JPH0569254B2 - - Google Patents

Info

Publication number
JPH0569254B2
JPH0569254B2 JP10304887A JP10304887A JPH0569254B2 JP H0569254 B2 JPH0569254 B2 JP H0569254B2 JP 10304887 A JP10304887 A JP 10304887A JP 10304887 A JP10304887 A JP 10304887A JP H0569254 B2 JPH0569254 B2 JP H0569254B2
Authority
JP
Japan
Prior art keywords
anode
cutting
ironing
rounding
end faces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10304887A
Other languages
Japanese (ja)
Other versions
JPS63269435A (en
Inventor
Toshuki Matsuzaki
Koji Nagaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10304887A priority Critical patent/JPS63269435A/en
Publication of JPS63269435A publication Critical patent/JPS63269435A/en
Publication of JPH0569254B2 publication Critical patent/JPH0569254B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Microwave Tubes (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、マグネトロンアノードの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) This invention relates to a method for manufacturing a magnetron anode.

(従来の技術) 周知のように電子レンジ用マグネトロンのアノ
ードは、円筒状アノードシリンダーの内側に放射
状に複数枚のアノードベインが並べられこれのベ
インの数に相当する共振空胴が構成されてなる。
これらには一般に電気伝導度および熱伝導度のよ
い銅(Cu)が用いられる。言うまでもなくマグ
ネトロンアノードは、真空気密性および特性上か
らその真円度などの精度も充分よく成形されてい
る必要がある。
(Prior Art) As is well known, the anode of a magnetron for a microwave oven consists of a plurality of anode vanes arranged radially inside a cylindrical anode cylinder, forming a resonant cavity corresponding to the number of vanes. .
Copper (Cu), which has good electrical and thermal conductivity, is generally used for these. Needless to say, the magnetron anode must be molded with sufficient accuracy in terms of its roundness and other characteristics in view of its vacuum tightness and characteristics.

そこで平板状素材を丸め成形してアノードシリ
ンダーをつくり、内側にベインを接合してマグネ
トロンアノードを製造するいわゆる丸め成形方法
が既に知られている。これは平板状素材の入手お
よび製造が容易であり、また材料の利用効率が
100%に近いという特徴がある。このような丸め
成形によるアノードの製造技術は、例えば特開昭
57−118818号、あるいは特開昭57−121823号公報
などに開示されている。
Therefore, a so-called rounding method is already known in which a flat material is rolled to form an anode cylinder, and a vane is bonded to the inside of the cylinder to produce a magnetron anode. This is because flat plate materials are easy to obtain and manufacture, and material utilization efficiency is high.
It has the characteristic of being close to 100%. This type of anode manufacturing technology by rounding is known, for example, from Japanese Patent Application Laid-open No.
It is disclosed in No. 57-118818 or Japanese Patent Application Laid-Open No. 121823/1983.

(発明が解決しようとする問題点) ところで、このような丸め成形方法で均質なマ
グネトロンアノードを大量生産するには、使用す
る板状銅素材の硬度の選定が、とくに切断工程で
の板状素材の切断面形状および芯金のまわりに丸
め成形する工程での両端面突合わせ部の形状や寸
法を大きく左右し、またその後のしごき成形工程
での塑性加工の容易性に強く影響を与えるのでき
わめて重要である。例えば無酸素銅の場合、一般
的に入手できる板材は、およそ40〜140(平均値)
の範囲のビツカース硬度を有するが、使用する長
尺材料のこの硬度があまり低いと、所定長さに切
断する工程でいわゆるダレが顕著に発生してしま
い、円筒状部材に成形した後もこのダレのために
両端面合わせ目の内、外周に間隙が残りやすい。
また、丸め成形後のアノード円筒の両開口端部を
旋盤により所定形状に切削加工する際、素材が柔
か過ぎると粘りのため切削がかえつて困難であ
り、且つ外力で変形しやすいという不都合があ
る。逆に硬度が高い素材を使用すると、芯金のま
わりに丸め成形する工程でスプリングバツク力が
強く、したがつて両端面突合わせ部の開先間隙寸
法が大き過ぎ、両端面合わせ目を密着させるのに
その後のしごき成形工程でのしごき段数(又は回
数)を不所望に増加したり、1段(又は1回)当
りのしごき率すなわち肉厚減少率を非常に大きく
しなければならない。それによつてまた、加工硬
化がすすんで素材結晶粒界に破断が生じたり、プ
レス圧の異常に高い装置を用意しなければならな
いなどの不都合がある。
(Problem to be Solved by the Invention) By the way, in order to mass-produce homogeneous magnetron anodes using such a rounding method, it is important to select the hardness of the plate-shaped copper material used, especially in the cutting process. It is extremely important because it greatly affects the shape of the cut surface and the shape and dimensions of the abutting part of both end faces in the process of rounding around the core metal, and also has a strong influence on the ease of plastic working in the subsequent ironing process. is important. For example, in the case of oxygen-free copper, commonly available plates are approximately 40 to 140 (average value)
However, if the hardness of the long material used is too low, so-called sagging will occur during the process of cutting it into a predetermined length, and this sagging will occur even after it is formed into a cylindrical member. Therefore, gaps tend to remain on the inner and outer periphery of the joint between both end faces.
Furthermore, when cutting both open ends of the anode cylinder after rounding into a predetermined shape using a lathe, if the material is too soft, cutting becomes difficult due to stickiness, and there is the problem that it is easily deformed by external force. be. On the other hand, if a material with high hardness is used, the spring back force will be strong during the rounding process around the core metal, and the gap between the two end faces will be too large, causing the joints of both end faces to come into close contact. However, the number of ironing stages (or number of times) in the subsequent ironing process must be undesirably increased, or the ironing rate per stage (or one round), that is, the wall thickness reduction rate must be made extremely large. This also causes disadvantages such as progressing work hardening and causing fractures in the grain boundaries of the material, and the need to prepare equipment with an abnormally high press pressure.

