JPS6246260Y2 - - Google Patents

Info

Publication number
JPS6246260Y2
JPS6246260Y2 JP1978114419U JP11441978U JPS6246260Y2 JP S6246260 Y2 JPS6246260 Y2 JP S6246260Y2 JP 1978114419 U JP1978114419 U JP 1978114419U JP 11441978 U JP11441978 U JP 11441978U JP S6246260 Y2 JPS6246260 Y2 JP S6246260Y2
Authority
JP
Japan
Prior art keywords
electrode
capacitance
trimming
capacitor
capacitance adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978114419U
Other languages
Japanese (ja)
Other versions
JPS5532028U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1978114419U priority Critical patent/JPS6246260Y2/ja
Publication of JPS5532028U publication Critical patent/JPS5532028U/ja
Application granted granted Critical
Publication of JPS6246260Y2 publication Critical patent/JPS6246260Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案はトリミング・コンデンサ(容量調整
用コンデンサ)に関するもので、その目的とする
ところは積層形磁器コンデンサの製造工程で生ず
る微小な容量のバラツキを吸収する部分として、
容量調整電極を設け、この容量調整電極の削減調
整により、高精度の容量値が得られるようにした
ものである。
[Detailed description of the invention] This invention relates to a trimming capacitor (capacitance adjustment capacitor), and its purpose is to absorb minute variations in capacitance that occur during the manufacturing process of multilayer ceramic capacitors.
A capacitance adjustment electrode is provided, and a highly accurate capacitance value can be obtained by adjusting the reduction of the capacitance adjustment electrode.

積層形磁器コンデンサは小型で大容量が取れ、
平面の導体パターンにボンデイングが可能で、か
つ、高密度実装ができ、高い周波数帯まで使用で
きる。更に外形が比較的統一されていているの
で、自動組立が可能で、量産にも適している等の
大きな利点があり、使用機器の高密度実装化に伴
い、使用量が増大する一方である。
Multilayer ceramic capacitors are small and have large capacity.
It can be bonded to a flat conductor pattern, can be mounted at high density, and can be used up to high frequency bands. Furthermore, since the external shape is relatively uniform, automatic assembly is possible and it is suitable for mass production, which is a great advantage, and the amount used will continue to increase as the devices used become more densely packaged.

この積層形磁器コンデンサは、第1図に示すよ
うに、コンデンサ素体の厚み方向に誘電体磁器1
と内部電極2とを複数交互に積層し、これらの内
部電極2を、その隔一が並列接続となる関係で、
コンデンサ素体の長さ方向における両側端面に形
成された外部電極3,3にそれぞれ接続させた構
造となつている。
As shown in Fig. 1, this multilayer ceramic capacitor has a dielectric ceramic layer in the thickness direction of the capacitor body.
A plurality of internal electrodes 2 are stacked alternately, and each internal electrode 2 is connected in parallel.
It has a structure in which it is connected to external electrodes 3, 3 formed on both end faces in the length direction of the capacitor body, respectively.

ところが、この積層形磁器コンデンサは一層当
りの誘電体厚みの絶対値が数十ミクロンと薄い誘
電体磁器シート上に内部電極を形成したものを、
必要とする積層数に応じて積層し、こられを同時
焼成する製造工程をとるため、誘電体磁器シート
の厚みのコントロールが困難であること、誘電体
磁器シートと電極との熱膨張係数の違いにより電
極が磁器よりも大きく収縮してしまい、内部電極
2の導出端部が誘電体磁器1内に埋没されたよう
になり、外部電極3を付与した場合、内部電極2
のうち外部電極3と導通しないものが生じ、所望
の容量値が得られなくなるという欠点があつた。
However, this multilayer ceramic capacitor has internal electrodes formed on a thin dielectric ceramic sheet with an absolute value of dielectric thickness of several tens of microns per layer.
Because the manufacturing process involves laminating the required number of layers and firing them simultaneously, it is difficult to control the thickness of the dielectric porcelain sheet, and there is a difference in the coefficient of thermal expansion between the dielectric porcelain sheet and the electrode. This causes the electrode to shrink more than the porcelain, and the lead-out end of the internal electrode 2 becomes buried in the dielectric porcelain 1. When the external electrode 3 is attached, the internal electrode 2
There was a drawback that some of the capacitances were not electrically connected to the external electrode 3, making it impossible to obtain the desired capacitance value.

