JPS6246917Y2 - - Google Patents

Info

Publication number
JPS6246917Y2
JPS6246917Y2 JP1981175873U JP17587381U JPS6246917Y2 JP S6246917 Y2 JPS6246917 Y2 JP S6246917Y2 JP 1981175873 U JP1981175873 U JP 1981175873U JP 17587381 U JP17587381 U JP 17587381U JP S6246917 Y2 JPS6246917 Y2 JP S6246917Y2
Authority
JP
Japan
Prior art keywords
valve
pressure
cylinder
piston
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981175873U
Other languages
Japanese (ja)
Other versions
JPS5879152U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17587381U priority Critical patent/JPS5879152U/en
Publication of JPS5879152U publication Critical patent/JPS5879152U/en
Application granted granted Critical
Publication of JPS6246917Y2 publication Critical patent/JPS6246917Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fluid-Damping Devices (AREA)

Description

【考案の詳細な説明】 本考案はガス入り油圧緩衝器の改良に関するも
ので、低圧複筒式シヨツクアブソーバにおいて、
ベースバルブの形状を内周固定で外径寸法がバル
ブシートの内径寸法よりもバルブシート面幅相当
量大径となる寸法関係に限定して圧縮工程におけ
るリザーバ室のガス圧の上昇圧を有効に圧側リリ
ーフバルブの背圧として利用し減衰力特性を改良
したものである。
[Detailed description of the invention] This invention relates to the improvement of a gas-filled hydraulic shock absorber.
The shape of the base valve is limited to a dimension relationship in which the inner circumference is fixed and the outer diameter is larger than the inner diameter of the valve seat by an amount equivalent to the valve seat surface width to effectively increase the gas pressure in the reservoir chamber during the compression process. This is used as back pressure for the pressure side relief valve to improve damping force characteristics.

従来一般に使用されている車輌用シヨツクアブ
ソーバは、第1図にその減衰力特性を示すよう
に、特に圧側減衰力の立上り特性が悪くて圧側作
動初期において圧側減衰力が低く、この影響によ
り第2図に示すように連続加振時においても圧側
減衰力の立上り特性が悪くなることが知られてい
る。従つて車輌特性の接地性、操縦安定性及び乗
心地が損なわれるものである。
As shown in Figure 1, the shock absorber for vehicles that has been commonly used in the past has particularly poor rise characteristics of the compression side damping force, and the compression side damping force is low at the beginning of the compression side operation. As shown in the figure, it is known that the rise characteristics of the compression damping force deteriorate even during continuous vibration. Therefore, the characteristics of the vehicle, such as ground contact, steering stability, and ride comfort, are impaired.

本考案はこの圧側減衰力の立上り遅れ(圧側初
期波形の乱れ)を改善することにより前記車輌特
性を改善することを目的とするものである。
The present invention aims to improve the vehicle characteristics by improving the rise delay of the compression damping force (disturbance of the initial compression waveform).

以下、本考案ガス入り油圧緩衝器の一実施例を
図面に従つて説明するに第3図はシヨツクアブソ
ーバの正断面図である。
Hereinafter, one embodiment of the gas-filled hydraulic shock absorber of the present invention will be described with reference to the drawings. FIG. 3 is a front sectional view of the shock absorber.

アウタチユーブ1に内挿したシリンダ2は上端
をアウタチユーブ1の上端に内挿固着したベアリ
ング3の下端に固設し、一方下端をアウタチユー
ブ1の下端に設けたベースバルブ機構4のバルブ
基板5に固設すると共に、アウタチユーブ1との
間に円筒状室Aを構成する。
The cylinder 2 inserted into the outer tube 1 has its upper end fixed to the lower end of the bearing 3 inserted and fixed to the upper end of the outer tube 1, and its lower end fixed to the valve board 5 of the base valve mechanism 4 provided at the lower end of the outer tube 1. At the same time, a cylindrical chamber A is formed between the outer tube 1 and the outer tube 1.

