JPS6247088B2 - - Google Patents

Info

Publication number
JPS6247088B2
JPS6247088B2 JP56006693A JP669381A JPS6247088B2 JP S6247088 B2 JPS6247088 B2 JP S6247088B2 JP 56006693 A JP56006693 A JP 56006693A JP 669381 A JP669381 A JP 669381A JP S6247088 B2 JPS6247088 B2 JP S6247088B2
Authority
JP
Japan
Prior art keywords
ironing
end faces
cylindrical
seam
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56006693A
Other languages
Japanese (ja)
Other versions
JPS57121823A (en
Inventor
Toshuki Matsuzaki
Hikari Matsuzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP669381A priority Critical patent/JPS57121823A/en
Priority to DE19823200631 priority patent/DE3200631A1/en
Priority to FR8200538A priority patent/FR2498006B1/en
Publication of JPS57121823A publication Critical patent/JPS57121823A/en
Priority to US06/582,856 priority patent/US4570843A/en
Publication of JPS6247088B2 publication Critical patent/JPS6247088B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microwave Tubes (AREA)

Description

【発明の詳細な説明】 この発明は金属円筒部材の製造方法に関する。[Detailed description of the invention] The present invention relates to a method of manufacturing a metal cylindrical member.

金属円筒部材はきわめて多くの分野で使用さ
れ、その1つの分野として電子管の真空容器を兼
ねるアノードなどの電極への使用がある。この発
明は電子管の分野以外にも広く用いられる金属円
筒部材の製造方法に係るが、具体的な例としてマ
グネトロンのアノード、とくにアノードシリンダ
ーを例にとつて以下説明する。
Metal cylindrical members are used in numerous fields, one of which is their use in electrodes such as anodes that also serve as vacuum vessels for electron tubes. The present invention relates to a method for manufacturing a metal cylindrical member that is widely used in fields other than electron tubes, and will be described below using a magnetron anode, particularly an anode cylinder, as a specific example.

周知のように例えば電子レンジ用マグネトロン
のアノードは、円筒状アノードシリンダーの内側
に放射状に複数枚のアノードベインが並べられこ
のベインの数に相当する共振空洞が構成されてな
る。これらは電気伝導度および熱伝導度のよい銅
(Cu)、アルミニウム(Al)などが使用されうる
が、一般的には耐熱性の点から銅(Cu)が用い
られる。このマグネトロンアノードの製造方法と
して従来実用になつている方法は、長大な円筒素
材をアノードシリンダーとしての所要の長さに切
断し、その内外面や両開口端部を所定の形状に切
削加工したうえ内周壁にアノードベインを鑞接す
る方法、あるいは特公昭51−17868号公報や雑誌
「精密機械」第39巻第6号(1973(昭和48)年6
月発行、641〜647頁)などに開示されているホビ
ング加工によりアノードシリンダーとベインとを
一体に押出成形する方法である。しかしながら前
者の方法は円筒素材そのものの製造に多くの労力
を要するため高価となり、またアノードシリンダ
ーの内、外径寸法をマグネトロンの製造者におい
て自由には変更できないし、後者の方法は多くの
残肉を捨るため材料利用効率が悪くまたホビング
加工のための金型の摩耗がはげしくこの点で高価
につき工業的に不都合がある。
As is well known, the anode of a magnetron for a microwave oven, for example, has a plurality of anode vanes arranged radially inside a cylindrical anode cylinder, and resonant cavities corresponding to the number of vanes are formed. Copper (Cu), aluminum (Al), etc., which have good electrical conductivity and thermal conductivity, can be used for these materials, but copper (Cu) is generally used from the viewpoint of heat resistance. The conventional manufacturing method for magnetron anodes is to cut a long cylindrical material to the required length for the anode cylinder, cut the inner and outer surfaces and both opening ends into a predetermined shape, and then How to braze the anode vane to the inner peripheral wall, or the method of soldering the anode vane to the inner peripheral wall, or the publication of Special Publication No. 17868 (1973) or the magazine "Precision Machinery" Vol. 39 No. 6 (1973 (Showa 48)
This is a method of integrally extruding an anode cylinder and a vane using a hobbing process, as disclosed in J. P., pp. 641-647). However, the former method requires a lot of labor to manufacture the cylindrical material itself, making it expensive, and the magnetron manufacturer cannot freely change the inner and outer diameter dimensions of the anode cylinder. Since the material is discarded, the efficiency of material utilization is poor, and the mold for hobbing is subject to severe wear, which makes it expensive and industrially inconvenient.

そこで平板状素材を丸め成形してアノードシリ
ンダーをつくり、内側にベインを接合してマグネ
トロンアノードを製造する方法が既に種々提案さ
れており、これは平板状素材の入手および製造が
容易であり、また所望のシリンダー直径や肉厚に
設計しなおしてつくることも容易に可能であり、
さらにまた材料の利用率が100%に近いという特
徴がある。このような丸め成形によるアノードの
製造技術は、例えば特開昭48−90464号、実開昭
49−11659号、実開昭49−67545号、実開昭50−
157854号、実開昭50−157855号、実開昭51−
121160号の各公報、明細書および図面、あるいは
USP4163921号明細書などに開示されている。
Therefore, various methods have already been proposed in which a flat material is rolled into an anode cylinder and a vane is bonded to the inside to manufacture a magnetron anode. It is also possible to easily redesign and manufacture the desired cylinder diameter and wall thickness.
Another feature is that the material utilization rate is close to 100%. Such an anode manufacturing technology by rounding is disclosed in, for example, Japanese Patent Application Laid-open No. 48-90464 and Japanese Utility Model Application No.
No. 49-11659, No. 49-67545, No. 50-
No. 157854, No. 157855, No. 157855, No. 157855, No. 51-
Each publication, specification and drawing of No. 121160, or
It is disclosed in USP4163921 specification etc.

また、円筒状部品をしごき成形加工によりスプ
リングバツクを抑圧して製造する方法を本発明者
の一人が先に提案し、それは特開昭55−22477号
公報に開示されている。
Furthermore, one of the inventors of the present invention previously proposed a method for manufacturing cylindrical parts by ironing and suppressing spring back, and this method is disclosed in Japanese Patent Application Laid-Open No. 55-22477.