この欠点を除去するため、内部電極2を厚くし
て、導出端の磁器内への埋没の影響をできるだけ
小さくしたものもあるが、内部電極2が磁器の焼
成温度に耐え得るPt−Pe等の高価な貴金属でな
るため、厚みを厚くすると製品コストが極めて高
くなるという欠点を有している。
In order to eliminate this drawback, some models have made the internal electrode 2 thicker to minimize the effect of the lead-out end being buried in the porcelain, but the internal electrode 2 is made of materials such as Pt-Pe that can withstand the firing temperature of porcelain. Since it is made of expensive precious metal, it has the disadvantage that increasing the thickness increases the product cost extremely.

更に積層形磁器コンデンサは、各内部電極2が
ほぼ同じ形状、大きさになつているため、積み重
ねの際のズレ等により、容量にバラツキを生じ、
所望の容量が得られない。このため、測定器や通
信機器に通常使用される±5%、±2.5%、±1%
等の極めて狭い許容値の容量差を得ようとしたと
きは、極端な調整歩留まりの低下が見られ、高信
頼性の製品を厳選する必要性から、おのずと製品
コスト高になる。
Furthermore, since each internal electrode 2 of a multilayer ceramic capacitor has approximately the same shape and size, variations in capacitance may occur due to misalignment during stacking.
Desired capacity cannot be obtained. For this reason, ±5%, ±2.5%, ±1%, which is usually used in measuring instruments and communication equipment,
When trying to obtain a capacitance difference with an extremely narrow allowable value such as, an extreme reduction in adjustment yield is observed, and the need to carefully select highly reliable products naturally increases product costs.

特に最近、テレビ、ラジオ等の民生機器でも実
装密度の高い積層形磁器コンデンサの需要増と同
時に低コストで高信頼性の要求があり、その改良
が強く望まれておつた。
Particularly recently, there has been an increase in demand for multilayer ceramic capacitors with high packaging density in consumer equipment such as televisions and radios, as well as demands for low cost and high reliability, and improvements have been strongly desired.

本考案は上述する従来の問題点を解決し、容量
を高精度で調整できるようにしたトリミング・コ
ンデンサを提供することを目的とる。
The present invention aims to solve the above-mentioned conventional problems and provide a trimming capacitor whose capacitance can be adjusted with high precision.

上記目的を達成するため、本考案は、コンデン
サ素体の厚み方向に誘電体と内部電極とを複数交
互に積層し、前記内部電極を、その隔一が並列接
続となる関係で、前記コンデンサ素体の長さ方向
における両側端面に形成された外部電極にそれぞ
れ接続させ、前記コンデンサ素体の厚み方向の少
なくとも一表面側に、長さ方向の一端側が前記外
部電極の一方に導通する容量調整電極を形成した
積層形のトリミング・コンデンサにおいて、前記
容量調整電極は、前記コンデンサ素体の前記一表
面上で、複数個に分割すると共に各分割片をトリ
ミング部分となる狭幅部で順次接続してなり、前
記容量調整電極の略全面にガラス質絶縁被覆を被
着させたことを特徴とする。
In order to achieve the above object, the present invention alternately laminates a plurality of dielectrics and internal electrodes in the thickness direction of the capacitor element, and connects the internal electrodes in parallel to each other. Capacitance adjustment electrodes connected to external electrodes formed on both end faces in the length direction of the body, and on at least one surface side in the thickness direction of the capacitor body, one end side in the length direction being electrically connected to one of the external electrodes. In the laminated trimming capacitor, the capacitance adjustment electrode is divided into a plurality of pieces on the one surface of the capacitor body, and each divided piece is sequentially connected at a narrow part that becomes a trimming part. The present invention is characterized in that a glass insulating coating is applied to substantially the entire surface of the capacitance adjusting electrode.