上記ベアリング3の軸芯に穿設された軸孔3a
には前記シリンダ2に対し気密的且つ摺動自在に
内挿されたピストン7に突設したピストンロツド
8を摺動自在に貫挿するもので、両者間は80μの
小間〓dを形成すると共に、リツプ端をピストン
ロツド8に摺接したシール部材9により軸封し、
且つ内側のベアリング3内段部に嵌着したチエツ
クシール10を介して流体をx方向にのみ流通す
るように封緘してピストン7の上部室Bと下部室
Cを構成する。
Shaft hole 3a drilled in the shaft center of the bearing 3
A piston rod 8 protruding from a piston 7 is slidably inserted into the cylinder 2 airtightly and slidably, and a space d of 80μ is formed between the two. The lip end is shaft-sealed with a sealing member 9 that is in sliding contact with the piston rod 8,
An upper chamber B and a lower chamber C of the piston 7 are formed by sealing the piston 7 through a check seal 10 fitted to the inner stage of the inner bearing 3 so that fluid can flow only in the x direction.

また11は前記シール部材9とチエツクシール
10間の環状室Dと円筒状室Aを連通する如くベ
アリング3に穿設した連通孔であり、チエツクシ
ール10及び小間隙dを介して円筒状室Aと上側
空間Bの上端を連通するように成る。
Reference numeral 11 denotes a communication hole bored in the bearing 3 so as to communicate the annular chamber D and the cylindrical chamber A between the seal member 9 and the check seal 10, and the cylindrical chamber A through the check seal 10 and the small gap d. and the upper end of the upper space B are communicated with each other.

前記ベースバルブ機構4はアウタチユーブ1の
端盤6に固着したバルブ基板5の中央に貫挿固着
した固定ピン12に対して、バルブ基板5の下面
に内周固定した外周撓みの圧縮側減衰力発生用リ
ーフバルブ13と、上面に伸長側吸込チエツク弁
14を枢着したものであり、リーフバルブ13は
バルブ基板5の内周に穿設した通孔の弁座5aに
離接すると共に、ストツプリング15により弁座
5aに近接保持される。
The base valve mechanism 4 is fixed to the lower surface of the valve board 5 on the inner periphery and generates a compression-side damping force on the compression side when the outer periphery is bent with respect to a fixing pin 12 that is inserted and fixed in the center of the valve board 5 that is fixed to the end plate 6 of the outer tube 1. The leaf valve 13 is pivoted to the upper surface of the extension side suction check valve 14. It is held close to the valve seat 5a.

またチエツク弁14はバルブ基板5の外周に穿
設した通孔の弁座5bに圧接する如くスプリング
16により弾性付勢せしめられるもので上記バル
ブ基板5の底部にはオリフイス17を穿設して成
る。また前記ピストン7には圧縮側の吸込チエツ
ク弁18と伸張側減衰力発生弁機構19からなる
ピストンバルブ20が構成され、それぞれ、絞り
構造を持つようになる。
The check valve 14 is elastically biased by a spring 16 so as to come into pressure contact with a valve seat 5b of a through hole formed on the outer periphery of the valve base plate 5, and an orifice 17 is formed at the bottom of the valve base plate 5. . Further, the piston 7 is provided with a piston valve 20 consisting of a suction check valve 18 on the compression side and a damping force generating valve mechanism 19 on the expansion side, each of which has a throttle structure.

上記構成の複筒式ガス入り油圧緩衝器は、圧縮
工程においてシリンダ下部室cの作動油がピスト
ンバルブ20によつて若干絞られて上部室Bに、
また同時にベースバルブ4によつて絞られて円筒
状室Aに分流して流入する。
In the double-tube gas-filled hydraulic shock absorber having the above configuration, during the compression process, the hydraulic oil in the cylinder lower chamber C is slightly throttled by the piston valve 20 and flows into the upper chamber B.
At the same time, the water is throttled by the base valve 4 and flows into the cylindrical chamber A in a branched manner.

このときピストンロツド8の挿入体積分だけ円
筒状室A内の油面が上昇して上方のリザーバ室E
の体積が減少しその内圧が増大するようになる。
At this time, the oil level in the cylindrical chamber A rises by the insertion volume of the piston rod 8, and the oil level in the upper reservoir chamber E rises.
Its volume decreases and its internal pressure increases.

伸張工程においては上部室Bの作動油がピスト
ンバルブ20によつて絞られて下部室Cに流入す
ると共に、ピストンロツド8がシリンダ2から抜
け出た体積分の作動油がチエツク弁14を介して
円筒状室Aから下部室Cに流入する。
In the extension process, the hydraulic oil in the upper chamber B is throttled by the piston valve 20 and flows into the lower chamber C, and at the same time, the hydraulic oil in the volume that the piston rod 8 escapes from the cylinder 2 passes through the check valve 14 into the cylindrical shape. It flows from chamber A into lower chamber C.

