JPS6246116A - Method of contact combusting for carbon monoxide and hydrogen containing gas and equipment thereof - Google Patents

Method of contact combusting for carbon monoxide and hydrogen containing gas and equipment thereof

Info

Publication number
JPS6246116A
JPS6246116A JP60185578A JP18557885A JPS6246116A JP S6246116 A JPS6246116 A JP S6246116A JP 60185578 A JP60185578 A JP 60185578A JP 18557885 A JP18557885 A JP 18557885A JP S6246116 A JPS6246116 A JP S6246116A
Authority
JP
Japan
Prior art keywords
gas
air
catalyst
flow path
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60185578A
Other languages
Japanese (ja)
Other versions
JPH0617734B2 (en
Inventor
Yasuyoshi Kato
泰良 加藤
Nobue Tejima
手嶋 信江
Kunihiko Konishi
邦彦 小西
Shogo Nagamine
正吾 長峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60185578A priority Critical patent/JPH0617734B2/en
Publication of JPS6246116A publication Critical patent/JPS6246116A/en
Publication of JPH0617734B2 publication Critical patent/JPH0617734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Incineration Of Waste (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To lower the ignition point to a large extent, by introducing 'H2' and air into a preheater for a short time before a gas containing 'CO' and 'H2' contacts a catalyst. CONSTITUTION:An air (21), flowing through a flow path 1, is heated up to a predetermined temperature by a preheater 7, and is fed into a catalyst burner 9 via a flow path 8. A catalyst 10 contacts the preheated air, and its temperature approaches the gas temperature over time. In this case, first a valve 13 is opened, 'H2' is mixed with the air flowing through flow paths 3, 5 and 6, and combustion is started. When a fed seconds or a fed minutes have passed after the valve 13 is opened, a valve 12 is opened at the same time the valve 13 is closed, and a blast furnace gas 'BFC', passing through flow paths 2, 4 and 6, is injected into the air. A mixed gas of air and 'BFG' contacts the catalyst 10 to be burned, via the preheater 7 and the flow path 8. The ignition point (22) of 'CO' containing gas can be greatly lowered by means of injecting 'H2' in advance for a short time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は一酸化炭素(CO)および水素(H2)含有ガ
スの接触燃焼方法および装置に係り、特に低温度より燃
焼を開始せしめるに好適な燃焼方法および装置に関する
ものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method and apparatus for catalytic combustion of gas containing carbon monoxide (CO) and hydrogen (H2), and is particularly suitable for starting combustion at a low temperature. The present invention relates to combustion methods and devices.

(従来の技術) 近年、種々の産業分野で省エネルギー化が進められてお
り、特に低発熱量の産業排ガスを燃焼させ、熱として回
収利用する方法が精力的に実施されようとしている。し
かし、これら低発熱量産業排ガスの多くは自燃しないが
、あるいは完全燃焼させることが困難である。このため
、助熱バーナにより温度を高めたり、高発熱量燃料を混
合したりする方法が採用されてきた。
(Prior Art) In recent years, energy conservation has been promoted in various industrial fields, and in particular, methods of burning industrial exhaust gas with a low calorific value and recovering and utilizing it as heat are being actively implemented. However, many of these low calorific value industrial exhaust gases do not self-combust or are difficult to completely combust. For this reason, methods have been adopted in which the temperature is raised using an auxiliary burner or a high calorific value fuel is mixed.

これに対し、触媒を用いて接触燃焼を行わせると、上記
した低発熱量のガスも完全燃焼させることが可能となる
。このため、最近では、自燃不可能なガスや、完全燃焼
させるには熱量が不足しているガスを触媒を用いて燃焼
させる研究、発明が盛んに行われている。触媒を用いた
燃焼(以下、触媒燃焼という)は、上記した低発熱量ガ
スの燃焼が可能であるばかりでな(、次のような特徴を
も有するものである。
On the other hand, when catalytic combustion is performed using a catalyst, it becomes possible to completely burn the above-described low calorific value gas. For this reason, in recent years, research and inventions have been actively conducted to use catalysts to combust gases that cannot self-combust or gases that do not have sufficient heat for complete combustion. Combustion using a catalyst (hereinafter referred to as catalytic combustion) not only enables the combustion of the above-mentioned low calorific value gas (but also has the following characteristics).

(1)低酸素燃焼が可能である。(1) Low oxygen combustion is possible.

(2)触媒作用のためコンパクトな燃焼器にできる。(2) Due to the catalytic action, the combustor can be made compact.