上記構成のトリミング・コンデンサは、容量調
整に当り、コンデンサ素体の厚み方向の一表面に
設けられた容量調整電極の狭幅部を、ガラス質絶
縁被覆を通して、ダイヤモンドカツター、サンド
ブラスト、レーザ光線等よつてトリミングする。
これにより、トリミング狭幅部より先の分割片が
切離され、容量調整電極とその下の内部電極との
間の電極重なり面積が、切離された分割片の面積
に応じて変化するので、所望の容量値が得られる
ように調整するここができる。
In the trimming capacitor having the above structure, when adjusting the capacitance, the narrow part of the capacitance adjustment electrode provided on one surface in the thickness direction of the capacitor body is passed through the glass insulation coating using a diamond cutter, sandblasting, laser beam, etc. Turn and trim.
As a result, the divided piece beyond the trimming narrow width part is separated, and the electrode overlapping area between the capacitance adjustment electrode and the internal electrode below it changes according to the area of the separated divided piece. Adjustments can be made to obtain the desired capacitance value.

しかも、容量を定める分割片と、トリミング部
分となる狭幅部とが、コンデンサ素体の厚み方向
の同一面上に形成されているので、当該トリミン
グ・コンデンサを平面的に安定性良く設置した状
態で、上面側からトリミング作業を行なうことが
できる。このため、トリミング作業が非常にし易
くなる。
Moreover, since the dividing piece that determines the capacitance and the narrow width part that becomes the trimming part are formed on the same plane in the thickness direction of the capacitor body, the trimming capacitor can be installed stably in a plane. You can perform trimming work from the top side. This makes trimming work much easier.

上述のように、容量を定める分割片と、トリミ
ング部分となる狭幅部とが、コンデンサ素体の同
一面上で隣接しているので、トリミング作業中に
ダイヤモンドカツタ、サンドブラスト或いはレー
ザ光線等またはトリミング切屑が当つて、分割片
または他の狭幅部が損傷を受ける恐れが出てくる
が、本考案においては、容量調整電極の略全面
に、ガラス質絶縁被覆を被着させてあるので、ト
リミング部分以外の容量調整電極の表面を傷付け
ることがなくなる。
As mentioned above, the dividing piece that determines the capacitance and the narrow width part that will be the trimming part are adjacent to each other on the same surface of the capacitor body, so during the trimming process, diamond cutter, sandblasting, laser beam, etc. There is a risk that the divided pieces or other narrow parts may be damaged by the chips, but in the present invention, the glass insulation coating is applied to almost the entire surface of the capacitance adjustment electrode, so trimming is not necessary. There is no possibility of damaging the surface of the capacitance adjustment electrode other than that part.

また、容量調整電極の略全面にガラス質絶縁被
覆を被着させてあるので、導電性ペーストを所定
パターンとなるように印刷して容量調整電極を形
成した後、その焼付け処理前に、容量調整電極の
略全面にペーストガラスを塗布してガラス質絶縁
被覆を被着させ、その後に焼付け処理を行なうこ
とにより、容量調整電極とガラス質絶縁被覆の焼
付け処理を同時に行なうことができる。
In addition, since the glass insulating coating is applied to almost the entire surface of the capacitance adjustment electrode, after printing the conductive paste in a predetermined pattern to form the capacitance adjustment electrode, the capacitance adjustment is performed before the baking process. By applying paste glass to substantially the entire surface of the electrode to adhere the vitreous insulating coating, and then performing the baking process, the capacitance adjusting electrode and the vitreous insulating coating can be baked at the same time.

容量調整電極のトリミング部分となる狭幅部は
トリミングが容易に行なえるような狭い幅となつ
ているため、引張力等を受けた場合、簡単に破断
してしまう危険性を持つている。本考案において
は、狭幅部を含む容量調整電極の略全面にガラス
質絶縁被覆を被着させてあるので、ガラス質絶縁
被覆と容量調整電極との熱膨張係数が近似したも
のとなり、容量調整電極とガラス質絶縁被覆との
間に発生する熱的ストレスが小さくなる。このた
め、容量調整電極の狭幅部が焼付処理時または熱
サイクル試験時等の熱的ストレスによつて破断す
る等の事故が防止できる。
The narrow width portion, which is the trimming portion of the capacitance adjustment electrode, is narrow enough to be easily trimmed, so there is a risk that it will easily break if subjected to a tensile force or the like. In this invention, since the glass insulation coating is applied to almost the entire surface of the capacitance adjustment electrode including the narrow width part, the thermal expansion coefficients of the glass insulation coating and the capacity adjustment electrode are similar, and the capacitance adjustment can be performed easily. Thermal stress generated between the electrode and the glass insulation coating is reduced. Therefore, accidents such as the narrow portion of the capacitance adjusting electrode being broken due to thermal stress during baking treatment or thermal cycle testing can be prevented.