しかし、円筒状室Aの上部に低圧ガスを封入し
リザーバ室Eを構成すると共に、ベアリング3部
にチエツクシール10を設置している為、この伸
張工程においては円筒状室Aの作動油が下部室C
に流入する際の遅れがなく、シリンダ2内は常時
作動油で充満されており、同時にリザーバ室Eが
低圧ガスにより圧力付勢されリーフバルブ15の
背面に作用している為、圧側減衰力の立上り遅れ
がなくなる。
However, since the upper part of the cylindrical chamber A is filled with low-pressure gas to form the reservoir chamber E, and the check seal 10 is installed at the 3rd part of the bearing, during this extension process, the hydraulic oil in the cylindrical chamber A is transferred to the lower part. Room C
There is no delay when the oil flows into the cylinder 2, and the inside of the cylinder 2 is always filled with hydraulic oil.At the same time, the reservoir chamber E is pressure-energized by low-pressure gas and acts on the back of the leaf valve 15, so that the damping force on the pressure side is reduced. There is no start-up delay.

また圧縮行程におけるリザーバ室Eへの油面上
昇による圧縮作用に伴ない内圧が上昇し、この圧
力上昇分が更にベースバルブ4のリーフバルブ1
3への背圧作用となつて圧側の減衰力を増大させ
るようになる。
In addition, the internal pressure increases due to the compression action due to the rise in the oil level in the reservoir chamber E during the compression stroke, and this pressure increase is further applied to the leaf valve 1 of the base valve 4.
3 and increases the damping force on the compression side.

即ち、リーフバルブ13の背圧が高くなると、
下部室C側圧力の作用するバルブシート内径受圧
面積よりも大きな受圧面関係によつて第4図乃至
第6図に示すように背圧P0を増すとリーフバルブ
の撓みが次第に小さく同一作動圧力に対して撓み
難くなり、背圧P0を変化させた場合のリーブバル
ブの撓み(mm)と作動圧力Pとの関係は第6図の
グラフの如くになる。
That is, when the back pressure of the leaf valve 13 increases,
Due to the pressure-receiving surface area being larger than the pressure-receiving area of the inner diameter of the valve seat where the lower chamber C side pressure acts, as shown in Figs. The relationship between the deflection (mm) of the reve valve and the operating pressure P when the back pressure P 0 is changed is as shown in the graph of FIG.

ここで、圧側ベース部のリリーフバルブ13で
発生する減衰力Fを求めてみると、一般に、 F=A1×ΔP ………(1) で表わされる。
Here, when the damping force F generated in the relief valve 13 of the pressure side base portion is determined, it is generally expressed as F=A 1 ×ΔP (1).

但し、A1:ピストンロツド8の断面積 ΔP=P−P0 P:リーフバルブ上面(下部室C内)の圧力 P0:リーフバルブ下面(リザーバ室E内)の
圧力とする。
However, A 1 : Cross-sectional area of the piston rod 8 ΔP=P-P 0 P : Pressure on the top surface of the leaf valve (inside the lower chamber C) P 0 : Pressure in the bottom surface of the leaf valve (inside the reservoir chamber E).

