JPS6246217A - Pyroelectric type infrared image pickup element - Google Patents

Pyroelectric type infrared image pickup element

Info

Publication number
JPS6246217A
JPS6246217A JP60186108A JP18610885A JPS6246217A JP S6246217 A JPS6246217 A JP S6246217A JP 60186108 A JP60186108 A JP 60186108A JP 18610885 A JP18610885 A JP 18610885A JP S6246217 A JPS6246217 A JP S6246217A
Authority
JP
Japan
Prior art keywords
signal processing
electrode
electrodes
parts
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60186108A
Other languages
Japanese (ja)
Inventor
Yoshihiro Tomita
佳宏 冨田
Kenji Iijima
賢二 飯島
Ryoichi Takayama
良一 高山
Ichiro Ueda
一朗 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60186108A priority Critical patent/JPS6246217A/en
Publication of JPS6246217A publication Critical patent/JPS6246217A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To obtain an image pickup element wherein sensor parts are sufficiently electrically connected to signal processing parts at high density, by electrically connecting the second electrodes of the sensor parts to the signal processing parts by bonding wires passing through the piercing holes formed to the processing parts. CONSTITUTION:Each of sensor parts 20 is constituted by forming a second electrode 19 to the surface of a pyroelectric membrane 17 formed on the first electrode 18 arranged on a support substrate 26. Next, a silicon wafer is used as a semiconductive substrate 22 and each piercing hole 21 is formed by etching. The remaining outer edge part of the wafer is used as a support 24 and gaps are formed between the second electrodes 19 and signal processing parts 23 so as to thermally separate the same to raise sensitivity. The signal processing parts 23 and the sensor parts 20 are bonded by an epoxy adhesive after positioning. The signal processing parts 23 and the sensor parts 20 are connected by bonding wires in such a state that each piercing hole is matched with the center of the cross formed by the corners of four second electrodes 19. The sensitivity of the image pickup element is enhanced by etching the light receiving part of the support substrate 26 to lower heat capacity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電型赤外撮像素子、特にそのセンサ部と信号
処理部との1(〕の配線の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a pyroelectric infrared imaging device, and more particularly to an improvement in wiring between a sensor section and a signal processing section thereof.

従来の技術 従来の焦電型赤外撮像素子における焦電体と処理回路の
電気的接続は、半導体上に直接焦電体を形成する方、去
、センサ部基板内で配線を引きまわし外部に電極を出す
方法、フリップチップポンディングや、マイクロッイガ
−を用いる方法がある、。
Conventional technology In conventional pyroelectric infrared imaging devices, the electrical connection between the pyroelectric material and the processing circuit is achieved by forming the pyroelectric material directly on the semiconductor, or by routing wiring within the sensor board and connecting it to the outside. There are ways to bring out the electrodes, such as flip-chip bonding and using a micro-ger.

半導体上に直接焦電体を形成する方法の例を第3図に示
す。81  基板1上にSi○2膜2を、形成[7、そ
の上に下部電¥i3を、この電極3上に焦6R体4を、
さらに焦電体4上に受光電極5を順次形成し、受光電極
5とSi 基板1間に導体膜6を形成することによって
信号を得ている。
An example of a method for forming a pyroelectric material directly on a semiconductor is shown in FIG. 81 Form a Si○2 film 2 on the substrate 1 [7, place a lower electrode i3 on it, place a phosphor 6R body 4 on this electrode 3,
Furthermore, a signal is obtained by sequentially forming a light receiving electrode 5 on the pyroelectric body 4 and forming a conductive film 6 between the light receiving electrode 5 and the Si substrate 1.

フリップチップボンディングの例を第4図に示す。St
 基板7上にSt○2膜8を形成し、さらにレジスト9
の山を形成し、この山の上に電極10を形成する。焦電
体11の下部電極12と電極10とを合わせ、導電性ペ
ーストで接着している。
An example of flip chip bonding is shown in FIG. St
A St○2 film 8 is formed on the substrate 7, and a resist 9 is further formed.
A mountain is formed, and the electrode 10 is formed on this mountain. The lower electrode 12 of the pyroelectric body 11 and the electrode 10 are aligned and bonded together with a conductive paste.