更に、容量調整電極の略全面にガラス質絶縁被
覆を施してあるので、耐湿性が高くなり、信頼性
が向上する。
Furthermore, since the capacitance adjustment electrode is coated with a glass insulating coating over almost the entire surface, moisture resistance is increased and reliability is improved.

なお、絶縁樹脂による絶縁被覆も考えられる
が、この場合には、容量調整電極の焼付工程と、
絶縁樹脂による絶縁被覆の塗布焼付工程の2つの
異なる焼付処理工程が必要になり、工程数が増
え、コスト高になること、絶縁樹脂と容量調整電
極との熱膨張係数が著しく異なるために、絶縁樹
脂の焼付処理時または熱サイクル試験時等の熱的
ストレスが大きくなり、トリミング部分となる狭
幅部がこの熱的ストレスを受けて破断してしまう
こと等の問題点を生じ易い。
Note that an insulating coating with insulating resin is also considered, but in this case, the baking process of the capacitance adjustment electrode,
Two different baking processes are required: applying and baking the insulating coating using insulating resin, which increases the number of steps and costs, and the thermal expansion coefficients of the insulating resin and the capacitance adjustment electrode are significantly different. Thermal stress increases during resin baking treatment or thermal cycle testing, and problems such as the narrow portion, which is the trimmed portion, is likely to break due to this thermal stress.

次に本考案に係るトリミング・コンデンサにつ
いて、実施例たる図面を参照して更に具体的に説
明する。
Next, the trimming capacitor according to the present invention will be described in more detail with reference to the drawings which are examples.

第2図Aは本考案に係るトリミング・コンデン
サの構造断面図、第2図Bは第2図AのA−
A′線に沿つた平面図である。図において、21
は誘電体磁器層で、チタン酸バリウム、酸化チタ
ン等の原料を50〜100μm程度の厚さの可塑性を
持つフイルムとし、このフイルムに内部電極22
となる白金、パラジウム、銀−パラジウム合金な
どの貴金属ペーストを、所定パターンとなるよう
に、スクリーン印刷法等により塗布し、このフイ
ルムを必要枚数だけ重畳し、1100〜1400℃程度の
高温で焼成焼結させる。
FIG. 2A is a structural sectional view of the trimming capacitor according to the present invention, and FIG. 2B is A-A in FIG. 2A.
FIG. 3 is a plan view taken along line A'. In the figure, 21
is a dielectric ceramic layer made of raw materials such as barium titanate and titanium oxide into a plastic film with a thickness of about 50 to 100 μm, and internal electrodes 22 are formed on this film.
Precious metal paste such as platinum, palladium, silver-palladium alloy, etc. is applied in a predetermined pattern using a screen printing method, etc., the required number of films are overlapped, and fired at a high temperature of about 1100 to 1400℃. to tie.

焼結されたコンデンサ素体の上面には容量調整
電極24が形成されている。容量調整電極24
は、コンデンサ素体21の上面上で、スリツトを
介して、例えば長方形状の分割片に4分割すると
共に、各分割片をトリミング部分となる狭幅部2
6で、順次、直列に接続する。分割片の配置パタ
ーンは、第2図Bに示すように、コンデンサ素体
の上面の略中央部で、左右、上下に4分割し、各
分割片を狭幅部26で直列に接続するパターン
や、第2図Cに示すように、コンデンサ素体の長
さ方向に4分割し、各分割片を狭幅部26で直列
的に接続するパターン等が考えられる。
A capacitance adjustment electrode 24 is formed on the upper surface of the sintered capacitor body. Capacity adjustment electrode 24
The upper surface of the capacitor element body 21 is divided into, for example, four rectangular divided pieces through slits, and each divided piece is cut into a narrow part 2 which becomes a trimming part.
6, connect them in series. As shown in FIG. 2B, the arrangement pattern of the divided pieces is a pattern in which the upper surface of the capacitor body is divided into four parts horizontally and vertically, and each divided piece is connected in series at the narrow width part 26. As shown in FIG. 2C, a pattern may be considered in which the capacitor body is divided into four parts in the length direction and each divided piece is connected in series at the narrow width part 26.