即ち、ピストンロツドに加わる荷重P0を求める
と、ピストン上部の受圧面積A2、同上部室Bの
圧力をP1、ピストン下部の受圧面積をA0とする
と、内圧とピストン受圧面積との関係より、 F0=A0P−A2P1 ………(2) 又、力の均合いの関係より、減衰力F1と反発
力F2=A1P0であるので、 F0=F1+F2 ………(3) とも表現され、これ等(2)(3)式より減衰力は F1=F0−F2 =(A0P−A2P1)−A1P0 ここで面積 A0=A1+A2故 =(A0+A2)P−A2P1−A1P0 =A2(P−P1)+A1(P−P0)となり、 第1項のA2(P−P1)がピストン部で発生する
減衰力であり、第2項がベース部で発生する減衰
力であり、前記(1)式のF=A1(P−P0)=A1ΔP
を得る。
That is, when calculating the load P 0 applied to the piston rod, if the pressure receiving area at the top of the piston is A 2 , the pressure in the upper chamber B is P 1 , and the pressure receiving area at the bottom of the piston is A 0 , then from the relationship between the internal pressure and the pressure receiving area of the piston, F 0 = A 0 P−A 2 P 1 ………(2) Also, from the relationship of force balance, the damping force F 1 and the repulsive force F 2 = A 1 P 0 , so F 0 = F 1 It is also expressed as +F 2 ......(3), and from equations (2) and (3), the damping force is F 1 = F 0 - F 2 = (A 0 P - A 2 P 1 ) - A 1 P 0 Here Therefore, the area A 0 = A 1 + A 2 = (A 0 + A 2 ) P - A 2 P 1 - A 1 P 0 = A 2 (P - P 1 ) + A 1 (P - P 0 ), and the first term is A 2 (P-P 1 ) is the damping force generated at the piston, the second term is the damping force generated at the base, and F=A 1 (P-P 0 ) in equation (1) above. =A 1 ΔP
get.

又ベース部を流れる作動油の流量は、 Vp:ピストン速度 C :流量係数 δ :作動油の密度 A :バルブシート5aらリーフバルブ13
が撓んで得られる開口部面積であり、 A=2πr×yで求められる。
Also, the flow rate of hydraulic oil flowing through the base is Vp: Piston speed C: Flow coefficient δ: Hydraulic oil density A: From valve seat 5a to leaf valve 13
is the opening area obtained by bending, and is determined by A=2πr×y.

この時r:上部室B圧力のかかるバルブシート5
aの内径半径 y:リーフバルブ13の撓みで、第5図よ
り圧力と半径の関数として求められる。
At this time r: Valve seat 5 under pressure in upper chamber B
Inner diameter radius of a y: Deflection of the leaf valve 13, determined as a function of pressure and radius from FIG.

y=f(P,P0,r,a) ………(5) (4)式よりΔP=δQ/2C=δQ/2C
(2πry) =δQ/4πr ………(6) 前記(1)式へ(5)(6)式を代入して得られる圧側減衰
力特性をグラフに示したのが第7図であり、本考
案の場合、圧側の減衰力Fは、リーフバルブ13
の半径aをバルブシート5aの内径に対して変化
させることによつて変更することができる。
y=f(P, P 0 , r, a) ......(5) From equation (4), ΔP=δQ 2 /2C 2 A 2 = δQ 2 /2C 2
(2πry) 2 = δQ 2 /4πr 2 C 2 y 2 ......(6) The compression side damping force characteristics obtained by substituting equations (5) and (6) into equation (1) above are shown in a graph. FIG. 7 shows that in the case of the present invention, the damping force F on the pressure side is the leaf valve 13.
can be changed by changing the radius a of the valve seat 5a with respect to the inner diameter of the valve seat 5a.

即ち、リーフバルブ13の半径aを大きくする
と第7図中実線の上方に破線で描いたように背圧
P0の影響が減衰力の変化に大きく作用してくる。
That is, when the radius a of the leaf valve 13 is increased, the back pressure increases as shown by the broken line above the solid line in FIG.
The influence of P 0 has a large effect on the change in damping force.

従つて、本考案においてはこれに着目し、ピス
トンロツド8のストロークによる変動する背圧P0
が、その圧縮行程において増大することを利用し
て、圧側減衰力の増加変化を有効に生じさせるよ
うな背圧P0を受け易いリーフバルブ13の形状構
造としたものである。
Therefore, in the present invention, we focused on this and calculated the back pressure P 0 which fluctuates due to the stroke of the piston rod 8.
The leaf valve 13 is shaped and structured so that it can easily receive back pressure P 0 that effectively causes an increase in the compression side damping force by taking advantage of the fact that the pressure increases in the compression stroke.