マイクロフィンガー法の例を第5図に示す。Si基板1
3上にバネ状の導体(マイクロフィンガー14)を形成
し、焦電体15の下部電極16に押し付けている。
An example of the microfinger method is shown in FIG. Si substrate 1
A spring-like conductor (micro finger 14) is formed on the pyroelectric body 15 and pressed against the lower electrode 16 of the pyroelectric body 15.

発明が解決しようとする問題点 半導体上に直接焦電体を形成する方法では、信号処理回
路の正常動作を保つために低温で焦電体を形成しなけれ
ばならず、使用できる焦電体材料がかなり制限される。
Problems to be Solved by the Invention In the method of forming a pyroelectric material directly on a semiconductor, the pyroelectric material must be formed at a low temperature in order to maintain normal operation of the signal processing circuit. is quite limited.

センサ部基板内で配線を引きまわす方法ではアレイの数
が増加するとともに引きまわし配線が複雑になり、高密
度のイメージセンサの作成は困難である。
In the method of routing wiring within the sensor board, the number of arrays increases and the routing becomes complicated, making it difficult to create a high-density image sensor.

フリップチップボンディング、マイクロフィンガーを用
いる方法では、半導体基板と焦電体とがかなり平坦でな
くてはならず、押し付ける力の均一性も必要となり、十
分な電気的接続を得ることが困難である。また半導体基
板と焦電体の熱膨張差によりボンディング位置のずれや
変形が生ずる。
In flip chip bonding and methods using micro fingers, the semiconductor substrate and the pyroelectric material must be fairly flat, and the pressing force must be uniform, making it difficult to obtain a sufficient electrical connection. Furthermore, the difference in thermal expansion between the semiconductor substrate and the pyroelectric material causes displacement and deformation of the bonding position.

問題点を解決するだめの手段 焦電体板の片面に第1電極、他方の面に二次元に配列し
た第2電極を形成したセンサ部と、二次元に配列した貫
通穴を開けた半導体基板を有する信号処理部と、前記セ
ンサ部と前記信号処理部とを連結固定する支持体とを有
し、前記第2電極の配列と前記貫通穴の配列の縦・横そ
れぞれの方向が一致し、前記貫通穴の配列のピッチが前
記第2電極の配列のピッチの整数倍になるよう前記第2
電極と前記貫通穴が形成・固定されており、前記第2電
極と前記信号処理部が前記貫通穴を通るボンディング線
により電気的に接続されている。
A means to solve the problem: A sensor section with a first electrode formed on one side of a pyroelectric plate and a two-dimensionally arranged second electrode formed on the other side, and a semiconductor substrate with two-dimensionally arranged through holes formed therein. and a support for connecting and fixing the sensor unit and the signal processing unit, and the arrangement of the second electrode and the arrangement of the through holes are aligned in vertical and horizontal directions, the second electrode so that the pitch of the through-hole arrangement is an integral multiple of the pitch of the second electrode arrangement;
An electrode and the through hole are formed and fixed, and the second electrode and the signal processing section are electrically connected by a bonding wire passing through the through hole.

作   用 センサ部と信号処理部とを独立に作成できるだめ、焦電
体作成温度は高温にできる。よって使用できる焦電体材
料は制限されない。
Since the action sensor part and the signal processing part can be created independently, the pyroelectric material can be created at a high temperature. Therefore, the pyroelectric material that can be used is not limited.

また、センサ部と信号処理部との間の配線はセンサ部の
面外に存在するためセンサ部内の複雑な回路引きまわし
の必要がない。それにより、配列数の多い、高密度の撮
像素子を作成できる。
Further, since the wiring between the sensor section and the signal processing section exists outside the surface of the sensor section, there is no need for complicated circuit routing within the sensor section. Thereby, it is possible to create a high-density imaging device with a large number of arrays.

