JPS6246646B2 - - Google Patents

Info

Publication number
JPS6246646B2
JPS6246646B2 JP21094381A JP21094381A JPS6246646B2 JP S6246646 B2 JPS6246646 B2 JP S6246646B2 JP 21094381 A JP21094381 A JP 21094381A JP 21094381 A JP21094381 A JP 21094381A JP S6246646 B2 JPS6246646 B2 JP S6246646B2
Authority
JP
Japan
Prior art keywords
gas
fibers
inert gas
fiber
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21094381A
Other languages
Japanese (ja)
Other versions
JPS58126316A (en
Inventor
Osamu Yoshinari
Makoto Sugyama
Hideki Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP21094381A priority Critical patent/JPS58126316A/en
Publication of JPS58126316A publication Critical patent/JPS58126316A/en
Publication of JPS6246646B2 publication Critical patent/JPS6246646B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は炭素繊維を連続的に製造する垂直焼成
装置に関する。更に詳しくは、原料繊維を上方よ
り垂直に走行させて連続的に炭素繊維を製造する
装置において、焼成室の中段に、不活性ガスカー
テンを形成させるための不活性ガス噴出口と焼成
室内ガス取出口とを設けた炭素化炉に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vertical firing apparatus for continuously producing carbon fibers. More specifically, in an apparatus that continuously manufactures carbon fiber by running raw material fiber vertically from above, an inert gas outlet for forming an inert gas curtain and a gas intake in the firing chamber are installed in the middle stage of the firing chamber. The present invention relates to a carbonization furnace provided with an outlet.

炭素繊維の製造は、一般にポリアクリロニトリ
ル系繊維、セルロース系製造等の有機質繊維を酸
化性雰囲気中で熱処理(耐炎化処理)した後炭素
化炉にて不活性ガス雰囲気中は又は非酸化性雰囲
気中で300℃以上の温度で炭素化することによつ
て行なわれる。この炭素化工程においは、予備酸
化処理された有機繊維が熱分解して炭素繊維とな
るが、このとき1500℃以上、必要によつては2000
℃以上の黒鉛化温度にまで加熱焼成するのが一般
である。
Carbon fibers are generally manufactured by heat-treating organic fibers such as polyacrylonitrile fibers and cellulose fibers in an oxidizing atmosphere (flame-resistant treatment), and then using a carbonization furnace in an inert gas atmosphere or in a non-oxidizing atmosphere. This is done by carbonization at temperatures above 300°C. In this carbonization process, pre-oxidized organic fibers are thermally decomposed to become carbon fibers, but at this time, the temperature is 1500℃ or higher, or 2000℃ if necessary.
Generally, the material is heated and fired to a graphitization temperature of ℃ or higher.

このようにして得られる炭素繊維の強伸度はミ
クロボイド等に起因する繊維内部の欠陥のほか繊
維表面のクラツク等の欠陥により著しく低下す
る。高性能の炭素繊維を得るには、表面欠陥の少
ない炭素繊維を製造することが極めて重要であ
る。
The strength and elongation of the carbon fibers obtained in this manner is significantly reduced by defects such as cracks on the surface of the fibers as well as defects inside the fibers caused by microvoids and the like. In order to obtain high-performance carbon fibers, it is extremely important to produce carbon fibers with few surface defects.

炭素化工程は、耐炎化繊維を不活性ガス雰囲気
中300〜1500℃、必要によつては黒鉛化温度の
2000℃以上の温度で張力下加熱処理することによ
つて行われる。
In the carbonization process, flame-resistant fibers are heated at 300 to 1500℃ in an inert gas atmosphere, or at the graphitization temperature if necessary.
This is done by heat treatment under tension at a temperature of 2000°C or higher.