この発明は、以上のような不都合を解消して素
材の切断工程でのダレが少なく且つ丸め成形工程
やしごき成形工程、圧縮成形工程でのスプリング
バツクを緩和して先端合わせ面の密着性を高め、
さらに開口端部の切削加工工程で高精度の加工が
容易になし得るマグネトロンアノードの製造方法
を提供するものである。
This invention eliminates the above-mentioned disadvantages, reduces sag during the cutting process of the material, reduces spring back during the rounding process, ironing process, and compression molding process, and improves the adhesion of the tip mating surface. ,
Furthermore, the present invention provides a method for manufacturing a magnetron anode in which high-precision machining can be easily performed in the cutting process of the opening end.

[発明の構成] (問題点を解決するための手段) この発明は、銅製の長尺材料を所定長さの平板
状素材に切断する切断工程、その後の丸め成形工
程、しごき成形工程、圧縮成形工程、切削加工工
程、および得られた円筒部材の両端面合わせ目を
気密接合するとともに内側に複数枚のアノードベ
インを放射状に固着する工程を具備するマグネト
ロンアノードの製造方法において、銅製の長尺平
板状素材として表面部の硬度に比べて中心部の硬
度が低い材料を使用することを特徴とするマグネ
トロンアノードの製造方法である。
[Structure of the Invention] (Means for Solving the Problems) The present invention includes a cutting process for cutting a long copper material into flat plate-like materials of a predetermined length, a subsequent rounding process, an ironing process, and a compression molding process. In the method for producing a magnetron anode, the method includes the steps of airtightly joining the joints of both end faces of the obtained cylindrical member, and fixing a plurality of anode vanes radially inside the cylindrical member. This method of manufacturing a magnetron anode is characterized by using a material having a lower hardness at the center than at the surface.

(作用) この発明の製造方法によれば、銅製の長尺材料
としてその表面部の硬度に比べて中心部の硬度が
低い材料を使用するので、素材の切断工程でのダ
レが少なく且つ丸め成形工程やしごき成形工程、
圧縮成形工程でのスプリングバツクを緩和して先
端合わせ目の密着性を高め、さらに開口端部の切
削加工工程で高精度の加工を容易になし得る。
(Function) According to the manufacturing method of the present invention, since a long copper material is used whose central part has a lower hardness than its surface, there is less sag during the cutting process of the material, and the material is rounded. Process and ironing process,
Spring back during the compression molding process is alleviated to improve the adhesion of the end seam, and furthermore, high precision machining can be facilitated in the cutting process of the open end.

(実施例) 以下その実施例を図面を参照して説明する。な
お同一部分は同一符号であらわす。
(Example) The example will be described below with reference to the drawings. Note that the same parts are represented by the same symbols.

第1図に示すようにまず銅製の長尺材料を所定
の長さにカツターで切断して平板状素材21を得
る素材切断工程Aを経る。次にこの平板状素材2
1を芯金のまわりに丸める丸め成形工程Bを経
て、略円筒状の丸め成形品22を得る。この段階
では素材の両端面は完全に密着せず両端突合わせ
部に開先間隙Gが残るつている。次にしごき(絞
り)成形工程Cを経る。このしごき成形工程は、
ポンチ23の外周に丸め成形品22を嵌合し複数
段の積重ねダイ24を通して好ましくは1ストロ
ーク2段以上のしごき成形を行う。次に軸方向に
圧縮力を加え塑性変形加工を行う圧縮成形工程D
を経る。この圧縮成形工程は、ポンチ26、ダイ
27、ダイ・アンド・ノツクアウト28により円
筒状しごき成形品25に両開口端面側から圧縮し
合う方向の圧縮力を加えて素材に塑性流動を生ぜ
しめる。それにより両端面合わせ目が完全に密着
した円筒状圧縮成形品が得られる。次いで切削加
工工程Eに移行する。この切削加工工程では、円
筒状圧縮成形品29の両開口端部を切削バイト3
0によりバリ取りするとともに所定形状に切削加
工する。最終段階で、密着している両端面合わせ
目29aを清浄に脱脂、洗浄したのちろ材301
をこの合わせ目に挟んで気密ろう接する接合工程
Fを経る。またこれと同時またはその後にこのア
ノード円筒の内側に複数枚のアノードベイン31
を配置し、ろう接固着してマグネトロンアノード
を得る。
As shown in FIG. 1, first, a material cutting step A is performed in which a long copper material is cut into a predetermined length with a cutter to obtain a flat material 21. Next, this flat material 2
A substantially cylindrical rounded product 22 is obtained through a rounding process B in which 1 is rolled around a core metal. At this stage, both end surfaces of the material are not completely brought into close contact with each other, and a groove gap G remains at the abutting portions of both ends. Next, an ironing (drawing) forming step C is performed. This ironing process is
The rounded product 22 is fitted around the outer periphery of the punch 23, and ironing is preferably performed in two or more stages per stroke through a multi-stage stacked die 24. Next, compression molding process D applies compressive force in the axial direction and performs plastic deformation processing.
go through. In this compression molding process, a compressive force is applied to the cylindrical ironed product 25 from both open end faces in a direction of mutual compression using a punch 26, a die 27, and a die and knockout 28, thereby causing plastic flow in the material. As a result, a cylindrical compression-molded product in which both end faces are in perfect contact with each other is obtained. Next, the process moves to cutting process E. In this cutting process, both open ends of the cylindrical compression molded product 29 are cut with the cutting tool 3.
0 to remove burrs and cut into a predetermined shape. In the final stage, the seams 29a of both end faces that are in close contact with each other are thoroughly degreased and washed, and then the filter material 301
A joining process F is performed in which the parts are sandwiched between the seams and soldered in an airtight manner. At the same time or after this, a plurality of anode vanes 31 are installed inside the anode cylinder.
and secure with solder to obtain a magnetron anode.