コンデンサ素体の長さ方向の両側端面には、フ
リツト含有Agがペイント塗布焼付して、各内部
電極22を並列に接続して取出す外部電極23が
形成されている。この場合、外部電極23の一方
は、容量調整電極24の長さ方向の一端側に導通
接続させ、外部電極23の他方は容量調整電極2
4との間にギヤツプが生じるように形成する。
On both end faces in the length direction of the capacitor body, frit-containing Ag is painted and baked to form external electrodes 23 from which the internal electrodes 22 are connected in parallel. In this case, one of the external electrodes 23 is electrically connected to one end of the capacitance adjustment electrode 24 in the length direction, and the other of the external electrodes 23 is connected to the capacitance adjustment electrode 24.
4 so that a gap is created between the two.

更に、容量調整電極24の略全面にペーストガ
ラスをコートして焼付けることによつてガラス質
絶縁被覆25を形成する。
Furthermore, a glass insulating coating 25 is formed by coating substantially the entire surface of the capacitance adjusting electrode 24 with paste glass and baking it.

上記構成のトリミング・コンデンサは、例えば
プリント配線基板上の導体パターン間に実装した
上で、容量調整電極24の狭幅部26を、絶縁被
覆25の上から、ダイヤモンドカツター、サンド
ブラスト、レーザ光線等よつてトリミングする。
これにより、トリミングされた狭幅部26より先
の分割片が切離され、容量調整電極24とその下
の内部電極22との間の電極重なり面積が変化す
るので、所望の容量値が得られるように調整する
ことができる。
The trimming capacitor having the above structure is mounted, for example, between conductor patterns on a printed wiring board, and then the narrow part 26 of the capacitance adjustment electrode 24 is cut with a diamond cutter, sandblast, laser beam, etc. from above the insulating coating 25. Turn and trim.
As a result, the divided piece beyond the trimmed narrow portion 26 is separated, and the electrode overlap area between the capacitance adjustment electrode 24 and the internal electrode 22 below it changes, so that a desired capacitance value can be obtained. It can be adjusted as follows.

しかも、容量調整電極24の表面がガラス質絶
縁被覆25によつて覆われているので、ダイヤモ
ンドカツタ、サンドブラスト、レーザ光線または
トリミング切屑により、容量調整電極24の分割
片及び狭幅部が損傷を受ける恐れがなくなり、電
極表面損傷による容量の変動などを招くことな
く、安定した容量調整を行なうことができるよう
になると共に、耐湿性が高くなり、信頼性が向上
する。
Moreover, since the surface of the capacitance adjustment electrode 24 is covered with the glass insulating coating 25, the divided pieces and narrow width portions of the capacitance adjustment electrode 24 are damaged by diamond cutters, sandblasting, laser beams, or trimming chips. This eliminates the fear and enables stable capacity adjustment without causing fluctuations in capacity due to electrode surface damage, and improves moisture resistance and reliability.

また、容量調整電極24の略全面にガラス質絶
縁被覆25を被着させてあるので、導電性ペース
トを所定パターンとなるように印刷形成して容量
調整電極24を形成した後、その焼付け処理前に
容量調整電極24の略全面にペーストガラスを塗
布してガラス質絶縁被覆25を被着させ、その後
に焼付け処理を行なうことにより、容量調整電極
24とガラス質絶縁被覆25の焼付け処理を同時
に行なうことができる。
In addition, since the glass insulating coating 25 is coated on almost the entire surface of the capacitance adjustment electrode 24, after the capacitance adjustment electrode 24 is formed by printing conductive paste in a predetermined pattern, before the baking process. By applying paste glass to substantially the entire surface of the capacitance adjustment electrode 24 to adhere the vitreous insulating coating 25, and then performing a baking process, the baking process of the capacitance adjusting electrode 24 and the vitreous insulating coating 25 is performed at the same time. be able to.