この炭素化工程において、耐炎化繊維は、焼成
温度の上昇に伴つて各種の分解生成物を放出しな
がら炭素化されるが、分解生成物の放出はその大
部分が300〜900℃の温度域で行われることが知ら
れている。この温度域で発生する分解生成物は、
その発生温度条件下ではガス状であるが、この分
解ガスが、たて型炉における炉内の上昇気流につ
れて低温域に入ると温度低下によりタールミスト
となる。タールミストとなつて分解生成物は一部
は炉壁面や繊維表面に付着するに至る。
In this carbonization process, flame-resistant fibers are carbonized while releasing various decomposition products as the firing temperature increases, but most of the decomposition products are released in the temperature range of 300 to 900℃. It is known that it takes place in The decomposition products generated in this temperature range are
Although it is gaseous under the generation temperature conditions, this decomposed gas becomes tar mist due to the temperature drop when it enters a low temperature region as the updraft inside the vertical furnace moves. Some of the decomposition products become tar mist and adhere to the furnace wall and fiber surfaces.

タールミストが炉壁面に付着するとその粘着性
のゆえに炉内に浮遊する繊維の毛羽を捕捉して炉
内付着物となる。このものは連続運転時に順次生
成し、ついには生成した付着物が通過繊維との接
触により繊維表面に損傷を生ぜしめ、或いは炉内
繊維通路の部分狭窄により気流の均一性を乱す等
の悪影響を及ぼすようになる。
When tar mist adheres to the furnace wall surface, due to its stickiness, it captures the fluff of fibers floating in the furnace and becomes deposits inside the furnace. These deposits are generated one after another during continuous operation, and eventually the generated deposits come into contact with passing fibers, causing damage to the fiber surface, or causing adverse effects such as disturbing the uniformity of airflow due to partial narrowing of the fiber passage in the furnace. It starts to affect people.

通過繊維とタールミストの接触は、著しい場合
には単繊維間の膠着を生起させ、また高温域での
タールミストの付着は繊維の表面欠陥を生起さ
せ、この結果、製品炭素繊維の強伸度が低下す
る。
Contact between passing fibers and tar mist can cause adhesion between single fibers in severe cases, and adhesion of tar mist at high temperatures can cause surface defects on the fibers, resulting in a decrease in the strength and elongation of the product carbon fiber. decreases.

更に、ある種の分解生成ガスは、高温域に進行
して繊維と接触した場合、繊維の強度を著しく低
下させる。
Furthermore, certain decomposition gases, when they progress to a high temperature range and come into contact with fibers, significantly reduce the strength of the fibers.

本発明者等は、糸条を上方より供給し、ほぼ垂
直方向に走行させつつ炭素化するための、たて型
炭素繊維焼成炉において、300〜900℃付近で発生
する分解ガスを有効に除去することについて検討
した結果、本発明に至つた。
The present inventors have developed a vertical carbon fiber firing furnace in which yarn is fed from above and carbonized while running in an almost vertical direction, effectively removing decomposition gas generated at around 300 to 900°C. As a result of research into this, we have arrived at the present invention.

すなわち本発明は、下端が外気とシールされ上
端が開放されている炭素繊維焼成用加熱筒の内空
部を繊維通路兼焼成室とし、上端より繊維を供給
し焼成後繊維を下端よりシール機構を介し取出す
たて型焼成炉において、(a)下端シール直上部に設
けられた不活性ガス供給口と上端開放口直下部に
設けられたシールガス抜き口との間に、焼成室を
横切つて不活性ガスカーテンを形成させるための
不活性ガス噴出口列を複数段設け、かつ(b)それぞ
れの不活性ガス噴出口列直下に隣接して、圧力調
整弁に連結した焼成室内ガス排出口を開口させた
炭素繊維の焼成装置である。
That is, in the present invention, the inner space of a heating cylinder for firing carbon fibers whose lower end is sealed from the outside air and whose upper end is open is used as a fiber passage and firing chamber, and the fiber is supplied from the upper end and the sealing mechanism is applied to the fiber after firing from the lower end. In a vertical type firing furnace, (a) there is an inert gas supply port provided directly above the lower end seal and a seal gas vent provided directly below the upper end opening, across the firing chamber. A plurality of rows of inert gas nozzles are provided to form an inert gas curtain, and (b) a firing chamber gas discharge port connected to a pressure regulating valve is provided immediately below and adjacent to each row of inert gas nozzles. This is an open carbon fiber firing device.