さてこの発明の特徴は、以上のような工程を経
て製造するアノード円筒の銅製長尺材料を、第2
図および第3図に示すようにその表面部の硬度に
比べて中心部の硬度を低くした材料を使用すると
ことにある。すなわち第2図に示すように、銅製
の長尺材料20は、幅W(例えば28.0mm)、厚さt
(例えば2.0mm)を有する。その任意の横断面にお
けるそれぞれの中心線をW0,t0とし、それぞ
れの幅方向の両端をW1,W2、厚さ方向の両端
をt1,t2としてこの横断面の各部のビツカー
ス硬度は第3図に示すような分布になつている。
Now, the feature of this invention is that the long copper material of the anode cylinder manufactured through the above steps is
As shown in Fig. 3 and Fig. 3, it is advantageous to use a material whose central part has a lower hardness than its surface part. That is, as shown in FIG. 2, the long copper material 20 has a width W (for example, 28.0 mm) and a thickness t.
(e.g. 2.0mm). Assuming that the respective center lines in the arbitrary cross section are W0 and t0, the respective ends in the width direction are W1 and W2, and the both ends in the thickness direction are t1 and t2, the Vickers hardness of each part of this cross section is shown in Figure 3. The distribution is as shown.

すなわち、素材表面部(辺t1上の位置W1か
らW2までの素材表面部)のビスカース硬度
(Ht1)は、89〜97の範囲に分布し平均で約91で
ある。それに比べて中心部(中心軸t0上の位置
W1からW2までの素材中心部)のブツカース硬
度(Ht0)は72〜90の範囲に分布し平均で約76
である。このように、使用する銅板素材は表面部
が硬く、中心部が柔らかい素材である。なお第3
図には中心線t0上における硬度分布および一方
の表面部t1上における硬度分布のみ示し、他の
部分は省略してあるが、他方の表面部t2上にお
ける硬度分布もt1上のそれと略同等の分布であ
る。
That is, the viscarce hardness (Ht1) of the material surface portion (material surface portion from position W1 to W2 on side t1) is distributed in the range of 89 to 97 and is about 91 on average. In comparison, the Butkaas hardness (Ht0) of the central part (the central part of the material from position W1 to W2 on the central axis t0) is distributed in the range of 72 to 90, with an average of about 76.
It is. In this way, the copper plate material used has a hard surface and a soft center. Furthermore, the third
The figure shows only the hardness distribution on the center line t0 and the hardness distribution on one surface part t1, and the other parts are omitted, but the hardness distribution on the other surface part t2 is also approximately the same as that on t1. distribution.

なおビツカース硬度は、JIS−Z2244に定める
試験による値であり、対面角が136度のダイヤモ
ンド四角すい圧子を用い、試験面すなわち銅製平
板状素材の表面および横断面の各部にピラミツド
形のくぼみをつけたときの荷重を、永久こぼみの
対角線の長さから求めた表面積で除いた値であ
る。
The Vickers hardness is the value determined by the test specified in JIS-Z2244, and a pyramid-shaped indentation is made on the test surface, that is, on the surface and cross section of the copper flat material, using a diamond square pyramid indenter with a facing angle of 136 degrees. This is the value obtained by subtracting the load at the time of the permanent dent by the surface area determined from the diagonal length of the permanent dent.

次に各工程について説明する。 Next, each process will be explained.

素材切断工程Aは、第4図に示すように上述し
た長尺材料20を所定の長さlにカツター32に
より平板面に対し略直角に切断して所定長さの平
板状素材21を得る。この平板状素材20の板厚
tは製品アノード円筒の肉厚よりもわずか厚いも
のであり、長さlはその中立線円周長に対して同
等もしくは極くわずか長い寸法となるように切断
され、各面が基本的に直角に交わる六面体であ
る。平板状素材21の切断面には、寸法hのダ
レ、および反対側にバリeが生じるが、ダレの寸
法hは素材の表面部硬度が高いため板厚tの約8
%以下という小さい寸法にとどまり、その後のし
ごき、圧縮工程での肉厚減少率を小さくしても両
端面合わせ目の密着面積が十分得られる。
In the material cutting step A, as shown in FIG. 4, the long material 20 described above is cut into a predetermined length l by a cutter 32 substantially perpendicular to the flat surface to obtain a flat material 21 of a predetermined length. The plate thickness t of this flat plate material 20 is slightly thicker than the wall thickness of the product anode cylinder, and the length l is cut so that it is equal to or slightly longer than the neutral line circumference length. , is a hexahedron whose faces basically intersect at right angles. On the cut surface of the flat material 21, a sag with a dimension h and a burr e occur on the opposite side, but the sag dimension h is about 8 of the plate thickness t because the surface hardness of the material is high.
% or less, and even if the wall thickness reduction rate in the subsequent ironing and compression steps is made small, a sufficient contact area between the joints of both end faces can be obtained.