しかも、ガラス質絶縁被覆25は容量調整電極
24と熱膨張係数が近似したものとなるので、容
量調整電極24とガラス質絶縁被覆25との間に
発生する熱的ストレスが小さくなる。このため、
容量調整電極24のトリミング部分となる狭幅部
25が焼付処理時または熱サイクル試験時等の熱
的ストレスによつて破断する等の事故が防止でき
る。
Furthermore, since the vitreous insulating coating 25 has a thermal expansion coefficient similar to that of the capacitance adjusting electrode 24, the thermal stress generated between the capacitance adjusting electrode 24 and the vitreous insulating coating 25 is reduced. For this reason,
Accidents such as the narrow portion 25, which is the trimming portion of the capacitance adjusting electrode 24, being broken due to thermal stress during baking or thermal cycle testing can be prevented.

以上のように、本考案によると、次のような効
果が得られる。
As described above, according to the present invention, the following effects can be obtained.

(イ) 積層形磁器コンデンサの製造工程で生ずる容
量バラツキを、簡単な方法で容易に、高精度で
所望値に調整することが可能であり、容量許容
差の厳しい測定機、通信機器等に対しても、低
コストで、精度の高い優れたトリミング・コン
デンサを提供できる。
(b) Capacitance variations that occur in the manufacturing process of multilayer ceramic capacitors can be easily adjusted to a desired value with high precision using a simple method, making it suitable for measuring equipment, communication equipment, etc. with strict capacitance tolerances. However, it is possible to provide an excellent trimming capacitor with low cost and high accuracy.

(ロ) 容量調整電極の略全面に、ガラス質絶縁被覆
を被着させてあるので、トリミング部分以外の
容量調整電極の表面を傷付けることがなくな
り、高信頼度のトリミング・コンデンサを提供
できる。
(b) Since the glass insulating coating is applied to almost the entire surface of the capacitance adjustment electrode, the surface of the capacitance adjustment electrode other than the trimmed portion will not be damaged, and a highly reliable trimmed capacitor can be provided.

(ハ) 容量調整電極の略全面にガラス質絶縁被覆を
被着させてあるので、容量調整電極とガラス質
絶縁被覆の焼付け処理を同時に行ない、焼付処
理工程を短縮し、製造能率を向上させ、コスト
ダウンを達成できる。
(c) Since the vitreous insulating coating is applied to almost the entire surface of the capacitance adjusting electrode, the baking process of the capacitance adjusting electrode and the vitreous insulating coating can be performed at the same time, shortening the baking process and improving manufacturing efficiency. Cost reduction can be achieved.

(ニ) コンデンサ素体及び容量調整電極とガラス質
絶縁被覆との間に発生する熱的ストレスが小さ
くなり、容量調整電極の狭幅部が焼付処理時ま
たは熱サイクル試験時等の熱的ストレスによつ
て破断する等の事故を防止でき、所定位置での
トリミングによる容量調整が可能になる。
(d) Thermal stress generated between the capacitor body, the capacitance adjustment electrode, and the glass insulation coating is reduced, and the narrow part of the capacitance adjustment electrode is less susceptible to thermal stress during baking treatment or thermal cycle testing. Accidents such as twisting and breaking can be prevented, and the capacity can be adjusted by trimming at a predetermined position.