また、第2N極と信号処理部との配線はワイヤーボンデ
ィングを用いるため十分な電気的接続が得られ、半導体
基板と焦電体の熱膨張差により位置ずれがおきても接触
不良になることはない。
In addition, since the wiring between the second N pole and the signal processing section uses wire bonding, a sufficient electrical connection can be obtained, and even if misalignment occurs due to the difference in thermal expansion between the semiconductor substrate and the pyroelectric material, contact failure will not occur. do not have.

実施例 第1図に本発明の一実施例を示す。17が焦電体薄膜で
ありその下面に設けた第1電極18、上面に二次元に配
列された第2電極19とともにセンサ部20を構成して
いる。21は半導体基板22に設けた貫通穴であり、こ
れらにより信号処理部23が構成され、支持体24を介
してセンサ部20と結合されている。第2電極19と信
号処理部23とは貫通穴22を通してボンディング線2
5により接続されている。以上の部材は支持基板26上
に支持されている。
Embodiment FIG. 1 shows an embodiment of the present invention. A pyroelectric thin film 17 constitutes a sensor section 20 together with a first electrode 18 provided on its lower surface and second electrodes 19 arranged two-dimensionally on its upper surface. Reference numeral 21 denotes a through hole provided in the semiconductor substrate 22, which constitutes a signal processing section 23, which is coupled to the sensor section 20 via a support 24. The second electrode 19 and the signal processing section 23 are connected to the bonding wire 2 through the through hole 22.
5. The above members are supported on a support substrate 26.

センサ部の作成はまず支持基板26にMgO結晶の(1
00)面を呂し研摩したものを用い、この面上に第1電
極18として(100)配向したpt薄膜を作成し、こ
の第1電極上に(001)配向したPbTi○3系焦電
体薄膜19を作成した。
To create the sensor section, first, MgO crystal (1
00) Using a surface that has been polished and polished, a (100) oriented PT thin film is created on this surface as the first electrode 18, and a (001) oriented PbTi○3-based pyroelectric material is placed on this first electrode. A thin film 19 was created.

焦電体薄膜19の表面には第2電極19としてpt 薄
膜を形成した。
A PT thin film was formed as a second electrode 19 on the surface of the pyroelectric thin film 19.

第2電極1個のサイズは70 X 7011m  、縦
・咲とも100μflL ピッチで各32列、合計10
24素子のものを作成した。PbTi○3系焦電体は熱
センサとして優れており、(○o1)配向させるここ とによりさらに感度が向上する7と、および現在の技術
では半導体上にP bT 103系焦電体薄膜を低温で
配向させることが困難であることから、上記のようにす
ることにより、半導体上に焦電体を作成する方法よりも
優れた撮像素子を作成することかでできる。
The size of one second electrode is 70 x 7011 m, 32 rows each with a pitch of 100 μflL both vertically and vertically, 10 in total.
A device with 24 elements was created. PbTi○3-based pyroelectric materials are excellent as thermal sensors, and the sensitivity is further improved by (○o1) orientation. Since it is difficult to orient the pyroelectric material on a semiconductor, by doing the above, it is possible to create an image sensor that is superior to the method of creating a pyroelectric material on a semiconductor.