この結果、ピストンに対する内圧上昇に基因し
た反発力の増大をもたらすが、本考案の構造によ
れば第8図に示すようにピストンロツド8が圧縮
側へ移動すると、リザーバ室E内への作動油流入
によつてリザーバ室体積が圧縮され、その内圧が
更に上昇する為、これが背圧P0としてリーフバル
ブ13の半径aによる受圧面側に作用して減衰力
をも同時に増大させることになり、バネ反発力の
増大に伴なつて減衰力もともに増大するので、常
時最適な車輌のサスペンシヨン状態を維持するこ
とができるのである。
As a result, the repulsion force against the piston increases due to the increase in internal pressure. However, according to the structure of the present invention, when the piston rod 8 moves toward the compression side as shown in FIG. 8, the hydraulic oil flows into the reservoir chamber E. As a result, the volume of the reservoir chamber is compressed and its internal pressure further increases, which acts as back pressure P 0 on the pressure receiving surface side of the leaf valve 13 due to the radius a, simultaneously increasing the damping force. As the repulsion force increases, the damping force also increases, making it possible to maintain the optimal suspension state of the vehicle at all times.

次に本考案の構造について実験結果を説明す
る。
Next, experimental results regarding the structure of the present invention will be explained.

実験 1 「従来の標準シヨツクアブソーバと本考案のシ
ヨツクアブソーバの減衰力特性」(第9図参
照) 本考案のシヨツクアブソーバが従来のものに
対し、圧側減衰力の立上り特性が大巾に改善さ
れた。
Experiment 1 "Damping force characteristics of the conventional standard shock absorber and the shock absorber of the present invention" (see Figure 9) The shock absorber of the present invention has greatly improved the rise characteristics of the compression side damping force compared to the conventional shock absorber. .

実験 2 「ベアリング3部のチエツクシール10を廃止
し、ピストンロツド8とベアリング3の間隙d
を80μ以下にした場合の減衰力特性」(第10
図参照) 第9図に示すものよりは立上り特性が劣るが
従来のものよりは改善されている。
Experiment 2 ``The check seal 10 of the bearing 3 part was abolished, and the gap d between the piston rod 8 and the bearing 3 was removed.
"Damping force characteristics when 80μ or less" (Part 10)
(See figure) Although the rise characteristic is inferior to that shown in FIG. 9, it is improved over the conventional one.

以上説明したように本考案のガス入り油圧緩衝
器の構造によれば圧側減衰力の立上りの遅れが改
善される為、車輌特性を改善し、より乗心地の良
い車輌等を提供することができる等、本考案の実
用効果は極めて大きい。
As explained above, the structure of the gas-filled hydraulic shock absorber of the present invention improves the delay in the rise of the compression side damping force, thereby improving vehicle characteristics and providing a vehicle with a more comfortable ride. The practical effects of this invention are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案ガス入り油圧緩衝器の一実施例を
示すもので、第1図は従来の複筒式シヨツクアブ
ソーバの減衰力特性を示すグラフ、第2図は同連
続加振時の減衰力特性を示すグラフ、第3図は本
考案シヨツクアブソーバの正断面図、第4図はベ
ースバルブ部要部拡大断面図、第5図は第4図に
おける圧力分布を示す説明図、第6図は同部のリ
ーフバルブの撓み量と圧力の関係を示すグラフ、
第7図はリーフバルブにおける圧側減衰力と背圧
の関係を示すグラフ、第8図は減衰力と反発力の
相互関係を示すグラフ、第9図は従来品と本考案
シヨツクアブソーバの減衰力特性を示すグラフ、
第10図は本考案の他の実施例の減衰力特性を示
すグラフである。 1……アウタチユーブ、2……シリンダ、3…
…ベアリング、4……ベースパルプ機構、5……
バルブ基板、7……ピストン、8……ピストンロ
ツド、9……シール部材、10……チエツクシー
ル、11……連通孔、13……リーフバルブ、1
4,18……チエツク弁、17……オリフイス、
19……伸側減衰力発生弁、20……ピストンバ
ルブ。
The drawings show an embodiment of the gas-filled hydraulic shock absorber of the present invention. Figure 1 is a graph showing the damping force characteristics of a conventional dual-tube shock absorber, and Figure 2 is a graph showing the damping force characteristics during continuous vibration. FIG. 3 is a front sectional view of the shock absorber of the present invention, FIG. 4 is an enlarged sectional view of the main part of the base valve, FIG. 5 is an explanatory diagram showing the pressure distribution in FIG. 4, and FIG. 6 is the same. A graph showing the relationship between the amount of deflection and pressure of the leaf valve in
Figure 7 is a graph showing the relationship between compression side damping force and back pressure in a leaf valve, Figure 8 is a graph showing the correlation between damping force and repulsion force, and Figure 9 is the damping force characteristics of the conventional shock absorber and the invented shock absorber. A graph showing,
FIG. 10 is a graph showing the damping force characteristics of another embodiment of the present invention. 1... Outer tube, 2... Cylinder, 3...
...Bearing, 4...Base pulp mechanism, 5...
Valve board, 7... Piston, 8... Piston rod, 9... Seal member, 10... Check seal, 11... Communication hole, 13... Leaf valve, 1
4, 18...check valve, 17...orifice,
19... Rebound damping force generation valve, 20... Piston valve.