次に丸め成形工程Bは、平板状素材21を第5
図に示すように、数10Kg以上の圧力で一方の芯金
ロール33とポリウレタンゴムのような強弾性材
からなる外周ロール34とがかみ合う丸め成形装
置の両ロール間に挿入し丸め成形する。外周ロー
ル34はシヨア硬度80〜95°の材質が適当であり、
これに矢印35の如く回転駆動力が与えられる。
芯金ロール33はアノード円筒の内径寸法より少
し小さい外径寸法をもつ硬質金属であり、これ自
体には回転駆動力は与えず外周ロールから伝達さ
れる力で自在に矢印36の如く回転するようにな
つている。この丸め成形で得られ円筒部品は両端
面の突合わせ部付近が直線状のままである。次に
この両端面合わせ目の整形および真円度を高める
目的で第6図に示す丸め整形装置により整形す
る。すなわち芯金37の外周に丸め円筒部品21
aを置き、半円状の押圧面38をもつ2個の押圧
治具39,40を矢印41,42の如く両端面の
合わせ目から中心軸を通る方向で互いに逆向きに
押して整形する。これによつて、かなり真円度が
高められた円筒状丸め成形品が得られる。なおこ
の丸め成形工程はいわゆるマルチフオーミング方
法により平板状素材を芯金のまわりに丸め成形す
る方法であつてもよい。このように、芯金のまわ
りに丸め成形して得られる丸め成形品22は、か
なり真円度を高めるように加工しても、第7図に
示すように素材自身のスプリングバツク力のため
に両端面突合わせ部が開いて断面略V字状の開先
間隙Gが残る。
Next, in the rounding process B, the flat material 21 is
As shown in the figure, the material is inserted between both rolls of a rounding device in which one core metal roll 33 and an outer peripheral roll 34 made of a strong elastic material such as polyurethane rubber are engaged with each other under a pressure of several tens of kilograms or more. The outer peripheral roll 34 is suitably made of a material with a shore hardness of 80 to 95°.
A rotational driving force is applied to this as shown by an arrow 35.
The core metal roll 33 is a hard metal having an outer diameter slightly smaller than the inner diameter of the anode cylinder, and does not apply any rotational driving force to itself, but rotates freely as shown by the arrow 36 by the force transmitted from the outer peripheral roll. It's getting old. The cylindrical part obtained by this rounding remains straight in the vicinity of the abutting portions of both end faces. Next, for the purpose of shaping the joint between both end faces and improving the roundness, the rounding machine shown in FIG. 6 is used to shape the joint. That is, the rounded cylindrical part 21 is placed around the outer periphery of the core metal 37.
A is placed, and two pressing jigs 39 and 40 having semicircular pressing surfaces 38 are pressed in opposite directions from the seam of both end surfaces to the direction passing through the central axis as shown by arrows 41 and 42 to shape the sheet. As a result, a cylindrical rounded product with considerably improved roundness is obtained. Note that this rounding step may be a method of rounding the flat material around the core bar by a so-called multi-forming method. In this way, even if the rounded product 22 obtained by rounding around the core metal is processed to considerably increase its roundness, it will still be damaged due to the spring back force of the material itself, as shown in Figure 7. The abutting portions of both end faces are opened, leaving a groove gap G having a substantially V-shaped cross section.

次にしごき(絞り)成形工程Cに移る。 Next, the process moves to ironing (drawing) forming process C.

この工程は第8図に示すようにしごき成形装置
を用いて1ストロークで2段の連続しごき成形を
行う。この装置は図の上方にポンチ23が上下動
するように配設され、下方に丸め成形品22を定
位置にするためのガイド43、第1のしごきダイ
44、ガイドスペーサ45、第2のしごきダイ4
6、基台47が設置されている。ポンチ23の外
径寸法d1はアノード円筒の内径寸法に相当し、第
1のダイ44の最小部内径d2、第2のダイ46の
最小部内径d3は順次小さくなる寸法である。しか
もこれら各ダイの内径寸法とポンチの外径寸法d1
との差が、丸め成形品がポンチ23の外周にはま
つて各ダイを通る際のその肉厚減少率すなわち各
ダイを通る前の肉厚に対する通過後の肉厚減少分
の比率(以下同じ)が各々3%以下となる寸法に
設定される。このように各しごきダイの最小部内
径寸法は、丸め成形品の両端面内周側を強制的に
着させた状態での外径寸法よりも小さい寸法とな
つている。なおポンチ23にはストツパ部48,
49が設けられている。好ましい例として第1し
ごきダイ44でのしごき率が約3%、第2しごき
ダイ46でのしごき率が約2%となるように設定
する。そしてまず図のように丸め成形品22がガ
イド43の内側に置かれ、次にポンチ23が下降
して丸め成形品22がポンチ外周にはまりストツ
パ部48で押されて一緒に2個のしごきダイ4
4,46を1ストロークで連続的に通り点線で示
す如きしごき成形品25が得られる。軸方向にわ
ずかにしごかれた肉はポンチ23のもう1つのス
トツパ部49までの外周に残る。
In this process, as shown in FIG. 8, two consecutive stages of ironing are performed in one stroke using a ironing device. In this device, a punch 23 is arranged above the figure so as to move up and down, and below is a guide 43 for positioning the rounded product 22, a first ironing die 44, a guide spacer 45, and a second ironing die 44. die 4
6. A base 47 is installed. The outer diameter dimension d 1 of the punch 23 corresponds to the inner diameter dimension of the anode cylinder, and the smallest inner diameter d 2 of the first die 44 and the smallest inner diameter d 3 of the second die 46 are dimensions that become smaller in sequence. Moreover, the inner diameter dimension of each die and the outer diameter dimension of the punch d 1
The difference from ) are each set to be 3% or less. In this way, the inner diameter of the minimum part of each ironing die is smaller than the outer diameter when the inner peripheral sides of both end faces of the rounded product are forcibly attached. Note that the punch 23 has a stopper portion 48,
49 are provided. As a preferable example, the ironing rate of the first ironing die 44 is set to about 3%, and the ironing rate of the second ironing die 46 is set to about 2%. First, the rounded product 22 is placed inside the guide 43 as shown in the figure, and then the punch 23 is lowered and the rounded product 22 is fitted into the outer periphery of the punch and pushed by the stopper part 48, and then pushed together into the two ironing dies. 4
4 and 46 continuously in one stroke, an ironed molded product 25 as shown by the dotted line is obtained. The meat that has been slightly squeezed in the axial direction remains on the outer periphery of the punch 23 up to the other stopper part 49.