半導体基板22としては250 ttm厚のシリコンウ
ェハーを用い、貫通穴21はエツチングにより最犬口径
部150×150μ〃Lの正方形でピッチは縦−横とも
200μ77L とし、残りの50μ2n幅の格子上に
処理回路を作成した。ンリコンウェハーの外縁部を残し
て裏面より全面エツチングを行ない、残った外縁部を支
持体24とし、第2電極と信号処理部間に間隙を作り熱
的に分離し、感度を上げた。信号処理部とセンサ部は位
置合わせの後エポキシ系接着剤で接着した。
A silicon wafer with a thickness of 250 ttm was used as the semiconductor substrate 22, and the through holes 21 were etched into squares with a diameter of 150 x 150 μL at the most vertical and horizontal pitches of 200 μ77 L, and were processed on the remaining grid with a width of 50 μ2n. I created a circuit. The entire surface of the silicon wafer was etched from the back side, leaving the outer edge.The remaining outer edge was used as a support 24, and a gap was created between the second electrode and the signal processing section to thermally isolate the wafer and increase sensitivity. After alignment, the signal processing section and sensor section were glued together using epoxy adhesive.

位置合わせおよびワイヤーボンディングは第2図に示す
ように、1個の貫通穴21を通して4個の第2電極19
のコーナーと信号処理部23との間を接続するために、
貫通穴21の中心と4個のアレイ電極のコーナーの作る
十字の中心とを合わせ、ワイヤーボンドした。貫通穴が
最小口径部で80×80μm程度なければワイヤーボン
ドできず、処理回路を作成するスペースを考えると貫通
穴のピッチは160μ17L以上必要で、安全を見て2
00μm ピッチとした。これに対して可能な第2電極
の配置は、正方形の場合、貫通穴1個につき1個の第2
電極(2001rtlt ピッチ)とするか、もしくは
貫通穴1個につき4個の第2電極(1cX)amピッチ
:本実施例)とするかである。これ以上の第2電極を貫
通穴を通してワイヤーボンドするには、貫通穴の中心近
くでのボンディングが直接(・1無理であるので、中心
近くまで焦電体板上に配線を引きまわさなくてはならず
、才だ中上・近くにボンディング点が集中するため中心
ムである第2電(シの有効な受光面積が減少してしまう
。また、貫通穴のピッチ距離を大きくすれば、より多く
の第2電極を貫通穴1個を通してワイヤーボンドできる
が、第2電極が同じ密度ならば、信号処理回路を作成で
きる格子の幅は同じであるため信号処理回路の密度を上
げる必要があり、強度も弱くなる。
Positioning and wire bonding are performed by connecting four second electrodes 19 through one through hole 21, as shown in FIG.
In order to connect between the corner of and the signal processing section 23,
The center of the through hole 21 and the center of the cross formed by the corners of the four array electrodes were aligned and wire bonded. Wire bonding is not possible if the through-hole is approximately 80 x 80 μm at the smallest diameter part, and considering the space for creating the processing circuit, the pitch of the through-hole must be 160 μ17L or more, and for safety reasons,
The pitch was 00 μm. On the other hand, in the case of a square shape, the possible arrangement of the second electrode is one per through hole.
electrodes (2001rtlt pitch), or four second electrodes (1cX)am pitch for each through hole (this example). In order to wire-bond more second electrodes through the through-holes, it is impossible to bond them directly near the center of the through-hole (・1), so the wires must be routed around the pyroelectric plate until close to the center. However, since the bonding points are concentrated on and near the center of the center, the effective light-receiving area of the second electrode, which is the central part, decreases.Also, if the pitch distance of the through holes is increased, the number of bonding points will increase. The second electrode can be wire-bonded through one through hole, but if the density of the second electrode is the same, the width of the grid on which the signal processing circuit can be created is the same, so it is necessary to increase the density of the signal processing circuit. It also becomes weaker.

この撮像素子は最後に支持基板26の受光部分をエツチ
ングし、熱容量を下げ、高感度化した。っなお受光は第
1図の下方からでちる。
Finally, the light-receiving portion of the support substrate 26 of this image sensor was etched to lower the heat capacity and increase the sensitivity. The light reception starts from the bottom of Figure 1.