しかしながら、平板状素材を丸め加工した場
合、とくに両端面合わせ目の全面にわたる完全な
密着性を有してそれによりこの合わせ目の信頼性
の高い気密接合状態を有する円筒部材を得ること
が困難である。平板状素材を丸め成形したうえ、
上述のようにしごき成形加工により円筒状部品を
得る方法によつても、しごき段数(又は回数)を
不所望に増加したり、1段(又は1回)当たりの
しごき率すなわち肉厚減少率を非常に大きくしな
いと両端面合わせ目を開く方向のスプリングバツ
クを解消することが困難であるとともに、この合
わせ目を〓間なく全面にわたつて密着させること
が困難な傾向がある。そして、しごき率をあまり
大きくすると、加工硬化がすすんで素材結晶粒界
に破断が生じたり、プレス圧の異常に高い装置を
用意しなければならないなどの不都合がある。
However, when rounding a flat material, it is difficult to obtain a cylindrical member that has complete adhesion over the entire surface of the seam between both end faces, thereby providing a reliable air-tight joint at the seam. be. After forming the flat material into a ball,
As mentioned above, the method of obtaining cylindrical parts by ironing may undesirably increase the number of ironing stages (or number of times) or reduce the ironing rate per stage (or one round), that is, the wall thickness reduction rate. Unless it is made very large, it is difficult to eliminate the spring back in the direction of opening the seam of both end faces, and it tends to be difficult to bring the seam into close contact over the entire surface without leaving the seam. If the ironing rate is set too high, work hardening may proceed and breakage may occur at the grain boundaries of the material, and there may be disadvantages such as the need to prepare equipment with abnormally high press pressure.

この発明は基本的には以上のような平板状素材
を丸め成形加工して金属円筒部材を製造する方法
に関するものであり、とくに上述のような工業的
実用上の諸要点を満足しえた製造方法を提供する
ものである。
The present invention basically relates to a method of manufacturing a metal cylindrical member by rounding and forming a flat plate-like material as described above, and in particular, a manufacturing method that satisfies various industrial and practical points as described above. It provides:

すなわちその特徴とするところは、銅のような
平板状金属素材を丸め成形およびしごき(絞り)
成形したあと軸に平行な方向の圧縮力を加える圧
縮成形をおこなつて、素材両端面の軸方向に平行
な合わせ目を全体にわたつて完全に密着させ、し
かるのちこの合わせ目を鑞接または溶接等により
気密接合して円筒部材を製造する点にある。
In other words, its special feature is that it is capable of rounding and ironing (drawing) flat metal materials such as copper.
After forming, compression molding is performed to apply compressive force in a direction parallel to the axis, and the seams parallel to the axis on both end faces of the material are completely adhered to each other, and then this seam is soldered or soldered. The point is that the cylindrical member is manufactured by airtightly joining it by welding or the like.

以下その実施例を図面を参照して説明する。な
お同一部分は同一符号であらわす。
Examples thereof will be described below with reference to the drawings. Note that the same parts are represented by the same symbols.

以下に示す実施例はマグネトロンアノード、と
くにアノードシリンダーの製造方法であるが、も
ちろんこれに限定されるものではない。
The embodiments shown below are methods for manufacturing magnetron anodes, particularly anode cylinders, but are not limited thereto.

本発明によつて完成するマグネトロンアノード
は、第1図および第2図に示すように円筒状のア
ノードシリンダー21の内側に放射状に複数枚の
アノードベイン22,22………を鑞付けなどに
より接合固着してなる。シリンダー21は銅すな
わち無酸素銅、あるいは銅を主とする銅合金(単
に銅と記す)からなり、軸に沿つて平行に延びる
素材両端面合せ目23が鑞接あるいは溶接より真
空気密に接合されている。この接合部は内、外方
に突出することなく成形されており、またマグネ
トロンの製造過程および動作中にさらされる温度
に充分耐える融点をもち、且つ断続動作による膨
張収縮に対しても気密性を有し、変形が生じない
ように形成されている。これは合せ目の内側から
外側へかけて、および軸方向の全体にわたる密着
性が完全であることから基本的に得られる。
As shown in FIGS. 1 and 2, the magnetron anode completed according to the present invention has a plurality of anode vanes 22, 22, . It becomes stuck. The cylinder 21 is made of copper, oxygen-free copper, or a copper alloy mainly composed of copper (simply referred to as copper), and the mating seams 23 at both ends of the material, which extend parallel to the axis, are vacuum-tightly joined by soldering or welding. ing. This joint is molded without protruding inward or outward, has a melting point sufficient to withstand the temperatures exposed during the manufacturing process and operation of the magnetron, and is airtight against expansion and contraction due to intermittent operation. It is formed so that deformation does not occur. This is essentially achieved by perfect adhesion from the inside to the outside of the seam and throughout the axial direction.

このアノードシリンダー21は第3図および第
4図に示すように長尺の平板状素材24を所定の
長さlにカツター25により切断して得た平板状
素材26から製造される。所定長さの平板状素材
26の板厚t1は製品アノードシリンダー21の肉
厚よりも極くわずか厚いものであり、長さlはそ
の中立線円周長に対して同等もしくは極くわずか
長い寸法となるように切断され、各面が基本的に
直角に交わる六面体である。
The anode cylinder 21 is manufactured from a flat material 26 obtained by cutting a long flat material 24 into a predetermined length l using a cutter 25, as shown in FIGS. 3 and 4. The plate thickness t 1 of the flat material 26 of a predetermined length is extremely slightly thicker than the wall thickness of the product anode cylinder 21, and the length l is equal to or extremely slightly longer than its neutral line circumference. It is a hexahedron that is cut to size and each face basically intersects at a right angle.