本発明装置によると、高温側で発生した分解ガ
スが低温側に流入してタールミストを生じること
がなく、したがつてタールミストの炉壁面や繊維
表面への付着がなく、また分解ガスが処理途中の
繊維と接触することもないので、高品質の炭素繊
維を長時間にわたり安定的に製造することができ
る。
According to the device of the present invention, the decomposed gas generated on the high temperature side does not flow into the low temperature side and generate tar mist, so the tar mist does not adhere to the furnace wall surface or fiber surface, and the decomposed gas is processed. Since there is no contact with intermediate fibers, high-quality carbon fibers can be stably produced over a long period of time.

本発明装置は、炭素化工程のうち熱分解ガスの
発生が特に多い300〜900℃付近までの熱処理に有
効に使用される。
The apparatus of the present invention is effectively used for heat treatment at temperatures of about 300 to 900° C., where pyrolysis gas is particularly frequently generated during the carbonization process.

本発明装置によつて処理される繊維は、ポリア
クリロニトリル系繊維あるいはセルロース系繊維
を熱処理した後の通常の炭素化工程に供されるた
めの繊維である。
The fibers treated by the apparatus of the present invention are fibers that are subjected to a normal carbonization process after heat treating polyacrylonitrile fibers or cellulose fibers.

本発明装置の実施例を図面によつて説明する。
第1図は本発明装置の断面概念図を示すものであ
る。第1図において、処理されるべき繊維1は焼
成用の加熱筒2に導入される。加熱筒の内空部は
焼成室であると同時に繊維通路でもある。加熱筒
の上端は繊維導入口3となり開放されている。加
熱筒の下端は繊維導出口7であり、シール機構
(図示せず)と連通している。加熱筒2の外側は
加熱機構4を有する。
Embodiments of the device of the present invention will be described with reference to the drawings.
FIG. 1 shows a conceptual cross-sectional view of the device of the present invention. In FIG. 1, the fibers 1 to be treated are introduced into a heating cylinder 2 for firing. The inner space of the heating cylinder is a firing chamber and also serves as a fiber passage. The upper end of the heating cylinder becomes the fiber introduction port 3 and is open. The lower end of the heating cylinder is a fiber outlet 7, which communicates with a sealing mechanism (not shown). A heating mechanism 4 is provided on the outside of the heating cylinder 2 .

加熱筒2の上部は予熱機構及びシール機構(い
ずれも図示せず)となつており、上端の繊維導入
口3の直下部にシールガス抜き口5が開口してい
る。このガス抜き口は上端の繊維導入口から繊維
とともに加熱筒内に入つた系外ガス(例えば空
気、水蒸気)を下方からの上昇ガスと一緒に炉外
に排出させ、内部を不活性雰囲気に保持させる。
炉内下方からの上昇ガスが繊維導入口3から系外
に排出されると、炉内ガスが導入口付近で急冷さ
れ炉内ガスに含まれる分解ガスがミストとなり繊
維表面及び導入口に付着蓄積し繊維の切断、膠着
時の品質低下の原因となることがある。こうした
事態は、前記のように繊維導入口3の直下にシー
ルガス抜き口5を設けることにより有利に防止で
きる。更に繊維導入口での分解ガスミストの蓄積
を防止するために繊維導入口を加熱することもあ
る。
The upper part of the heating cylinder 2 has a preheating mechanism and a sealing mechanism (both not shown), and a sealing gas vent 5 is opened directly below the fiber inlet 3 at the upper end. This gas vent allows outside gas (e.g. air, water vapor) that entered the heating cylinder together with the fibers from the fiber inlet at the top end to be discharged to the outside of the furnace together with the rising gas from below, maintaining an inert atmosphere inside the furnace. let
When the rising gas from the lower part of the furnace is discharged outside the system from the fiber inlet 3, the furnace gas is rapidly cooled near the inlet, and the decomposed gas contained in the furnace gas becomes mist and accumulates on the fiber surface and inlet. It may cause cutting of the fibers or deterioration of quality due to sticking. Such a situation can be advantageously prevented by providing the seal gas vent 5 directly below the fiber introduction port 3 as described above. Furthermore, the fiber inlet may be heated to prevent accumulation of decomposed gas mist at the fiber inlet.