(ホ) 容量調整電極の略全面にガラス質絶縁被覆を
施してあるので、耐湿性が高くなり、信頼性が
向上する。
(e) Since the capacitance adjustment electrode is coated with a glass insulating coating over almost the entire surface, moisture resistance is increased and reliability is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の積層形磁器コンデンサであり、
Aはその一部欠損図、Bはその構造断面図、Cは
A−A′線における平面図、第2図は本考案の実
施例を示すものでAはその構造断面図、BはAの
A−A′線に沿つた容量調整電極の形態を示す平
面図、Cは同じく他の実施例における容量調整電
極の形態を示す平面図である。 21……誘電体、22……内部電極、23……
外部電極、24……容量調整電極、25……絶縁
被覆、26……狭幅部。
Figure 1 shows a conventional multilayer ceramic capacitor.
A is a partially cutaway view, B is a cross-sectional view of the structure, C is a plan view taken along line A-A', and Figure 2 shows an embodiment of the present invention, A is a cross-sectional view of the structure, and B is a cross-sectional view of A. A plan view showing the form of the capacitance adjusting electrode along line A-A', and C is a plan view showing the form of the capacitance adjusting electrode in another embodiment. 21... Dielectric, 22... Internal electrode, 23...
External electrode, 24... Capacity adjustment electrode, 25... Insulating coating, 26... Narrow width portion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] コンデンサ素体の厚み方向に誘電体と内部電極
とを複数交互に積層し、前記内部電極を、その隔
一が並列接続となる関係で、前記コンデンサ素体
の長さ方向における両側端面に形成された外部電
極にそれぞれ接続させ、前記コンデンサ素体の厚
み方向の少なくとも一表面側に、長さ方向の一端
側が前記外部電極の一方に導通する容量調整電極
を形成した積層形のトリミング・コンデンサにお
いて、前記容量調整電極は、前記コンデンサ素体
の前記一表面上で、複数個に分割すると共に各分
割片をトリミング部分となる狭幅部で順次接続し
てなり、前記容量調整電極の略全面にガラス質絶
縁被覆を被着させたことを特徴とするトリミン
グ・コンデンサ。
A plurality of dielectrics and internal electrodes are alternately laminated in the thickness direction of the capacitor body, and the internal electrodes are formed on both end faces in the length direction of the capacitor body, with the internal electrodes being connected in parallel. In a multilayer trimming capacitor, a capacitance adjustment electrode is formed on at least one surface side in the thickness direction of the capacitor body, and one end side in the length direction is connected to one of the external electrodes. The capacitance adjustment electrode is divided into a plurality of pieces on the one surface of the capacitor body, and each divided piece is sequentially connected at a narrow portion that becomes a trimming portion, and glass is formed on substantially the entire surface of the capacitance adjustment electrode. A trimming capacitor characterized by having a high-quality insulation coating.
JP1978114419U 1978-08-21 1978-08-21 Expired JPS6246260Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978114419U JPS6246260Y2 (en) 1978-08-21 1978-08-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978114419U JPS6246260Y2 (en) 1978-08-21 1978-08-21

Publications (2)

Publication Number Publication Date
JPS5532028U JPS5532028U (en) 1980-03-01
JPS6246260Y2 true JPS6246260Y2 (en) 1987-12-12

Family

ID=29065135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978114419U Expired JPS6246260Y2 (en) 1978-08-21 1978-08-21

Country Status (1)

Country Link
JP (1) JPS6246260Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993345U (en) * 1982-12-10 1984-06-25 金 「あき」「じいく」 barbeque device
JPS6334604Y2 (en) * 1985-04-09 1988-09-13
US4646711A (en) * 1986-01-23 1987-03-03 Oliphant Adam L Portable cooking grill

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS426428Y1 (en) * 1964-07-31 1967-03-28
JPS5013870A (en) * 1973-06-11 1975-02-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS426428Y1 (en) * 1964-07-31 1967-03-28
JPS5013870A (en) * 1973-06-11 1975-02-13

Also Published As

Publication number Publication date
JPS5532028U (en) 1980-03-01

Similar Documents

Publication Publication Date Title
JPH0434808B2 (en)
US3617834A (en) Monolithic capacitor components and process for producing same
US4622620A (en) Electric capacitor with polyethylene terephthalate as a dielectric for use as a solderable chip component
JPS6246260Y2 (en)
JPS5924535B2 (en) Laminated composite parts
JPS6112664Y2 (en)
JPH0563007B2 (en)
JPS6221260B2 (en)
JPH0420245B2 (en)
JP2739453B2 (en) Capacitor with fuse function and method of manufacturing the same
JP2663270B2 (en) Resonator and manufacturing method thereof
JP2766085B2 (en) Manufacturing method of laminate
JPH09260207A (en) Manufacture of laminated capacitor
JPS6120740Y2 (en)
JP4059967B2 (en) Chip-type composite functional parts
JPH0391217A (en) Laminated ceramic capacitor and manufacture thereof
JP3159440B2 (en) Square chip resistors
JPH1065341A (en) Manufacturing method of multilayer ceramic board
JPS6235253B2 (en)
JP2000252154A (en) Composite laminated ceramic capacitor
JPS6055976B2 (en) Manufacturing method of semiconductor grain boundary insulated multilayer ceramic capacitor
JPH08273979A (en) Ceramic capacitor array
JPH084054B2 (en) Monolithic ceramic capacitors
JPS6342848B2 (en)
JPS58103118A (en) Porcelain condenser and method of producing same