この平板状素材26から概して第5図に示す各
工程を経て円筒状アノードシリンダー21を形成
し、最後にベインを固着してマグネトロンアノー
ドを完成する。すなわち平板状素材26を丸め成
形する工程27によりほぼ円筒状の丸め成形品を
得る。この段階では素材の両端面23aは密着せ
ず断面略V字状の開先間〓が残つている。次にし
ごき成形(絞り成形)工程28を経て円筒状のし
ごき成形品を得る。そしてこのあと軸方向に圧縮
力を加えながら圧縮成形もしくは上記のしごき成
形工程とは別の付加的なしごき成形を同時に兼ね
た圧縮成形を行なう工程29を経て円筒状の圧縮
成形品を得る。そして開口端部を切削する切削加
工工程30に移る。こうして円筒部材すなわちア
ノードシリンダーとして必要な寸法、形状に加工
する。そして密着している両端面合わせ目を清浄
に脱脂、洗浄したのち鑞材等をこの合わせ目には
さんで鑞接するが、溶接などににより気密接合す
る工程31に移る。最後にこの気密接合工程31
と同時またはその後に第1図および第2図に示す
如く円筒状アノードシリンダーの内周壁に所定枚
数のアノードベインを鑞接などにより接合、固着
してマグネトロンアノードを完成する。
From this flat material 26, a cylindrical anode cylinder 21 is formed through the steps generally shown in FIG. 5, and finally a vane is fixed to complete the magnetron anode. That is, by the step 27 of rolling the flat material 26, a substantially cylindrical rounded product is obtained. At this stage, both end surfaces 23a of the material do not come into close contact with each other, leaving a gap between the grooves having a substantially V-shaped cross section. Next, a cylindrical ironed product is obtained through an ironing (drawing) step 28. Thereafter, a cylindrical compression-molded product is obtained through a step 29 in which compression molding is performed while applying a compressive force in the axial direction, or compression molding is performed simultaneously with additional ironing that is different from the ironing process described above. Then, the process moves to a cutting process 30 in which the opening end is cut. In this way, it is processed into the necessary dimensions and shape as a cylindrical member, that is, an anode cylinder. After thoroughly degreasing and washing the joints between the two end faces that are in close contact with each other, a solder material or the like is sandwiched between the joints and the joints are soldered, but the process moves on to step 31 of airtightly joining the joints by welding or the like. Finally, this airtight joining process 31
At the same time or thereafter, a predetermined number of anode vanes are joined and fixed to the inner peripheral wall of the cylindrical anode cylinder by brazing or the like, as shown in FIGS. 1 and 2, to complete the magnetron anode.

以下各工程につき説明する。 Each step will be explained below.

丸め成形工程27は、平板状素材26を第6図
に示すように、数10Kg以上の圧力で一方の芯金ロ
ール32とポリウレタンゴムのような強弾性材か
らなる外周ロール33とがかみ合う丸め成形装置
の各ロール間に挿入され丸め成形される。外周ロ
ール33はシヨア硬度80〜95゜の材質が適当であ
り、これに矢印34の如く回転駆動力が与えられ
る。芯金ロール32はアノードシリンダーの内径
寸法より少し小さい外径寸法をもつ硬質金属であ
り、これ自体には回転駆動力は与えず外周ロール
から伝達される力で自在に矢印35の如く回転す
るようになつている。この丸め成形によつて第7
図に示すように平板状素材はほぼ円筒状に成形さ
れる。この丸め成形で得られる円筒状丸め成形品
21は両端面23a付近が直線状のままである。
次にこの両端面合わせ目の整形および真円度を高
める目的で第8図図に示す丸め整形装置により整
形する。すなわち芯金36の外周に第7図に示し
た円筒状部品を置き、半円状の押圧面37をもつ
2個の押圧治具38,39を矢印38a,39a
の如く両端面23aの合わせ目から中心軸を通る
方向で互いに逆向きに押して整形する。これによ
つてかなり真円度が高められた円筒状の丸め成形
品21が得られる。この丸め成形品21は素材の
外周面がわがあまり塑性変形による延びが生じて
いないため、第9図に示すように両端面の内周面
がわを強制的に密着させても断面V字状の開先間
〓Gが残つている。このように平板状素材を第6
図あるいは第8図に示すような芯金のまわりに丸
め成形して得られる略円筒状の丸め成形品は、第
7図あるいは第9図に示すように両端面突合わせ
部に断面略V字状の開先間〓が残る。また素材の
もつスプリングバツク力のために突合わせ部は密
着せず開いた状態となつている。
In the rounding process 27, as shown in FIG. 6, the flat material 26 is rounded by engaging one core roll 32 with a peripheral roll 33 made of a strong elastic material such as polyurethane rubber under a pressure of several tens of kilograms or more. It is inserted between the rolls of the device and formed into a ball. The outer peripheral roll 33 is suitably made of a material having a shore hardness of 80 to 95 degrees, and a rotational driving force is applied to it as shown by an arrow 34. The core metal roll 32 is a hard metal having an outer diameter slightly smaller than the inner diameter of the anode cylinder, and does not apply any rotational driving force to itself, but rotates freely as shown by the arrow 35 by the force transmitted from the outer peripheral roll. It's getting old. By this rounding, the seventh
As shown in the figure, the flat material is formed into a substantially cylindrical shape. The cylindrical rounded product 21 obtained by this rounding remains straight in the vicinity of both end surfaces 23a.
Next, for the purpose of shaping the joint between both end faces and improving the roundness, the rounding machine shown in FIG. 8 is used to shape the joint. That is, the cylindrical part shown in FIG. 7 is placed on the outer periphery of the core metal 36, and two pressing jigs 38 and 39 having a semicircular pressing surface 37 are moved along the arrows 38a and 39a.
Shaping is performed by pressing in opposite directions from the seam of both end surfaces 23a to the direction passing through the central axis. As a result, a cylindrical rounded product 21 with considerably improved roundness is obtained. This rounded product 21 has a V-shaped cross section even if the inner circumferential surfaces of both end surfaces are forcibly brought into close contact because the outer circumferential surface of the material is not stretched too much due to plastic deformation. G remains between the grooves. In this way, the flat material is
A substantially cylindrical rounded product obtained by rounding around a core metal as shown in FIG. 7 or FIG. A gap between the grooves remains. Also, due to the springback force of the material, the abutted portions do not come into close contact and remain open.