このしごき成形により丸め成形品の素材両端面
合わせ目22aのV字状開先間隙を少しずつ埋め
るように両側から素材が塑性流動され、また、こ
のしごき成形により円周上の肉厚も均等化され
る。
This ironing causes the material to plastically flow from both sides so as to gradually fill the V-shaped groove gap at the joint 22a on both end faces of the rounded product, and the ironing also equalizes the wall thickness on the circumference. be done.

このしごき成形によつて加工品は数10℃以上に
高温となるので、油冷や自然冷却で室温付近まで
冷却する工程を経て次の工程に移る。
This ironing process raises the temperature of the processed product to several tens of degrees Celsius or higher, so it is cooled to around room temperature by oil cooling or natural cooling before moving on to the next step.

次に経る圧縮成形工程Dは、第9図および第1
0図に示すようにしごき成形品25に軸方向の圧
縮力を加えてさらに塑性変形させ、素材両端面合
わせ目の密着とこの合わせ目が開く方向のスプリ
ングバツク力の抑圧をはかる。またこの工程でし
ごき成形およびアノード円筒の開口端面の一部形
状加工も同時に行なうことができる。同図にはそ
の例を示してあり、第9図は成形直前の状態を、
また第10図は成形終了状態である。この装置
は、ガイド50の下方にしごきダイ部分51を有
する長尺のダイ27を有し、その内側下方にダ
イ・アンド・ノツクアウト28が設置されてい
る。このダイ・アンド・ノツクアウト28はその
上端面にポンチ26の先端が密嵌合する受部52
およびアノード円筒の開口端面形状の整形のため
の所望形状の外周端53を有し、圧縮成形後のア
ノード円筒29を押上げシリンダ54により図の
上方に突き出すノツクアウトの機能を兼ね備えて
いる。ポンチ26にもアノード円筒開口端面の整
形用段部55,56を有している。
The next compression molding process D is shown in Figure 9 and 1.
As shown in Figure 0, compressive force in the axial direction is applied to the strained molded product 25 to cause it to further plastically deform, thereby ensuring close contact between the joints on both end faces of the material and suppressing the springback force in the direction in which the joints open. Further, in this step, ironing and shaping of a portion of the opening end surface of the anode cylinder can be performed simultaneously. An example is shown in the figure, and Figure 9 shows the state immediately before molding.
Moreover, FIG. 10 shows a state in which molding is completed. This device has an elongated die 27 having an ironing die portion 51 below a guide 50, and a die-and-knockout 28 is installed below the inner side of the elongated die 27. This die-and-knockout 28 has a receiving portion 52 on the upper end surface of which the tip of the punch 26 is tightly fitted.
It also has an outer circumferential end 53 of a desired shape for shaping the opening end face shape of the anode cylinder, and also has a knockout function for pushing the anode cylinder 29 after compression molding upward in the drawing by a push-up cylinder 54. The punch 26 also has stepped portions 55 and 56 for shaping the end face of the anode cylinder opening.

これによつてしごき成形品25はポンチ26の
外周に嵌められて下降し、しごきダイ部分51で
しごき成形され、さらに両開口端部は一方がポン
チ26のストツパ部55で、他方がダイ・アン
ド・ノツクアウト28の外周端53の間に拘束さ
れて軸方向の圧縮力を受ける。この圧縮力は被加
工品の素材に対して軸方向および円周方向の塑性
流動を起こさせる。したがつてこれによつて素材
両端面合わせ目は全体にわたつて確実に密着さ
れ、しかも両開口端の形状を所望形状もしくはそ
れに近い形状に同時に整形できる。なお軸方向の
寸法が製品アノード円筒に対応し、また余分には
み出す素材肉の量が少なくなるようにポンチ26
のストローク寸法とダイ・アンド・ノツクアウト
28との位置関係を適当に定めておくことは当然
である。
As a result, the ironed molded product 25 is fitted around the outer periphery of the punch 26 and lowered, and is ironed and formed by the ironing die portion 51, and furthermore, both open ends have one end at the stopper portion 55 of the punch 26 and the other end at the die and end portion 51. - It is restrained between the outer circumferential ends 53 of the knockouts 28 and receives compressive force in the axial direction. This compressive force causes plastic flow in the axial and circumferential directions of the material of the workpiece. Therefore, as a result of this, the seams of both end faces of the material are reliably brought into close contact over the entire area, and the shapes of both open ends can be simultaneously shaped into a desired shape or a shape close to it. Note that the punch 26 is designed so that the axial dimension corresponds to the product anode cylinder and that the amount of excess material protruding is reduced.
It goes without saying that the stroke size of the die and the positional relationship with the die and knockout 28 should be determined appropriately.

マグネトロンアノード円筒は、開口端部にみな
らず内周面にベインを挿入、錣接しやすいように
テーパ面を形成したり、あるいは外周面にラジエ
ータを圧入、固着しやすいようにテーパ面を形成
して用いる場合がある。そこでこのような内、外
周面のテーパ面加工をこのしごき、もしくは圧縮
成形工程において同時に成形してもよい。
In the magnetron anode cylinder, a vane is inserted not only at the open end but also on the inner circumferential surface, and a tapered surface is formed to make it easier to connect the magnetron, or a tapered surface is formed on the outer circumferential surface to make it easier to press fit and fix the radiator. It may be used in some cases. Therefore, such tapered surface processing of the inner and outer circumferential surfaces may be performed at the same time during this ironing or compression molding process.