発明の効果 本発明によれば、高温作成が必要な焦iu体材料が使用
でき、センサ部内の複雑な回路用さまわしの必要がない
ため配列数が多く高密度で、また、ワイヤーボンドする
ためセンサ部と信号処理部との十分な電気的接続のある
焦電型赤外撮像素子が得られる。
Effects of the Invention According to the present invention, it is possible to use a sintered material that requires high-temperature production, and there is no need for complicated circuitry in the sensor section, allowing for a large number of arrays and high density. A pyroelectric infrared imaging device with sufficient electrical connection between the sensor section and the signal processing section can be obtained.

【図面の簡単な説明】 第1図は本発明の一実施例である焦電型イメージセンサ
の斜視図、第2図は同実施例の位置合わせを示す平面図
、第3図、第4図及び第5図は従来例を表わす断面図で
ある。 17・・・・焦電体板、18・・・・受光電極、19・
・・・・アレイ電極、20 ・・支持体、21  ・ア
レイ状貫通穴、22 ・・信号処理回路基板、23ポン
デイング線、24・・・・・・支持基板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図 第3図
[Brief Description of the Drawings] Fig. 1 is a perspective view of a pyroelectric image sensor that is an embodiment of the present invention, Fig. 2 is a plan view showing alignment of the embodiment, Figs. and FIG. 5 are cross-sectional views showing a conventional example. 17... Pyroelectric plate, 18... Light receiving electrode, 19...
. . . Array electrode, 20 . Support body, 21 . Array-shaped through hole, 22 . Signal processing circuit board, 23 Ponding wire, 24 . . Support substrate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)焦電体板の片面に第1電極、他方の面に二次元に
配列した第2電極を形成したセンサ部と、二次元に配列
した貫通穴を開けた半導体基板上に設けた信号処理部と
、前記センサ部と前記信号処理部とを連結固定する支持
体とを有し、前記第2電極の配列と前記貫通穴の配列の
縦・横それぞれの方向が一致し、前記貫通穴の配列のピ
ッチが前記第2電極の配列のピッチの整数倍になるよう
に前記第2電極と前記貫通穴が形成・固定されており、
前記第2電極と前記信号処理部が前記貫通穴を通るボン
ディング線により電気的に接続されていることを特徴と
した焦電型赤外撮像素子。
(1) A sensor section with a first electrode formed on one side of a pyroelectric plate and a two-dimensionally arranged second electrode on the other side, and a signal provided on a semiconductor substrate with two-dimensionally arranged through holes. a processing section; and a support body that connects and fixes the sensor section and the signal processing section, the arrangement of the second electrodes and the arrangement of the through holes are aligned in the vertical and horizontal directions, and the through holes The second electrode and the through hole are formed and fixed such that the pitch of the array is an integral multiple of the pitch of the array of the second electrode,
A pyroelectric infrared imaging device, wherein the second electrode and the signal processing section are electrically connected by a bonding wire passing through the through hole.
(2)センサ部と信号処理部の間に支持体を形成するこ
とにより第2電極と前記信号処理部との間に間隙を残し
た状態で、前記センサ部と前記信号処理部とを連結固定
したことを特徴とする特許請求の範囲第1項記載の焦電
型赤外撮像素子。
(2) By forming a support between the sensor section and the signal processing section, the sensor section and the signal processing section are connected and fixed while leaving a gap between the second electrode and the signal processing section. A pyroelectric infrared imaging device according to claim 1, characterized in that:
(3)貫通穴の配列のピッチが縦・横とも第2電極の配
列のピッチの2倍で、前記貫通穴各1個を通して第2電
極4個と前記信号処理部がボンディング線により電気的
に接続されていることを特徴とする特許請求の範囲第2
項記載の焦電型赤外撮像素子。
(3) The pitch of the array of through holes is twice the pitch of the array of second electrodes both vertically and horizontally, and the four second electrodes and the signal processing section are electrically connected to each other by bonding wires through each through hole. Claim 2 characterized in that they are connected.
The pyroelectric infrared imaging device described in 2.
JP60186108A 1985-08-24 1985-08-24 Pyroelectric type infrared image pickup element Pending JPS6246217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60186108A JPS6246217A (en) 1985-08-24 1985-08-24 Pyroelectric type infrared image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60186108A JPS6246217A (en) 1985-08-24 1985-08-24 Pyroelectric type infrared image pickup element