このように丸め成形品をつくるが、その方法は
上述の実施例に限定されず、平板状素材を第9図
に示すように丸め成形する公知の方法をも採用し
うることは当然である。
Although a rounded product is produced in this way, the method is not limited to the above-mentioned embodiment, and it goes without saying that a known method for rounding a flat plate material as shown in FIG. 9 may also be employed.

次にしごき(絞り)成形工程28について説明
する。
Next, the ironing (drawing) forming step 28 will be explained.

この工程は丸め成形品の両端面間に残つている
断面略V字状の開先間〓を概ね埋めるとともに全
周の肉厚を略均等化するための成形工程であり、
第10図に示すようにしごき成形装置を用いて例
えば同図の場合1ストロークで2段の連続しごき
成形を行なう。この装置は図の上方にポンチ40
が上下動するように配設され、下方に丸め成形品
21を定位置にするためのガイド41、第1のし
ごきダイ42、ガイドスペーサ43、第2のしご
きダイ44、基台45が設置されている。ポンチ
40の外径寸法d1はアノードシリンダーの内径寸
法に相当し、第1のダイ42の最小内径d2、第2
のダイ44の最小内径d3は順次小さくなる寸法で
あつて、しかもポンチの外径寸法d1との差が丸め
成形品がポンチ40の外周にはまつて各ダイを通
る際のしごき率(肉厚減少率)すなわち各ダイを
通る前の肉厚に対する通過後の肉厚減少分の比率
(以下同じ)が各々3%以下となる寸法に設定さ
れる。このように各しごきダイの最小内径寸法
は、丸め成形品の第9図に示す如き両端面内周側
を強制的に密着させた状態での外径寸法よりも小
さい寸法となつている。なおポンチ40にはスト
ツパ部46,47が設けられている。好ましい例
としては第1しごきダイ42でのしごき率が約2
%、第2しごきダイ44でのしごき率が約3%と
なるように設定する。そしてまず図のように丸め
成形品21がガイド41の内側に置かれ、次にポ
ンチ40が下降して丸め成形品21がポンチ外周
にはまりストツハー部46で押されて一緒に2個
のしごきダイ42,44を1ストロークで連続的
に通り点線で示す如くしごき成形品21が得られ
る。軸方向にわずかにしごかれた肉はポンチ40
のもう1つのストツパ部47までの外周に残る。
このしごき成形により第11図に示すように、丸
め成形品21の素材両端面合わせ目23のV字状
開先間〓Gを少しずつ埋めるように第11図aに
矢印48の如く両側から素材が塑性流動される。
そして順次同図bの如く中立線付近まで内周面が
わから密着させられてゆき、最終的に同図cに示
す如く内周面がわから外周面がわにわたり、また
筒の軸方向の全体にわたり〓間なく密着されるよ
うに成形されてゆく。しかも、このしごき成形に
より両端面合わせ面23を開く方向のスプリング
バツク力が低減されたしごき成形品21が得られ
る。
This process is a forming process to approximately fill the gap between the grooves, which have a roughly V-shaped cross section, remaining between both end faces of the rounded molded product, and to approximately equalize the wall thickness around the entire circumference.
As shown in FIG. 10, an ironing machine is used to perform two consecutive ironing steps in one stroke in the case shown in FIG. This device has a punch 40 at the top of the figure.
is arranged to move up and down, and a guide 41, a first ironing die 42, a guide spacer 43, a second ironing die 44, and a base 45 are installed below to hold the rounded product 21 in a fixed position. ing. The outer diameter d 1 of the punch 40 corresponds to the inner diameter of the anode cylinder, and the minimum inner diameter d 2 of the first die 42 and the second
The minimum inner diameter d 3 of the die 44 is a dimension that gradually decreases, and the difference from the outer diameter dimension d 1 of the punch is determined by the ironing rate ( The dimensions are set such that the wall thickness reduction rate), that is, the ratio of the wall thickness reduction after passing through each die to the wall thickness before passing through each die (the same applies hereinafter) is 3% or less. In this way, the minimum inner diameter of each ironing die is smaller than the outer diameter when the inner peripheral sides of both end faces of the rounded product are forcibly brought into close contact as shown in FIG. The punch 40 is provided with stopper portions 46 and 47. As a preferable example, the ironing rate of the first ironing die 42 is about 2.
%, and the ironing rate at the second ironing die 44 is set to be about 3%. First, the rounded product 21 is placed inside the guide 41 as shown in the figure, and then the punch 40 is lowered, and the rounded product 21 is fitted into the outer periphery of the punch and pushed by the stocker part 46, and then pushed together into the two ironing dies. 42 and 44 are passed continuously in one stroke to obtain the ironed molded product 21 as shown by the dotted line. Punch 40 for meat that is slightly squeezed in the axial direction.
It remains on the outer periphery up to the other stopper part 47.
As shown in FIG. 11, as shown in FIG. 11, by this ironing, the material is removed from both sides as shown by the arrow 48 in FIG. undergoes plastic flow.
Then, the inner circumferential surface is gradually brought into close contact with the neutral line up to the vicinity of the neutral line as shown in figure b, and finally, as shown in figure c, the inner circumferential surface is spread over the outer circumferential surface, and the entire axial direction of the cylinder is covered. 〓It will be molded so that it will fit closely. Moreover, by this ironing, the ironing molded product 21 can be obtained in which the spring back force in the direction of opening the both end face mating surfaces 23 is reduced.

このしごき成形によつて加工品は数10℃以上に
高温となるので、油冷や自然冷却で室温付近まで
冷却して次の工程に移る。
This ironing process raises the temperature of the processed product to several tens of degrees Celsius or higher, so it is cooled to around room temperature by oil cooling or natural cooling before moving on to the next process.