以上のようなしごき成形工程および圧縮成形工
程により、被加工素材肉は軸方向とともに第11
図a,bに矢印fで示す如く開先間隙Gを埋める
ように円周方向に塑性流動し、同図cに示す如く
両端合わせ面29aが完全に密着した円筒が得ら
れる。とくに被加工用素材が低い中心部硬度をも
つためこの比較的柔らかい素材中心部の肉が容易
に流動して同図dに示す如き洞窟状の〓間gなど
をも完全に解消し、且つ両端面合わせ目を開く方
向のスプリングバツク力を確実に抑圧できる。そ
してむしろ両端面合わせ面を密閉する方向のスプ
リング作用が生じる。こうして第12図に示す如
く両端合わせ目29aが全面にわたつて完全に密
着したアノード円筒29が得られる。なおアノー
ド円筒29の両開口端部には、圧縮成形工程で段
部29b,29cが同時に成形されている。
Through the above-mentioned ironing process and compression molding process, the thickness of the workpiece material is
Plastic flow occurs in the circumferential direction so as to fill the groove gap G as shown by the arrow f in Figures a and b, and a cylinder with both end mating surfaces 29a in perfect contact as shown in Figure c is obtained. In particular, since the material to be processed has a low hardness at the center, the relatively soft material at the center easily flows, completely eliminating the cave-like gap g shown in Figure d, and making it possible to completely eliminate the gap between both ends. Spring back force in the direction of opening the face-to-face opening can be reliably suppressed. Rather, a spring action occurs in the direction of sealing the mating surfaces of both ends. In this way, as shown in FIG. 12, an anode cylinder 29 is obtained in which both end seams 29a are completely in close contact with each other over the entire surface. Note that stepped portions 29b and 29c are simultaneously formed at both open end portions of the anode cylinder 29 in a compression molding process.

ところでこのように製造したアノード円筒の縦
断面の各部硬度は、第13図に示すように成形前
に比べてビツカース硬度が全体的に高くなつてい
るが、表面部に比べて中心部が低い高度を維持し
ている。同図の数値は各部のビツカース硬度を示
し、括弧内の数値は成形前の第3図に対応する各
部のビツカース硬度をあらわしている。そしてと
くに両開口端部は圧縮成形工程を経ていることに
より著しく加工硬化して高い硬度を有している。
それにより後述する切削加工工程でこの開口端部
を含む円筒表面部の切削加工が容易に且つ高精度
に加工できる。
By the way, as shown in Fig. 13, the hardness of each part of the longitudinal section of the anode cylinder manufactured in this way is higher overall compared to before molding, but the center part has a lower hardness than the surface part. is maintained. The numerical values in the figure indicate the Vickers hardness of each part, and the numerical values in parentheses represent the Vickers hardness of each part corresponding to FIG. 3 before molding. In particular, both open end portions are significantly work-hardened and have high hardness due to the compression molding process.
Thereby, the cylindrical surface portion including the open end portion can be easily and highly accurately cut in the cutting process described later.

アノード円筒の開口端部は、ポールピース(図
示せず)等との嵌合のために所定の端部形状にな
つている必要がある。また内、外周面は、アノー
ドベインおよびラジエータ(図示せず)を容易に
圧入できるようにわずかなテーパ面になつている
必要がある。次にそのための切削加工工程Eを経
る。この切削加工工程は、第14図に示すように
切削バイト30,30を備える切削旋盤装置60
に第12図に示したアノード円筒29を固定し、
高速回転を与えならが切削加工を施す。この切削
旋盤装置60の各部の符号61は円筒状ホルダ、
62は3つ割りのチヤツク、63は中心ロツド、
64は円板状受板をあらわれている。
The open end of the anode cylinder must have a predetermined end shape for fitting with a pole piece (not shown) or the like. In addition, the inner and outer circumferential surfaces must be slightly tapered so that the anode vane and radiator (not shown) can be easily press-fitted therein. Next, a cutting process E is carried out for this purpose. This cutting process is carried out using a cutting lathe device 60 equipped with cutting tools 30, 30, as shown in FIG.
The anode cylinder 29 shown in FIG. 12 is fixed to the
High-speed rotation is applied to perform cutting. The reference numeral 61 of each part of this cutting lathe device 60 is a cylindrical holder,
62 is a three-part chuck, 63 is a center rod,
64 represents a disc-shaped receiving plate.

この切削加工工程により、円筒の両開口端部お
よび内、外周面を所定形状に切削して第15図に
示すように両開口端に気密溶接用の薄肉円筒部2
9d,29e、および内、外周面にテーパ面を形
成してアノード円筒29を得る。なお同図の点線
で示す部分は切削加工前の縦断面形状であり、実
線で示す形状まで切削する。この切削部分は、第
13図に示す各部硬度分布からもわかるように比
較的硬度の高い部分であり、したがつて粘りや変
形が起きにくく高精度の切削が容易にできる。
Through this cutting process, both open ends and inner and outer peripheral surfaces of the cylinder are cut into a predetermined shape, and a thin cylindrical part 2 for airtight welding is attached to both open ends as shown in FIG.
The anode cylinder 29 is obtained by forming tapered surfaces on the inner and outer peripheral surfaces of the anode cylinders 9d and 29e. Note that the part indicated by the dotted line in the figure is the longitudinal cross-sectional shape before cutting, and is cut to the shape indicated by the solid line. This cutting part has relatively high hardness, as can be seen from the hardness distribution of each part shown in FIG. 13, and therefore, stickiness and deformation are unlikely to occur and high precision cutting can be easily performed.