Claims (1)

【実用新案登録請求の範囲】 (1) アウタチユーブに対しシリンダを内挿した複
筒式シヨツクアブソーバにおいて、上記シリン
ダに内挿したピストンロツド内端に固設したピ
ストンに対し伸側減衰弁と圧側吸込チエツク弁
とよりなるピストンバルブを設け、上記アウタ
ーチユーブとシリンダとの間に形成された円筒
状室とシリンダ内の下部室との間にバルブ基板
を設けて、その下部室側上面には伸側吸込チエ
ツク弁を、また下面には内周固定の圧側リーフ
バルブを設け、当該リーフバルブの外径をバル
ブシートの内径よりもバルブシート面幅相当量
大径に形成して背圧側受圧面積を増すと共に、
上記シリンダの上下部室及び円筒状室の下部に
作動油を充填し且つ円筒状室の上部リザーバ室
には低圧ガスを封入して当該リザーバ室の圧力
上昇を上記リーフバルブの背圧として作用せし
める様構成したことを特徴とするガス入り油圧
緩衝器。 (2) 上記リザーバ室とシリンダの上部空間をチエ
ツクシールを介して連通し、リザーバ室の圧力
がピストンの背圧に伝播することを阻止せしめ
てなることを特徴とする実用新案登録請求の範
囲第1項記載のガス入り油圧緩衝器。 (3) 上記リザーバ室とシリンダの上部空間を連通
するシリンダに設けたピストンロツド摺動用ベ
アリングと該ピストンロツド間に100μ以下の
小間隙を形成し、リザーバ室の圧力がピストン
の背圧に伝播することを遅延せしめてなること
を特徴とする実用新案登録請求の範囲第1項及
び第2項記載のガス入り油圧緩衝器。
[Scope of Claim for Utility Model Registration] (1) In a dual-tube shock absorber in which a cylinder is inserted into the outer tube, a rebound damping valve and a compression side suction check are provided for the piston fixed to the inner end of the piston rod inserted in the cylinder. A piston valve consisting of a valve is provided, a valve board is provided between a cylindrical chamber formed between the outer tube and the cylinder and a lower chamber in the cylinder, and an expansion side suction is provided on the upper surface of the lower chamber side. A check valve is provided, and a pressure side leaf valve with a fixed inner circumference is provided on the bottom surface, and the outer diameter of the leaf valve is made larger than the inner diameter of the valve seat by an amount equivalent to the valve seat surface width to increase the pressure receiving area on the back pressure side. ,
The upper and lower chambers of the cylinder and the lower part of the cylindrical chamber are filled with hydraulic oil, and the upper reservoir chamber of the cylindrical chamber is filled with low-pressure gas so that the pressure increase in the reservoir chamber acts as back pressure for the leaf valve. A gas-filled hydraulic shock absorber characterized by comprising: (2) The above-mentioned reservoir chamber and the upper space of the cylinder are communicated through a check seal to prevent the pressure in the reservoir chamber from propagating to the back pressure of the piston. The gas-filled hydraulic shock absorber according to item 1. (3) A small gap of 100μ or less is formed between the piston rod and the piston rod sliding bearing provided in the cylinder that communicates the reservoir chamber with the upper space of the cylinder, to prevent the pressure in the reservoir chamber from propagating to the back pressure of the piston. A gas-filled hydraulic shock absorber as set forth in claims 1 and 2 of the utility model registration claim, characterized in that the gas-filled hydraulic shock absorber is delayed.
JP17587381U 1981-11-25 1981-11-25 gas-filled hydraulic shock absorber Granted JPS5879152U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17587381U JPS5879152U (en) 1981-11-25 1981-11-25 gas-filled hydraulic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17587381U JPS5879152U (en) 1981-11-25 1981-11-25 gas-filled hydraulic shock absorber