ところで上述のしごき成形工程を経て得られた
しごき成形品の両端面の合わせ目23をよく観察
すると、第12図に符号Gで示すような合わせ目
の内周面がわから外周面がわへの中間部にわずか
な〓間が軸に平行に洞くつの如く残る場合がしば
しば認められる。このような洞くつ状の間〓Gを
なくそうとしてしごき率を大幅に大きくすると、
前述のようにしごき段数(または回数)を相当増
やすとかプレス圧の異常に高い装置を要し、しご
き工程が繁雑で実用性が乏しくなる。またしごき
率を大きくすると、加工硬化による結晶粒界の破
断現象が生じてしまう。このような理由から、し
ごき成形工程でのしごき率はなるべく小さくとど
めることが望ましいが、しごき率が小さいと、間
〓Gが残りやすく、また素材のスプリングバツク
力の残留のために両端面合わせ目がわずかながら
開いてしまう。そこで、次の圧縮成形工程29を
経て両端面合わせ目の間〓Gを確実に埋めるとと
もに、この合わせ目を開く方向のスプリングバツ
ク現象をなくする。
By the way, if you carefully observe the seam 23 on both end surfaces of the ironed product obtained through the ironing process described above, you will notice that the inner peripheral surface of the seam, as shown by the symbol G in FIG. 12, is visible on the outer peripheral surface. It is often observed that a small gap remains parallel to the axis, resembling a cave, in the middle. If you greatly increase the squeezing rate in an attempt to eliminate G during such a cave-shaped period,
As mentioned above, it is necessary to considerably increase the number of ironing steps (or number of times) or to use equipment with abnormally high press pressure, making the ironing process complicated and impractical. Furthermore, if the ironing rate is increased, a phenomenon of grain boundary rupture occurs due to work hardening. For these reasons, it is desirable to keep the ironing rate in the ironing process as low as possible; however, if the ironing rate is small, a gap G tends to remain, and the spring back force of the material remains, causing the joint between both end faces to opens slightly. Therefore, through the next compression molding step 29, the gap 〓G between the joints of both end faces is reliably filled, and the spring back phenomenon in the direction of opening the joints is eliminated.

さて、この圧縮成形工程29は、第13図およ
び第14図に示すようにしごき成形品21に軸方
向の圧縮力を加えて塑性変形させ、素材両端面合
わせ目の密着およびこの合わせ目を開く方向のス
プリングバツク力の抑圧をはかる。またこの工程
で上述のしごき成形工程とは別に付加的なしごき
成形およびアノードシリンダーの開口端面の形状
加工を同時に行なうことができる。同図にはその
例を示してあり、第13図は成形直前の状態を、
また第14図には成形終了状態を示してある。す
なわちこの装置は、ガイド41の下方にしごきダ
イ部分49を有する長尺のダイを有し、その内側
下方にダイ・アンド・ノツクアウト51が設置さ
れている。このダイ・アンド・ノツクアウト51
はその上端面にポンチ40の先端が密嵌合する受
部52およびアノードシリンダーの開口端面形状
の成形のための所望形状の外周端53を有し、成
形後の圧縮成形品21を押上げシリンダー54に
より図の上方に突き出すノツクアウトの機能を兼
ね備えている。ポンチ40にもアノードシリンダ
ー開口端面の形状成形用の段部55を有し、これ
は余分の素材肉を吸収する空間にもなる。
Now, in this compression molding step 29, as shown in FIGS. 13 and 14, compressive force in the axial direction is applied to the ironed molded product 21 to cause it to plastically deform, thereby bringing the joints of both end faces of the material into close contact and opening the joints. Aims to suppress spring back force in the direction. Further, in this step, additional ironing and shaping of the opening end surface of the anode cylinder can be performed simultaneously in addition to the ironing and forming step described above. The figure shows an example of this, and Figure 13 shows the state immediately before molding.
Further, FIG. 14 shows a state in which the molding is completed. That is, this device has a long die having an ironing die portion 49 below a guide 41, and a die-and-knockout 51 is installed inside and below the die. This Die and Knock Out 51
has a receiving portion 52 in which the tip of the punch 40 is tightly fitted on its upper end surface, and an outer peripheral end 53 having a desired shape for molding the open end shape of the anode cylinder, and pushes up the compression molded product 21 after molding into the cylinder. 54, it also has the function of a knockout that protrudes upward in the figure. The punch 40 also has a stepped portion 55 for shaping the opening end face of the anode cylinder, and this also serves as a space for absorbing excess material.

これによつてしごき成形品21はポンチ40の
外周にはめられて下降し、しごきダイ部分49で
しごき成形され、さらに長尺のダイ50およびポ
ンチ40の間に挟まれて拘束されたままその両開
口端部は一方がポンチ40のストツパ部46で、
他方がダイ・アンド・ノツクアウト51の外周端
面53の間に拘束されて軸方向の圧縮力を受け
る。この圧縮力は被加工品に対して第11図aま
たはbに矢印48で示したと同様に合わせ目の間
〓Gを埋めるような円周方向および一部軸方向の
塑性流動を起こさせる。したがつてこれによつて
素材両端面合わせ目23は全体にわたつて確実に
密着され、しかも両開口端の形状を所望形状もし
くはそれに近い形状に同時成形できる。また、両
端面合わせ目を開く方向のスプリングバツク力が
解消されてむしろこの合わせ目を密閉する方向の
スプリング作用が生じ、得られる圧縮成形品21
すなわちアノードシリンダーは両端面合わせ目が
拡がつてしまうことがない。なおこのように両端
面合わせ目を開く方向のスプリングバツク力が解
消されむしろこの合わせ目を密閉する方向のスプ
リング作用が得られる理由は、素材に対する塑性
変形力が、ベクトル的に軸方向および円周方向に
加わること、また素材が両端面合わせ目に向けて
両方から流動し合い突き当たるのでその際生じる
反作用的な力のために、むしろこの合わせ目を密
着させる方向のスプリング作用が生じることによ
るものと考えられる。なお軸方向の寸法が製品ア
ノードシリンダーに対応し、また余分にはみ出す
素材肉の量が少なくなるようにポンチ40のスト
ローク寸法とダイ・アンド・ノツクアウト51と
の位置関係を適当に定めておくことは当然であ
る。
As a result, the ironed molded product 21 is fitted onto the outer periphery of the punch 40 and lowered, is ironed and formed in the ironing die portion 49, and is further held between the elongated die 50 and the punch 40 while being restrained. One end of the open end is a stopper part 46 of the punch 40,
The other end is restrained between the outer circumferential end surfaces 53 of the die and knockout 51 and receives a compressive force in the axial direction. This compressive force causes the workpiece to undergo plastic flow in the circumferential direction and partially in the axial direction, filling the gap between the seams, similar to that shown by arrow 48 in FIGS. 11a or 11b. Therefore, this ensures that the joints 23 on both ends of the material are brought into close contact over the entire area, and the shapes of both open ends can be simultaneously molded into a desired shape or a shape close to it. In addition, the spring back force in the direction of opening the seam between both end faces is eliminated, and instead a spring action occurs in the direction of sealing the seam, resulting in a compression molded product 21.
In other words, the anode cylinder's joints on both end faces do not widen. The reason why the spring back force in the direction of opening the seam between both end faces is eliminated and the spring action in the direction of sealing the seam is obtained is that the plastic deformation force on the material vectors in the axial and circumferential directions. This is due to the reaction force that occurs when the material flows from both sides toward the seam of both end faces and collides with each other, which causes a spring action in the direction of bringing the seam into close contact. Conceivable. In addition, it is necessary to appropriately determine the stroke dimension of the punch 40 and the positional relationship with the die and knockout 51 so that the axial dimension corresponds to the product anode cylinder and the amount of excess material that protrudes is reduced. Of course.