以上のようにして成形したアノード円筒29
は、次に合わせ目の気密接合工程に移される。接
合はろう接や溶接などで行なうが、いずれにして
も両端合わせ目29aを一旦強制的に少し開いて
この面を脱脂し、即乾性の溶液などのスプレーな
どにより洗浄し、乾燥させる。ろう接を例にとれ
ばこの合わせ目に0.1〜0.2mm厚の薄板状硬ろうを
はさみ、ろう材の溶ける時点で外側からろう接治
具で円筒を拘束しながらろう接する。これによつ
て合わせ目は全面にわたつて気泡のない良好な気
密ろう接ができ、直径寸法の変化もほとんど生じ
ない。なおこの合わせ目のろう接と同時に、もし
くはその後に円筒内に複数枚のアノードベイン3
1をろう付けなどにより接合固着して第16図に
示すようなマグネトロンアノードを完成する。
Anode cylinder 29 formed as above
Next, the joints are airtightly joined. The joining is carried out by brazing, welding, etc., but in any case, the joints 29a at both ends are once forcibly opened a little, and this surface is degreased, cleaned by spraying with a quick-drying solution, etc., and dried. Taking brazing as an example, a thin plate of hard solder with a thickness of 0.1 to 0.2 mm is sandwiched between the joints, and when the brazing material melts, the cylinder is restrained from the outside with a brazing jig and soldered. As a result, a good air-tight soldering without bubbles can be achieved over the entire surface of the seam, and there is almost no change in the diameter dimension. At the same time or after soldering this joint, multiple anode vanes 3 are placed inside the cylinder.
1 is joined and fixed by brazing or the like to complete a magnetron anode as shown in FIG.

以上のようにこの発明は、上記の各工程を経て
製造するアノード円筒の素材として表面部の硬度
が高い銅板を用いるので、素材の切断工程での切
断面にできるダレが少なく、従つて円筒の両端面
合わせ目の密着面積を広くでき、且つ開口端部を
容易に高精度の切削加工ができる。一方、素材の
中心部の硬度は低いので、しごき成形工程および
圧縮成形工程での素材肉の塑性流動が生じ易く、
従つて両端面合わせ目を開く方向のスプリングバ
ツク力が解消されやすい。こうして銅板素材の表
面部硬度と中心部硬度の相違が相乗的に上述の効
果を奏し、合わせ目の全体にわたる密着性がすぐ
れ、且つ高精度のマグネトロンアノードが得られ
る。
As described above, this invention uses a copper plate with a high surface hardness as the material for the anode cylinder manufactured through the above steps, so there is less sag on the cut surface during the cutting process of the material, and therefore the cylinder is The contact area of the joint between both end faces can be widened, and the open end can be easily cut with high precision. On the other hand, since the hardness of the center of the material is low, plastic flow of the material easily occurs during ironing and compression molding processes.
Therefore, the spring back force in the direction of opening the joint between both end faces is easily eliminated. In this way, the difference in surface hardness and center hardness of the copper plate material synergistically produces the above-mentioned effect, and a magnetron anode with excellent adhesion throughout the seam and high precision can be obtained.

[発明の効果] 以上説明したようにこの発明によれば、銅製の
長尺材料としてその表面部の硬度に比べて中心部
の硬度が低い材料を使用するので、素材の切断工
程でのダレが少なく且つ丸め成形工程やしごき成
形工程、圧縮成形工程での両端面合わせ目を開く
方向のスプリングバツク力を確実に解消して合わ
せ目の密着性を高め、さらに開口端部を容易に高
精度の切削加工ができる。このようにして気密性
が良く高精度のマグネトロンアノードを製造する
ことができる。
[Effects of the Invention] As explained above, according to the present invention, since a long copper material is used whose central part has lower hardness than its surface, sagging during the cutting process of the material is prevented. The spring back force in the direction of opening the joints on both end faces during the rounding process, ironing process, and compression molding process is reliably eliminated, improving the adhesion of the joints, and furthermore making it possible to easily form open ends with high precision. Can be cut. In this way, a magnetron anode with good airtightness and high precision can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す工程概略
図、第2図は長尺材料を示す斜視図、第3図はそ
の横断面における硬度分布図、第4図は平板状素
材の切断工程を示す断面図、第5図はこの発明の
丸め成形工程の一例を示す概略断面図、第6図は
丸め成形工程の他の例を示す横断面図、第7図は
それにより得られる丸め成形品を示す横断面図、
第8図はこの発明におけるしごき工程の一例を示
す縦断面図、第9図および第10図はこの発明に
おける圧縮成形工程の一例を示す各々半縦断面
図、第11図a〜dはそれぞれしごきおよび圧縮
成形工程での素材の変化を示す横断面図、第12
図は圧縮成形品の縦断面図、第13図はその断面
における硬度分布図、第14図はこの発明におけ
る切削工程の一例を示す要部縦断面図、第15図
はそれにより得られるアノード円筒を示す縦断面
図、第16図は完成したアノード円筒を示す斜視
図である。 29……アノード円筒、29a……合わせ目、
20,21……板状素材、22……丸め成形品、
25……しごき成形品、31……アノードベイ
ン、A……切断工程、B……丸め成形工程、C…
…しごき成工程、D……圧縮成形工程、E……切
削加工工程、F……接合工程、23,26……ポ
ンチ、24,27……しごきダイ。
Fig. 1 is a process schematic diagram showing an embodiment of the present invention, Fig. 2 is a perspective view showing a long material, Fig. 3 is a hardness distribution diagram in its cross section, and Fig. 4 is a cutting process of a flat material. FIG. 5 is a schematic sectional view showing an example of the rounding process of the present invention, FIG. 6 is a cross-sectional view showing another example of the rounding process, and FIG. 7 is a rounding process obtained by the process. cross-sectional view showing the product;
FIG. 8 is a longitudinal sectional view showing an example of the ironing process in this invention, FIGS. 9 and 10 are half longitudinal sectional views each showing an example of the compression molding process in this invention, and FIGS. and a cross-sectional view showing changes in the material during the compression molding process, No. 12.
The figure is a longitudinal sectional view of a compression molded product, FIG. 13 is a hardness distribution diagram in the cross section, FIG. 14 is a longitudinal sectional view of a main part showing an example of the cutting process in this invention, and FIG. 15 is an anode cylinder obtained thereby. FIG. 16 is a longitudinal sectional view showing the completed anode cylinder. 29... Anode cylinder, 29a... Seam,
20, 21... plate-shaped material, 22... rounded molded product,
25... Ironing molded product, 31... Anode vein, A... Cutting process, B... Rounding process, C...
...Stretching process, D...Compression molding process, E...Cutting process, F...Joining process, 23, 26...Punch, 24, 27...Icing die.