Publications (2)

Publication Number Publication Date
JPS5879152U JPS5879152U (en) 1983-05-28
JPS6246917Y2 true JPS6246917Y2 (en) 1987-12-22

Family

ID=29968455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17587381U Granted JPS5879152U (en) 1981-11-25 1981-11-25 gas-filled hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JPS5879152U (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3346272A (en) * 1965-10-14 1967-10-10 Monroe Auto Equipment Co Vehicle suspension device
JPS5210983A (en) * 1975-07-15 1977-01-27 Agency Of Ind Science & Technol Test method of tenacity of cutting tool material by non-cutting
JPS52124585A (en) * 1976-04-10 1977-10-19 Tokico Ltd Buffer
US4076276A (en) * 1976-07-09 1978-02-28 Monroe Auto Equipment Company Base valve for independent wheel suspension strut
JPS53109075A (en) * 1977-03-04 1978-09-22 Kayaba Ind Co Ltd Oil and gas isolating double cylinder type shock absorber
JPS53115476A (en) * 1978-01-17 1978-10-07 Honda Motor Co Ltd Hydraulic buffer for vehicles
JPS5623057A (en) * 1979-08-03 1981-03-04 Fujitsu Ltd Data highway system
JPS5676741A (en) * 1979-11-26 1981-06-24 Showa Mfg Co Ltd Damping force generator for hydraulic shock absorber
JPS6040921A (en) * 1984-07-02 1985-03-04 Matsushita Electric Ind Co Ltd Measuring device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3346272A (en) * 1965-10-14 1967-10-10 Monroe Auto Equipment Co Vehicle suspension device
JPS5210983A (en) * 1975-07-15 1977-01-27 Agency Of Ind Science & Technol Test method of tenacity of cutting tool material by non-cutting
JPS52124585A (en) * 1976-04-10 1977-10-19 Tokico Ltd Buffer
US4076276A (en) * 1976-07-09 1978-02-28 Monroe Auto Equipment Company Base valve for independent wheel suspension strut
JPS53109075A (en) * 1977-03-04 1978-09-22 Kayaba Ind Co Ltd Oil and gas isolating double cylinder type shock absorber
JPS53115476A (en) * 1978-01-17 1978-10-07 Honda Motor Co Ltd Hydraulic buffer for vehicles
JPS5623057A (en) * 1979-08-03 1981-03-04 Fujitsu Ltd Data highway system
JPS5676741A (en) * 1979-11-26 1981-06-24 Showa Mfg Co Ltd Damping force generator for hydraulic shock absorber
JPS6040921A (en) * 1984-07-02 1985-03-04 Matsushita Electric Ind Co Ltd Measuring device

Also Published As

Publication number Publication date
JPS5879152U (en) 1983-05-28

Similar Documents

Publication Publication Date Title
US5042624A (en) Hydraulic shock absorber with pre-loaded valve for linear variation characteristics of damping force
US4614255A (en) Hydraulic shock absorber for vehicles
US4815576A (en) Twin-tube type shock absorber with a base valve portion structure coupled by caulking
JP2958333B2 (en) Hydraulic shock absorber valve device
JPS6246917Y2 (en)
JPH04316733A (en) Front fork
JP3066994B2 (en) Damping force adjustable shock absorber
JPH0224983Y2 (en)
JPS5855379B2 (en) Kuukibanesouchi
JP2594410Y2 (en) Pressure side damping force generating valve structure of hydraulic shock absorber
JPH07139576A (en) Bottomed shock absorbing device of hydraulic shock absorber
JPH051713Y2 (en)
JP2580741Y2 (en) Hydraulic shock absorber
JPS6212109Y2 (en)
JPH0447458Y2 (en)
JPH028526A (en) Base valve device for hydraulic shock absorber
JPS6119224Y2 (en)
JPH0535223Y2 (en)
JPH0893828A (en) Hydraulic shock absorber
JPS623555Y2 (en)
JPH0412264Y2 (en)
JPS623554Y2 (en)
KR20230064359A (en) Shock absorber
JPS595245Y2 (en) Shock absorber
JPH062730A (en) Hydraulic buffer