加熱筒の下端は繊維導出口7であり、ここに不
活性ガス供給口6が付設され、シール機構と連通
している。繊維は、このような加熱筒内に導入さ
れ加熱筒の内空部(焼成室)で加熱焼成されて炭
素化し下端のシール機構を経て取出される。この
シール機構としては、液体シール、ローラーシー
ル、又は不活性ガスカーテンシールが適宜採用さ
れる。焼成室から取出された繊維は、巻取られる
か、又は更に高温の処理炉に連続的に供給され
る。
The lower end of the heating cylinder is a fiber outlet 7, which is provided with an inert gas supply port 6 and communicates with the sealing mechanism. The fibers are introduced into such a heating cylinder, heated and fired in the inner space (firing chamber) of the heating cylinder, carbonized, and taken out through a sealing mechanism at the lower end. As this sealing mechanism, a liquid seal, a roller seal, or an inert gas curtain seal is appropriately employed. The fibers removed from the firing chamber are either wound up or continuously fed to a processing furnace at a higher temperature.

加熱機構4は繊維の走行方向につれて次第に高
温になるよう設計されている。加熱筒内のガス流
は繊維の走行方向と対向している。
The heating mechanism 4 is designed to gradually become hotter in the direction of fiber travel. The gas flow inside the heating cylinder is opposite to the direction of fiber travel.

本発明装置では、以上の焼成炉において加熱筒
の下端部に設けられた不活性ガス供給口6と上部
に設けられたシールガス抜き口5との間に、不活
性ガス噴出口列8が複数段設けられている。この
不活性ガス噴出口列から補給される不活性ガスは
予熱機構9により予め炉内温度に加熱されてい
る。不活性ガス噴出口列から補給された不活性ガ
スは焼成室を横切つて繊維の周囲にガスカーテン
を形成し、これにより焼成室下方からの上昇気流
がが遮断される。不活性ガスカーテンによつて遮
断された上昇途上の内部ガスはガス取出口10か
ら系外に排出される。このとき加熱筒内は通常5
〜100mmH2O程度の加圧状態にあるため、ガス取
出口は圧力調整弁11に連結されている。不活性
ガス噴出口列8及びガス取出口10付近の拡大概
念見取図を示すと第2図の通りである。
In the apparatus of the present invention, a plurality of inert gas jet nozzle rows 8 are provided between the inert gas supply port 6 provided at the lower end of the heating cylinder and the seal gas vent 5 provided at the top of the heating cylinder. There are steps. The inert gas supplied from this inert gas jet nozzle array is heated in advance to the furnace temperature by the preheating mechanism 9. The inert gas supplied from the inert gas outlet array traverses the firing chamber and forms a gas curtain around the fibers, thereby blocking upward airflow from below the firing chamber. The rising internal gas blocked by the inert gas curtain is discharged to the outside of the system from the gas outlet 10. At this time, the inside of the heating cylinder is usually 5
Since it is in a pressurized state of about 100 mmH 2 O, the gas outlet is connected to the pressure regulating valve 11 . An enlarged conceptual diagram of the vicinity of the inert gas outlet row 8 and the gas outlet 10 is shown in FIG. 2.

第2図において不活性ガス噴出口8より繊維1
に向つて噴射された不活性ガスは繊維の周囲にガ
スカーテンを形成し、上昇してきた加熱筒内のガ
スを遮断し、上昇ガスはガス取出口10から取出
される。
In Fig. 2, the fiber 1 is
The inert gas injected toward the fibers forms a gas curtain around the fibers and blocks the rising gas in the heating cylinder, and the rising gas is taken out from the gas outlet 10.

