power of the converter exhaust gases
DE450460C (en) * 1924-02-02 1927-10-04 Wilhelm Schwier Process and device for gasifying fine-grain or dust-like fuels
DE1040734B (en) * 1952-08-21 1958-10-09 Roman Rummel Process and device for the combustion or gasification of fuels
FR1313729A (en) * 1960-10-10 1963-01-04 Inst Francais Du Petrole Continuous process of manufacturing cast iron or steel by reduction of iron ore
LU40790A1 (en) * 1960-11-07 1962-05-07
NL6604026A (en) * 1965-11-08 1967-05-09
AU7299674A (en) * 1973-09-12 1976-03-11 Uss Eng & Consult Gasification of coal
DE2520938C3 (en) * 1975-05-10 1980-03-06 Eisenwerk-Gesellschaft Maximilianshuette Mbh, 8458 Sulzbach-Rosenberg Process for the continuous production of a reducing gas consisting essentially of carbon monoxide and hydrogen
DE2520868C3 (en) * 1975-05-10 1979-05-03 Eisenwerk-Gesellschaft Maximilianshuette Mbh, 8458 Sulzbach-Rosenberg Process for supplying heat in the coal gasification process in the iron bath reactor
DE2520883B2 (en) * 1975-05-10 1979-07-05 Eisenwerk-Gesellschaft Maximilianshuette Mbh, 8458 Sulzbach-Rosenberg Process and device for the continuous gasification of coal or carbonaceous fuels in an iron bath reactor
GB1586762A (en) * 1976-05-28 1981-03-25 British Steel Corp Metal refining method and apparatus
DE2755165B2 (en) * 1977-12-10 1980-09-18 Eisenwerk-Gesellschaft Maximilianshuette Mbh, 8458 Sulzbach-Rosenberg Method of increasing the scrap rate in steelmaking
DE2838983C3 (en) * 1978-09-07 1986-03-27 Klöckner CRA Technologie GmbH, 4100 Duisburg Process for producing steel in the converter
JPS5589395A (en) * 1978-12-26 1980-07-05 Sumitomo Metal Ind Ltd Gasification of solid carbonaceous material and its device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105906A (en) * 1976-03-02 1977-09-06 Kawasaki Heavy Ind Ltd Apparatus for gasifying coal by use of molten metallurgical slag
JPS5456015A (en) * 1977-10-12 1979-05-04 Nippon Steel Corp Manufacture of molten iron in converter
JPS54109016A (en) * 1977-12-10 1979-08-27 Maximilianshuette Eisenwerk Improvement of heat balance in steel making
JPS54125203A (en) * 1978-03-23 1979-09-28 Sumitomo Metal Ind Ltd Production of gas

Also Published As

Publication number Publication date
BE890047A (en) 1981-12-16
ES504653A0 (en) 1982-08-16
JPH01246311A (en) 1989-10-02
PL130522B1 (en) 1984-08-31
JPS5774390A (en) 1982-05-10
PL232744A1 (en) 1982-05-24
AU539665B2 (en) 1984-10-11
NL8103451A (en) 1982-03-16
FR2488903B1 (en) 1986-01-24
DE3031680A1 (en) 1982-03-11
NL193320B (en) 1999-02-01
CA1181238A (en) 1985-01-22
ZA815676B (en) 1982-08-25
ATA333581A (en) 1987-07-15
SU1148566A3 (en) 1985-03-30
GB2082624B (en) 1984-03-14
DE3031680C2 (en) 1988-02-25
HU188685B (en) 1986-05-28
IT8123284A0 (en) 1981-07-31
SE8104704L (en) 1982-02-23
AU7440981A (en) 1982-02-25
BR8105352A (en) 1982-05-18
FR2488903A1 (en) 1982-02-26
IT1137764B (en) 1986-09-10
CS253561B2 (en) 1987-11-12
AT385053B (en) 1988-02-10
LU83573A1 (en) 1981-12-01
GB2082624A (en) 1982-03-10
ES8206615A1 (en) 1982-08-16
JPH0762162B2 (en) 1995-07-05
NL193320C (en) 1999-06-02
MX157845A (en) 1988-12-16

Similar Documents

Publication Publication Date Title
US4153426A (en) Synthetic gas production
JPS6247473B2 (en)
KR0131266B1 (en) Process for the production of iron using converter
US4356035A (en) Steelmaking process
US5630862A (en) Method of providing fuel for an iron making process
US4566904A (en) Process for the production of iron
US4045214A (en) Method for producing steel
JPH0219166B2 (en)
US4380469A (en) Process and apparatus for continuously reducing and melting metal oxides and/or pre-reduced metallic materials
JPS58152091A (en) Method and apparatus for gasifying carbonaceous material
US4198230A (en) Steelmaking process
US4235425A (en) Impact bed gasifier-melter
NO142312B (en) PROCEDURE FOR MANUFACTURING LIQUID RAJJAR
GB2056498A (en) Method and Apparatus for Producing Molten Iron from Iron Oxide with Coal and Oxygen
US4316739A (en) Method for producing molten iron
CZ182995A3 (en) Coke-heated cupola and process of melting materials based on iron metals
US7238222B2 (en) Thermal synthesis production of steel
US5558696A (en) Method of direct steel making from liquid iron
US4357160A (en) Process for improving the use of heat in steel production from solid iron material
US5810905A (en) Process for making pig iron
US20050151307A1 (en) Method and apparatus for producing molten iron
US4908059A (en) Process for melting cold iron material
JPS597327B2 (en) Low-Si operation method for blast furnace by mixed injection of pulverized coal and basic substance
JPS6232243B2 (en)
MXPA93005880A (en) Method for providing fuel for a hie manufacturing process