マグネトロンアノードシリンダーは、開口端部
のみならず内周面にベインを挿入、鑞接しやすい
ようにテーパ面を形成したり、あるいは外周面に
ラジエータを圧入、固着しやすいようにテーパ面
を形成して用いる場合がある。そこでこのような
内、外周面のテーパ面加工をこの圧縮成形工程に
おいて同時に成形する方法が好都合である。すな
わち第15図および第16図に示すように、ダイ
50にテーパ部56を形成しておき、圧縮形成す
れば同時に被加工品にテーパ面ができる。このテ
ーパ部56はその上方のしごきダイ部分49とと
もにしごき成形機能もあわせ持つているので、素
材両端面合わせ目の密着性向上に一層役立つ。な
おポンチ40の外周にテーパ部を形成してもよ
く、これらの場合は圧縮形成により被加工品の肉
厚が減少する傾向のテーパであることが望まし
い。なぜならばさもないと素材両端面の合わせ目
が不所望に拡がつて部分的または全体的に間〓が
生じやすい。
Magnetron anode cylinders have vanes inserted not only at the open end but also on the inner circumferential surface, and a tapered surface is formed to make it easier to solder, or a tapered surface is formed on the outer circumferential surface to make it easier to press fit and fix the radiator. Sometimes used. Therefore, it is convenient to perform such tapered surface processing on the inner and outer circumferential surfaces at the same time in this compression molding step. That is, as shown in FIGS. 15 and 16, if a tapered portion 56 is formed in the die 50 and compressed, a tapered surface is simultaneously formed on the workpiece. This tapered portion 56, together with the ironing die portion 49 above it, also has an ironing forming function, so that it is further useful for improving the adhesion between the joints of both end faces of the material. Note that a tapered portion may be formed on the outer periphery of the punch 40, and in these cases, it is desirable that the taper be such that the thickness of the workpiece tends to be reduced by compression forming. Otherwise, the seam between the two end faces of the material will undesirably widen, resulting in a partial or total gap.

なお、この圧縮成形工程29は、しごき成形工
程28で成形した円筒状のしごき成形品を冷却し
て室温まで降下したのちに行なうことが重要であ
る。これによつて素材材質のばらつきにかかかわ
りなくしごき率を制御でき、高精度の安定な連続
的成形作業を続けることができる。
It is important to perform this compression molding step 29 after the cylindrical ironed product formed in the ironing step 28 has been cooled down to room temperature. This makes it possible to control the ironing rate regardless of variations in the raw material quality, and to continue stable continuous molding work with high precision.

こうして得られるアノードシリンダーは、真円
度すなわちシリンダー外周の最大直径D1から最
小直径D2を差引いた量(D1−D2)の平均直径D3
対する比率(D1−D2/D3)が0.15%以下で、円周
上の偏肉率すなわち最大肉厚t2から最小肉厚t3
差引いた偏肉量(t2−t3)の平均肉厚t4に対する比
率(t2−t3/t4)が2%以下、また素材両端面の合
わせ目は全面にわたつて間〓のないよくそろつた
製品として製造し得る。
The anode cylinder thus obtained has roundness, that is, the ratio of the maximum diameter D 1 of the cylinder outer circumference minus the minimum diameter D 2 (D 1 - D 2 ) to the average diameter D 3 (D 1 - D 2 /D 3 ) is 0.15% or less, and the thickness deviation on the circumference, that is, the ratio of the thickness deviation ( t 2 - t 3 ) obtained by subtracting the minimum thickness t 3 from the maximum thickness t 2 to the average thickness t 4 (t 2 -t 3 /t 4 ) is 2% or less, and it is possible to manufacture a well-aligned product with no gaps between the edges of both ends of the material.

なお、しごき成形工程28は第10図のように
1ストローク2段のしごきダイによる連続しごき
のほか、1ストロークで3段以上の連続しごき成
形であつても、また1ストロークで1段のしごき
成形を2回以上行なつてもよい。
In addition, the ironing process 28 includes continuous ironing with a two-stage ironing die per stroke as shown in Fig. 10, continuous ironing with three or more stages in one stroke, and one-stage ironing with one stroke. may be performed two or more times.

以上のような圧縮成形工程を経て得られる成形
品の両端面合わせ目23は第17図に示すその内
周側から外周側にわたつて、及び軸に沿う長手方
向の全体にわたつて完全に密着した円筒部材すな
わちアノードシリンダーが得られる。そして以上
のように成形した円筒部材は次に合わせ目の気密
接合工程に移される。
The seams 23 on both end faces of the molded product obtained through the compression molding process as described above are in perfect contact from the inner circumference to the outer circumference and throughout the longitudinal direction along the axis as shown in FIG. A cylindrical member, that is, an anode cylinder, is obtained. The cylindrical member formed as described above is then transferred to an airtight joining process at the seam.