不活性ガス噴出口列は焼成室内に複数段設けら
れ、ガスカーテンが複数段形成される。噴出口列
は、炉内の雰囲気温度の境界ごとに設けるのがよ
い。このようにすると、加熱筒内で発生した分解
ガスが、より上部にある低温側の分解途上の繊維
や雰囲気ガスと接触するとなく系外に排出され、
このため分解ガスが繊維表面や壁面にタールミス
トとして付着することがなく、繊維性能に悪影響
を与えず、また長期の安定運転を可能にするので
ある。
A plurality of inert gas jet nozzle rows are provided in the firing chamber, and a plurality of gas curtains are formed. It is preferable that the jet nozzle array be provided at each boundary of the atmospheric temperature within the furnace. In this way, the decomposed gas generated in the heating cylinder is discharged outside the system without coming into contact with the fibers in the process of decomposition or the atmospheric gas on the lower temperature side located higher up.
For this reason, decomposed gas does not adhere to the fiber surface or wall surface as tar mist, does not adversely affect fiber performance, and allows stable operation over a long period of time.

次に第1図の装置を使用して炭素繊維を製造す
る方法につい説明する。
Next, a method for manufacturing carbon fiber using the apparatus shown in FIG. 1 will be explained.

アクリロニトリル系繊維より誘導された酸素結
合量6〜15%(重量)の耐炎繊維ストランド又は
トウを繊維導入口3より炉内に供給する。この導
入口はタールの付着を防止するため250〜350℃に
保持されている。繊維は、ほぼ300℃に加熱され
ている誘導部加熱筒の上部を通り予熱される。こ
の際繊維束内に含まれる外気、特に空気は内部ガ
スによつて置換され、空気等を含んだガスは、シ
ールガス抜き口5から系外に排出される。繊維は
通常百ないし数万フイラメント構成の繊維束で供
給されるから、前記ガス置換は充分に行う必要が
ある。
Flame-resistant fiber strands or tows derived from acrylonitrile fibers and having an oxygen bond content of 6 to 15% (by weight) are fed into the furnace through the fiber introduction port 3. This inlet is maintained at 250-350°C to prevent tar from adhering. The fibers are preheated by passing through the top of the induction section heating tube, which is heated to approximately 300°C. At this time, the outside air, especially air, contained within the fiber bundle is replaced by the internal gas, and the gas containing air etc. is discharged to the outside of the system from the sealing gas vent 5. Since fibers are usually supplied in fiber bundles consisting of hundreds to tens of thousands of filaments, the gas exchange must be carried out sufficiently.

次いで繊維は、更に高温の約500〜700℃に加熱
された第1の高温ゾーンに入る。この際繊維は、
窒素、アルゴン、ヘリウム等の不活性ガスのカー
テン域を通る。補給されるガスは、補給口の下側
のゾーンの温度まで加熱されたものが用いられ
る。これは炉内分解ガスが補給ガスによつて急冷
されてミストを発生することを防止し、また炉内
温度の変動を防ぐためである。ガス噴出口からの
ガス補給に際し繊維に向つて余り強く吹き付ける
ことは、繊維の毛羽発生の原因となるので好まし
くない。ガス補給は水平又は若干下向きに噴射す
るのが好ましい。
The fibers then enter a first high temperature zone where they are heated to an even higher temperature of about 500-700C. At this time, the fiber is
Pass through a curtain area of an inert gas such as nitrogen, argon, helium, etc. The gas to be replenished is heated to the temperature of the zone below the replenishment port. This is to prevent the cracked gas in the furnace from being rapidly cooled by the supplementary gas and generate mist, and also to prevent fluctuations in the temperature inside the furnace. When replenishing gas from the gas outlet, it is not preferable to blow the gas too strongly toward the fibers, as this may cause fluffing of the fibers. It is preferable to inject gas horizontally or slightly downward.

繊維は約500〜700℃の前記第1の高温ゾーンで
約10〜60秒熱処理を受け、次の不活性ガスカーテ
ン域を通り、更に第2の高温ゾーンに入る。ここ
は約750〜950℃に加熱されており、ここでの処理
時間は約5〜40秒である。
The fibers undergo a heat treatment in the first high temperature zone of about 500-700° C. for about 10-60 seconds, then pass through an inert gas curtain area and then enter the second high temperature zone. This is heated to about 750 to 950°C, and the processing time here is about 5 to 40 seconds.