Publications (1)

Publication Number Publication Date
JPS6246217A true JPS6246217A (en) 1987-02-28

Family

ID=16182500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60186108A Pending JPS6246217A (en) 1985-08-24 1985-08-24 Pyroelectric type infrared image pickup element

Country Status (1)

Country Link
JP (1) JPS6246217A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656689A1 (en) * 1989-12-29 1991-07-05 Philips Electronique Lab PYROELECTRIC SENSOR ELEMENT AND DEVICES FOR DETECTION OF THERMAL PHENOMENA.
EP0596329A1 (en) * 1992-11-04 1994-05-11 Matsushita Electric Industrial Co., Ltd. Pyroelectric infrared detector and method of fabricating the same
WO2013084787A1 (en) * 2011-12-05 2013-06-13 日本碍子株式会社 Infrared detection element, infrared detection module, and method for manufacturing infrared detection module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656689A1 (en) * 1989-12-29 1991-07-05 Philips Electronique Lab PYROELECTRIC SENSOR ELEMENT AND DEVICES FOR DETECTION OF THERMAL PHENOMENA.
EP0596329A1 (en) * 1992-11-04 1994-05-11 Matsushita Electric Industrial Co., Ltd. Pyroelectric infrared detector and method of fabricating the same
US5413667A (en) * 1992-11-04 1995-05-09 Matsushita Electric Industrial Co., Ltd. Pyroelectric infrared detector fabricating method
US5483067A (en) * 1992-11-04 1996-01-09 Matsuhita Electric Industrial Co., Ltd. Pyroelectric infrared detector and method of fabricating the same
WO2013084787A1 (en) * 2011-12-05 2013-06-13 日本碍子株式会社 Infrared detection element, infrared detection module, and method for manufacturing infrared detection module
JPWO2013084787A1 (en) * 2011-12-05 2015-04-27 日本碍子株式会社 Infrared detector, infrared detector module, and manufacturing method thereof
US9267846B2 (en) 2011-12-05 2016-02-23 Ngk Insulators, Ltd. Infrared detection element, infrared detection module, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US9281295B2 (en) Embedded heat spreader for package with multiple microelectronic elements and face-down connection
JP3335575B2 (en) Semiconductor device and manufacturing method thereof
TWI479638B (en) Multiple die face-down stacking for two or more die
JP3186941B2 (en) Semiconductor chips and multi-chip semiconductor modules
US5281852A (en) Semiconductor device including stacked die
JP4373695B2 (en) Manufacturing method of backside illuminated photodetector
US5481133A (en) Three-dimensional multichip package
US20020093078A1 (en) Optical device packages having improved conductor efficiency, optical coupling and thermal transfer
EP0863548A2 (en) Mounting assembly of integrated circuit device and method for production thereof
JPH08213543A (en) Multidie package device
JP2000208698A5 (en)
JPH08213519A (en) Electronic element package
JP2006313798A (en) Semiconductor device and its manufacturing method
US20050242413A1 (en) Capacitive dynamic quantity sensor and semiconductor device
JP2000311917A (en) Semiconductor device
JPS6246217A (en) Pyroelectric type infrared image pickup element
JP4802491B2 (en) Sensor module and camera module using the same
JP2001320015A (en) Semiconductor device and its manufacturing method
US5061984A (en) Substrate and device comprising interconnection structures
JPH09223759A (en) Semiconductor device and manufacture thereof
JP2004363224A (en) Connection structure of semiconductor chip
JP2002257936A (en) Radiation detection module
JPH0682715B2 (en) Semiconductor device
JPH0129413B2 (en)
JPH0766330A (en) Mounting connector for semiconductor element