この接合は鑞接や溶接などで行なうが、いずれ
にしても第18図に示すように合わせ目23を一
旦強制的に少し開いてこの面を脱脂し、即乾性の
溶液などのスプレーなどにより洗浄し、乾燥させ
る。鑞接を例にとればこの合わせ目に第19図に
示すように0.1〜0.2mm厚の薄板状硬ろう57を第
20図のようにはさみ、鑞接する。これによつて
合わせ目は全面にわたつて気泡のない良好な気密
鑞接ができ、直径寸法の変化もほとんど生じな
い。この点で、合わせ目に第12図に示したよう
な間〓Gが残つていると、ここに気泡が残つた
り、あるいはこの間〓に鑞材が吸い集められて全
面にわたる均一な鑞接が得られないので、この合
わせ目の密着性がきわめて重要なわけである。
This joining is done by soldering or welding, but in any case, as shown in Figure 18, the seam 23 is forced open a little, this surface is degreased, and then cleaned by spraying with a quick-drying solution. and dry. Taking soldering as an example, as shown in FIG. 19, a thin plate-shaped hard solder 57 having a thickness of 0.1 to 0.2 mm is sandwiched as shown in FIG. 20 and brazed. As a result, a good airtight solder joint without bubbles can be achieved over the entire surface of the seam, and there is almost no change in the diameter dimension. At this point, if a gap G as shown in Fig. 12 remains at the joint, air bubbles may remain there, or the solder material may be sucked up in this gap, resulting in a uniform soldering over the entire surface. Therefore, the adhesion of this seam is extremely important.

以上のようにこの発明によれば、しごき成形工
程でのしごき率を過度に大きくしなくても、圧縮
成形工程を経ることにより得られる円筒状圧縮成
形品の両端面合わせ目は、開先間〓や洞くつのよ
うな間〓が確実に埋まり、その内周側から外周側
にわたつて及び軸に沿う長手方向の全体にわたつ
て完全に密着した金属円筒部材が得られる。そし
てとくに、軸方向にしごかれて開口端部に残り切
削除去しなければならない素材肉の量も多くな
く、また両端面合わせ目を開く方向のスプリング
バツク現象も解消される。このように、両端面合
わせ目が信頼性よく気密接合された金属円筒部材
を得ることができる。
As described above, according to the present invention, the seam between both end faces of the cylindrical compression molded product obtained through the compression molding process can be adjusted between the grooves without increasing the ironing rate excessively. A metal cylindrical member is obtained in which the holes and cave-like gaps are reliably filled, and the metal cylindrical member is completely adhered from the inner circumferential side to the outer circumferential side and throughout the longitudinal direction along the axis. In particular, the amount of material remaining at the open end that has been squeezed in the axial direction and which must be removed is not large, and the spring back phenomenon in the direction of opening the joint between both end surfaces is also eliminated. In this way, it is possible to obtain a metal cylindrical member in which both end faces are reliably and airtightly joined.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により製造する一例のマグネト
ロンアノードを示す斜視図、第2図はその横断面
図、第3図は長尺材料の切断工程を示す断面図、
第4図は平板状素材を示す斜視図、第5図は本発
明の一実施例を示す工程概略図、第6図は丸め成
形工程の一例を示す概略断面図、第7図はそれに
より得られる丸め成形品の一例を示す横断面図、
第8図は丸め成形工程の他の例を示す横断面図、
第9図はそれにより得られる丸め成形品の一例を
示す横断面図、第10図は本発明におけるしごき
工程の一例を示す縦断面図、第11図a乃至c及
び第12図はしごき成形工程での円筒部材の各形
状例を示す横断面図、第13図および第14図は
本発明における圧縮成形工程の一例を示す各々半
縦断面図、第15図および第16図は同じく他の
例を示す各々半縦断面図、第17図は圧縮成形後
の円筒部材の要部横断面図、第18図は円筒部材
の合わせ目を洗浄する状態を示す横断面図、第1
9図は鑞材を示す斜視図、第20図は鑞接前の状
態を示す要部断面図である。 21……円筒部材(アノードシリンダー)、2
3……合わせ目、26……平板状素材、27……
丸め成形工程、28………しごき工程、29……
…圧縮成形工程、30………切削工程、31……
気密接合工程。
FIG. 1 is a perspective view showing an example of a magnetron anode manufactured according to the present invention, FIG. 2 is a cross-sectional view thereof, and FIG. 3 is a cross-sectional view showing a process of cutting a long material.
FIG. 4 is a perspective view showing a flat material, FIG. 5 is a process schematic diagram showing an embodiment of the present invention, FIG. 6 is a schematic cross-sectional view showing an example of a rounding process, and FIG. 7 is a resulting product. A cross-sectional view showing an example of a rounded molded product,
FIG. 8 is a cross-sectional view showing another example of the rounding process;
Fig. 9 is a cross-sectional view showing an example of a rounded molded product obtained thereby, Fig. 10 is a longitudinal sectional view showing an example of the ironing process in the present invention, Figs. 11 a to c, and Fig. 12 ironing process. 13 and 14 are half-longitudinal sectional views each showing an example of the compression molding process in the present invention, and FIGS. 15 and 16 similarly show other examples. FIG. 17 is a cross-sectional view of the main part of the cylindrical member after compression molding, and FIG. 18 is a cross-sectional view showing the joint of the cylindrical member being cleaned.
FIG. 9 is a perspective view showing the solder material, and FIG. 20 is a sectional view of the main part showing the state before soldering. 21...Cylindrical member (anode cylinder), 2
3... Seam, 26... Flat material, 27...
Rounding process, 28...Stringing process, 29...
...Compression molding process, 30...Cutting process, 31...
Airtight joining process.