最後に、繊維は繊維導出口7を通りシール機構
を経て系外に取出される。シール機構としては、
例えば窒素ガスカーテンとローラーシールの組合
せ方式が好ましい。
Finally, the fibers are taken out of the system through a fiber outlet 7 and a sealing mechanism. As a seal mechanism,
For example, a combination of a nitrogen gas curtain and a roller seal is preferred.

かくして得られた低炭素化繊維は更に約900〜
1500℃に保持した不活性雰囲気の高温炉中で約35
〜200秒加熱処理し、下記性能の炭素繊維を得
る。
The low carbon fiber thus obtained further has a carbon content of about 900~
Approximately 35% of
Heat treatment for ~200 seconds to obtain carbon fiber with the following performance.

繊 度 790〜810tex 引張弾性率 23.9〜25.0Ton/mm2 引張強度 415〜450Kg/mm2 変動係数(CV)=4%以下 引張伸度 1.72〜1.86% 本発明装置に12000フイラメント構成の耐炎繊
維束300本を同時に適した場合約480時間の連続運
転が可能である。また、このようにして得られた
繊維束は毛羽、膠着の発生が少なく、かつ強度の
均一性に富んだ高品質の炭素繊維である。更に本
発明装置によると分解ガスが高濃度で回収される
ため排ガスの焼却処理が容易である。一方、同じ
装置を用い中段での不活性ガスの補給と炉内ガス
の中途排気を行なわなかつた場合は、約320時間
の連続運転で、特に300〜700℃のゾーンの炉壁に
毛羽及びタールの付着による炉の部分閉塞が発現
し、得られた製品に毛羽立ちが認められるととも
に引張強度350Kg/mm2以下で、かつ変動係数
(CV)=9%と強度が低く均一性に劣るものであ
つた。
Fineness 790~810tex Tensile modulus 23.9~25.0Ton/mm 2Tensile strength 415~450Kg/mm 2Coefficient of variation (CV) = 4% or less Tensile elongation 1.72~1.86% Flame-resistant fiber bundle with 12000 filament configuration in the device of the present invention If 300 pieces are used at the same time, continuous operation for about 480 hours is possible. Furthermore, the fiber bundle thus obtained is a high-quality carbon fiber with little occurrence of fluff or agglutination, and highly uniform strength. Furthermore, according to the apparatus of the present invention, the decomposed gas is recovered at a high concentration, so that the exhaust gas can be easily incinerated. On the other hand, if the same equipment is used and the inert gas is not refilled in the middle stage and the furnace gas is not exhausted midway, after about 320 hours of continuous operation, fluff and tar will be formed on the furnace wall, especially in the 300 to 700°C zone. Partial blockage of the furnace occurred due to adhesion of the product, and the obtained product showed fluff, and the tensile strength was less than 350 kg/mm 2 and the coefficient of variation (CV) was 9%, which was low and poor in uniformity. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一例の断面概念図、第2
図は本発明装置の不活性ガス噴出口列及びガス取
出口付近の拡大概念見取図である。 1:繊維、2:加熱筒、3:繊維導入口、4:
加熱機構、5:シールガス抜き口、6:不活性ガ
ス供給口、7:繊維導出口、8:不活性ガス噴出
口列、10:ガス取出口、11:圧力調整弁。
Fig. 1 is a cross-sectional conceptual diagram of an example of the device of the present invention;
The figure is an enlarged conceptual diagram of the inert gas jet nozzle array and the vicinity of the gas outlet of the device of the present invention. 1: Fiber, 2: Heating tube, 3: Fiber introduction port, 4:
Heating mechanism, 5: Seal gas vent, 6: Inert gas supply port, 7: Fiber outlet, 8: Inert gas outlet array, 10: Gas outlet, 11: Pressure adjustment valve.