Claims (1)

【特許請求の範囲】 1 銅からなる長尺の平板状素材をカツターによ
り所定長さに且つ平板面に略直角に切断する切断
工程と、前記切断工程で得られた所定長さの平板
状素材をその両端面突合わせ部に断面略V字状の
開先間隙が残る如く丸める丸め成形工程と、この
丸め成形工程を経て得られた略円筒状の丸め成形
品をポンチの外周に嵌合させるとともに該丸め成
形品の外径寸法よりも小さい内径寸法を有するダ
イに管軸方向に沿つて通しこれら対をなすポンチ
およびダイで内外周から拘束した状態で両開口端
面側から互いに軸方向に圧縮する圧縮力を加えて
素材に塑性流動を生ぜしめる圧縮成形工程と、そ
の後、得られた円筒状圧縮成形品の開口端部を所
定形状に切削加工する切削加工工程と、その後、
得られた円筒部材の両端面合わせ目を気密接合す
るとともに内側に複数枚のアノードベインを放射
状に固着する工程とを具備するマグネトロンアノ
ードの製造方法において、 上記銅製の長尺平板状素材として、表面部の硬
度に比べて中心部の硬度が低い材料を使用し、上
記各工程を経て加工することを特徴とするマグネ
トロンアノードの製造方法。
[Scope of Claims] 1. A cutting step of cutting a long flat plate-like material made of copper into a predetermined length using a cutter and substantially perpendicular to the flat plate surface, and a flat plate-like material of a predetermined length obtained in the cutting step. A rounding step in which the rounded product is rolled so that a groove gap having a substantially V-shaped cross section remains at the abutting portions of both end faces, and a roughly cylindrical rounded product obtained through this rounding step is fitted to the outer periphery of the punch. The rounded product is passed through a die having an inner diameter smaller than the outer diameter of the rounded product along the axial direction of the tube, and is compressed in the axial direction from both open end surfaces while being restrained from the inner and outer peripheries by a pair of punches and dies. A compression molding step in which a compressive force is applied to produce plastic flow in the material, followed by a cutting step in which the open end of the obtained cylindrical compression molded product is cut into a predetermined shape, and then,
In the method for manufacturing a magnetron anode, which includes the steps of airtightly joining the joints of both end faces of the obtained cylindrical member and fixing a plurality of anode vanes radially inside, A method for manufacturing a magnetron anode, characterized by using a material whose center part has a lower hardness than the other parts, and processing it through each of the above steps.
JP10304887A 1987-04-28 1987-04-28 Manufacture of magnetron anode Granted JPS63269435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10304887A JPS63269435A (en) 1987-04-28 1987-04-28 Manufacture of magnetron anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10304887A JPS63269435A (en) 1987-04-28 1987-04-28 Manufacture of magnetron anode

Publications (2)

Publication Number Publication Date
JPS63269435A JPS63269435A (en) 1988-11-07
JPH0569254B2 true JPH0569254B2 (en) 1993-09-30

Family

ID=14343785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10304887A Granted JPS63269435A (en) 1987-04-28 1987-04-28 Manufacture of magnetron anode

Country Status (1)

Country Link
JP (1) JPS63269435A (en)

Also Published As

Publication number Publication date
JPS63269435A (en) 1988-11-07

Similar Documents

Publication Publication Date Title
US5826320A (en) Electromagnetically forming a tubular workpiece
US2906006A (en) Method of making a sheet metal article
US2961762A (en) Solid phase strip inlay bonding
JP2507665B2 (en) Method for manufacturing metal cylindrical member for electron tube
JPH0747438A (en) Ring for swaging and its production
US4200217A (en) Method of manufacturing an article having a press-worked member inwardly of a cylindrical member
US4527411A (en) Process for producing walking bar members for continuous casting
JPH0569254B2 (en)
JPH0262099B2 (en)
US4570843A (en) Method for manufacturing anode cylinders of electron tubes
JPS6247088B2 (en)
JPH078377B2 (en) Manufacturing method of copper cylinder
JPH05104191A (en) Cold forging method for shaft body with flange
TWI651150B (en) Composite manufacturing method with extruding and turning processes
JP2007501714A (en) Metal pipe press forming method
JP3517559B2 (en) Method of forming ring groove for resistance welding by coining
JPH06333541A (en) Rectangular battery can and its manufacture and device for forming rectangular vessel for rectangular battery
KR101550241B1 (en) Manufacturing method of metal frame for portable device using rolling
JP2004034040A (en) Die for forging
JPS5936383B2 (en) Manufacturing method of magnetron anode
JPS6335056B2 (en)
JPH03279795A (en) Method of making pipe having slit holes
JPH1094826A (en) Manufacture of tube
JPS6117323A (en) Production of metallic pipe
JPH0576980A (en) Manufacture of intermediate hardware in hydraulic hose