Claims (1)

【特許請求の範囲】 1 所定長さに切断した平板状金属素材を芯金の
まわりに丸めて該素材両端面突合わせ部に断面略
V字状の開先間〓が残る如く略円筒状の丸め成形
品を得る丸め成形工程と、 この丸め成形工程を経て得られた略円筒状の丸
め成形品を、しごき成形用ポンチの外周に嵌合さ
せるとともに概略円筒状丸め成形品の外径寸法よ
りも小さい内径寸法を有するしごきダイに管軸方
向に沿つて通し素材に塑性流動を生ぜしめるしご
き成形工程と、 このしごき成形工程を経て得られる円筒状しご
き成形品を、対をなすポンチおよびダイの間に挿
入し拘束した状態で両開口端面から互いに軸方向
に圧縮する圧縮力を加えて素材に塑性流動を生ぜ
しめる圧縮成形工程と、 その後、得られた円筒状圧縮成形品の両端面合
せ目を気密接合する工程とを具備してなる金属円
筒部材の製造方法。 2 圧縮成形工程で、しごき成形品の内周面又は
外周面の少なくとも一方に、テーパ面を同時成形
する特許請求の範囲第1項記載の金属円筒部材の
製造方法。
[Scope of Claims] 1. A flat metal material cut to a predetermined length is rolled up around a core bar, and a substantially cylindrical shape is formed such that a groove with a substantially V-shaped cross section remains at the abutting portions of both end faces of the material. A rounding process to obtain a rounded product; The approximately cylindrical rounded product obtained through this rounding process is fitted onto the outer periphery of an ironing punch, and the outer diameter of the approximately cylindrical rounded product is The ironing process involves passing the material through an ironing die with a small inner diameter in the axial direction to generate plastic flow in the material. A compression molding process in which a compressive force is applied to the material in the axial direction from both open end faces while the material is inserted and restrained, thereby creating plastic flow in the material, and then a seam between both end faces of the resulting cylindrical compression molded product. A method for manufacturing a metal cylindrical member, comprising the step of airtightly joining the two. 2. The method for manufacturing a metal cylindrical member according to claim 1, wherein a tapered surface is simultaneously formed on at least one of the inner circumferential surface or the outer circumferential surface of the ironed molded product in the compression molding step.
JP669381A 1981-01-14 1981-01-20 Manufacture of metallic cylindrical member Granted JPS57121823A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP669381A JPS57121823A (en) 1981-01-20 1981-01-20 Manufacture of metallic cylindrical member
DE19823200631 DE3200631A1 (en) 1981-01-14 1982-01-12 METHOD FOR PRODUCING AN ANODE CYLINDER OF AN ELECTRON PIPE
FR8200538A FR2498006B1 (en) 1981-01-14 1982-01-14 PROCESS FOR MANUFACTURING CYLINDERS FOR ELECTRONIC TUBE ANODES
US06/582,856 US4570843A (en) 1981-01-14 1984-02-24 Method for manufacturing anode cylinders of electron tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP669381A JPS57121823A (en) 1981-01-20 1981-01-20 Manufacture of metallic cylindrical member

Publications (2)

Publication Number Publication Date
JPS57121823A JPS57121823A (en) 1982-07-29
JPS6247088B2 true JPS6247088B2 (en) 1987-10-06

Family

ID=11645417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP669381A Granted JPS57121823A (en) 1981-01-14 1981-01-20 Manufacture of metallic cylindrical member

Country Status (1)

Country Link
JP (1) JPS57121823A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227694U (en) * 1988-08-10 1990-02-22
JPH0333990U (en) * 1989-08-09 1991-04-03

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122439A (en) * 1974-03-14 1975-09-26
JPS5140300U (en) * 1974-09-20 1976-03-25
JPS5377868A (en) * 1976-11-25 1978-07-10 Bridgestone Cycle Ind Co Forming method of shape tube for bicycle
JPS53125954A (en) * 1977-04-11 1978-11-02 Nippon Kokan Kk <Nkk> Method of producing thick pipes
JPS5522442A (en) * 1978-08-03 1980-02-18 Yoshida Kogyo Kk <Ykk> Circular pipe forming method and device thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122439A (en) * 1974-03-14 1975-09-26
JPS5140300U (en) * 1974-09-20 1976-03-25
JPS5377868A (en) * 1976-11-25 1978-07-10 Bridgestone Cycle Ind Co Forming method of shape tube for bicycle
JPS53125954A (en) * 1977-04-11 1978-11-02 Nippon Kokan Kk <Nkk> Method of producing thick pipes
JPS5522442A (en) * 1978-08-03 1980-02-18 Yoshida Kogyo Kk <Ykk> Circular pipe forming method and device thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227694U (en) * 1988-08-10 1990-02-22
JPH0333990U (en) * 1989-08-09 1991-04-03

Also Published As

Publication number Publication date
JPS57121823A (en) 1982-07-29

Similar Documents

Publication Publication Date Title
KR101166534B1 (en) Manufacturing thereof for oil cooler of automatic transmission
JP2507665B2 (en) Method for manufacturing metal cylindrical member for electron tube
JPH0634282A (en) Heat exchanger and manufacture thereof and header tube for heat exchanger and manufacture thereof
US3677060A (en) Composite tool
US4527411A (en) Process for producing walking bar members for continuous casting
JPS61201926A (en) Yoke member and its manufacture of iuniversal joint
JPS6247088B2 (en)
US4784312A (en) Method of producing a frame body for an electric motor
US4570843A (en) Method for manufacturing anode cylinders of electron tubes
JPS6410285B2 (en)
JPS6335056B2 (en)
JPH0471741A (en) Manufacture of multidirectional fitting of different diameters and multidirectional fitting of different diameters
JP3517559B2 (en) Method of forming ring groove for resistance welding by coining
US3719068A (en) Method of manufacturing an article having a cylindrical peripheral wall and integral thin-walled portions inwardly thereof
JPS5936383B2 (en) Manufacturing method of magnetron anode
JPH078377B2 (en) Manufacturing method of copper cylinder
JPH0569254B2 (en)
JP2001191125A (en) Manufacturing method of branched tube
JPH05104191A (en) Cold forging method for shaft body with flange
US4410309A (en) Method of making a spark-plug center electrode
JP3564219B2 (en) Nozzle manufacturing method having cooling passage
JP3637249B2 (en) Manufacturing method of spherical ring on outer diameter side
JP3780578B2 (en) Yoke manufacturing method
JPH01245940A (en) Manufacture of t-pipe for air conditioner
JPS608128B2 (en) Manufacturing method of universal joint yoke