Claims (1)

【特許請求の範囲】[Claims] 1 下端がシールされ上端が開放されている炭素
繊維焼成用加熱筒の内空部を焼成室とする垂直焼
成炉において、(a)下端シール直上部に設けられた
不活性ガス供給口と上端開放口直下部に設けられ
たシールガス抜き口との間に、焼成室を横切つて
不活性ガスカーテンを形成させるための不活性ガ
ス噴出口列を複数段設け、かつ(b)それぞれの不活
性ガス噴出口列直下に隣接して、圧力調整弁に連
結した焼成室内ガス取出口を開口させた炭素繊維
の連続焼成装置。
1. In a vertical firing furnace whose firing chamber is the inner space of a carbon fiber firing heating cylinder whose lower end is sealed and whose upper end is open, (a) an inert gas supply port provided directly above the lower end seal and an open upper end; A plurality of rows of inert gas ejection ports are provided between the seal gas vent provided directly below the mouth to form an inert gas curtain across the firing chamber, and (b) each inert gas A continuous carbon fiber firing device in which a firing chamber gas outlet connected to a pressure regulating valve is opened immediately below a row of gas jet ports.
JP21094381A 1981-12-26 1981-12-26 Continuous calcination apparatus for carbon fiber Granted JPS58126316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21094381A JPS58126316A (en) 1981-12-26 1981-12-26 Continuous calcination apparatus for carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21094381A JPS58126316A (en) 1981-12-26 1981-12-26 Continuous calcination apparatus for carbon fiber

Publications (2)

Publication Number Publication Date
JPS58126316A JPS58126316A (en) 1983-07-27
JPS6246646B2 true JPS6246646B2 (en) 1987-10-03

Family

ID=16597654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21094381A Granted JPS58126316A (en) 1981-12-26 1981-12-26 Continuous calcination apparatus for carbon fiber

Country Status (1)

Country Link
JP (1) JPS58126316A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58208421A (en) * 1982-05-26 1983-12-05 Toray Ind Inc Upright heating furnace
JPH0735613B2 (en) * 1986-01-31 1995-04-19 日機装株式会社 Carbonization treatment method

Also Published As

Publication number Publication date
JPS58126316A (en) 1983-07-27

Similar Documents

Publication Publication Date Title
US4610860A (en) Method and system for producing carbon fibers
JP5704241B2 (en) Carbonization furnace for producing carbon fiber bundles and method for producing carbon fiber bundles
GB2039270A (en) Method of preparing carbon fibres
US5193996A (en) Method and system for producing carbon fibers
EP0426858B1 (en) Flameproofing apparatus
EP0671202B1 (en) Process for the production of hollow carbon fiber membranes
JP3362169B2 (en) Method and apparatus for producing carbon-coated optical fiber
US4543241A (en) Method and apparatus for continuous production of carbon fibers
EP0516051B1 (en) Method for continuous production of carbon fiber using calcining furnace
US4753777A (en) Apparatus for continuous production of carbon fibers
KR870000704B1 (en) Method and system for producing carbon fibers
JPS6246646B2 (en)
JP2007224483A (en) Apparatus for producing carbon fiber bundle and method for producing the same
EP0100411B1 (en) Process for producing carbonizable oxidized fibers and carbon fibers
GB2138114A (en) Method and apparatus for continuous production of carbon fibers
JPS6246647B2 (en)
US20240035205A1 (en) Production method for precarbonized fiber bundle, production method for carbon fiber bundle, and precarbonization furnace
JP4254191B2 (en) Graphitization furnace and method for producing graphitized fiber
FR2543982A1 (en) Process and apparatus for the continuous production of carbon fibres
JP2507367B2 (en) Carbon fiber manufacturing method
JPH06173124A (en) Method for regulating atmosphere between infusibilizing furnace and carbonizing furnace and apparatus therefor
KR20000024867A (en) Ap-chemical vapor deposition(apcvd) device
JPH01207421A (en) Apparatus for making flame-resistance and method therefor
JPH01118623A (en) Provision of precursor fiber with flame resistance
JPS6285029A (en) Production of carbon fiber