(3)低NOx燃焼が可能である。(3) Low NOx combustion is possible.

このため、高炉ガス(BFG)、転炉ガス(LDG)、
コークス炉ガス(COG) 、石炭ガス化ガス、都市ガ
ス、アクリロニトリルプラント排ガス、燃料電池のリホ
ーマ用熱源とする炭化水素改質ガスなどの燃焼へ触媒を
用いた、いわゆる触媒燃焼が通用されようとしている。
For this reason, blast furnace gas (BFG), converter gas (LDG),
So-called catalytic combustion, which uses a catalyst to burn coke oven gas (COG), coal gasification gas, city gas, acrylonitrile plant exhaust gas, and reformed hydrocarbon gas as a heat source for reforming fuel cells, is coming into use. .

第9図は、上記の触媒燃焼の基本フローを示す図である
。この図では、燃焼熱で空気を予熱するなどの糸路は省
略されている。図において、空気と燃料は、予熱器7で
予熱された後、触媒10が充填されている触媒燃焼器9
に入り、燃焼した後、排ガスは流路11から排出される
。この図から明らかなように、触媒燃焼では、触媒燃焼
器9に入る前に燃料と空気とを予め混合し、かつ燃料と
触媒の種類などで決まる燃焼開始温度(以下、着火温度
という)以上に予熱しておくことが必要である。このた
め、着火温度が高いと、予熱器が大型化し実用上大きな
問題となる。
FIG. 9 is a diagram showing the basic flow of the above catalytic combustion. In this figure, the yarn path that preheats the air with combustion heat is omitted. In the figure, air and fuel are preheated in a preheater 7 and then transferred to a catalytic combustor 9 filled with a catalyst 10.
After entering and being combusted, the exhaust gas is discharged through the flow path 11. As is clear from this figure, in catalytic combustion, fuel and air are mixed in advance before entering the catalytic combustor 9, and the temperature is higher than the combustion start temperature (hereinafter referred to as ignition temperature) determined by the types of fuel and catalyst. It is necessary to preheat it. For this reason, if the ignition temperature is high, the preheater becomes large, which poses a serious problem in practice.

前記したBFG (高炉ガス)をはじめとする燃料中に
は、一酸化炭素(CO)と水素(H2)の両者が存在し
ている。燃焼用触媒として一般に用いられる貴金属触媒
の場合には、水素のみを燃焼させる時の着火温度は常温
〜70℃である。従ってCOとH2の両者を含有する上
記BFG等のガスの着火温度は、水素のそれに近いこと
が予想される。しかしながら、COとH2が共存すると
着火温度はCOの着火温度と大差なく200〜300℃
と高い値になり、このため予熱器を大型化せざるを得な
いという問題があった。
Both carbon monoxide (CO) and hydrogen (H2) are present in fuels including the above-mentioned BFG (blast furnace gas). In the case of a noble metal catalyst commonly used as a combustion catalyst, the ignition temperature when only hydrogen is combusted is room temperature to 70°C. Therefore, the ignition temperature of a gas such as the above-mentioned BFG containing both CO and H2 is expected to be close to that of hydrogen. However, when CO and H2 coexist, the ignition temperature is 200-300℃, not much different from the ignition temperature of CO.
Therefore, there was a problem in that the preheater had to be made larger.

(発明が解決しようとする問題点) 本発明の目的は、上記した従来技術の欠点をなくし、一
酸化炭素(CO)と水素(H2)とを含有する燃料を低
温で着火させるに好適な一酸化炭素および水素含有ガス
の接触燃焼方法および装置を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a method suitable for igniting fuel containing carbon monoxide (CO) and hydrogen (H2) at low temperatures. An object of the present invention is to provide a method and apparatus for catalytic combustion of carbon oxide and hydrogen-containing gas.

(問題点を解決するための手段) 本発明者らは、COとH2を共合する燃料の着火機構に
ついて研究した結果、次のような結論に到達した。すな
わち、白金(Pt)、パラジウム(Pd)、ロジウム(
Rh)などの貴金属を活性成分とする触媒の場合には、
COのそれら触媒上への吸着力が、H2の吸着力に比べ
て強く、COとH2が燃料として同時に触媒に接触する
と触媒上にはCOが選択的に吸着してしまい、H2が吸
着できな(なる。このため、着火温度の低いH2が存在
するにもかかわらず、H2とCOの混合ガスの着火温度
はCOの着火温度と大差のない高い値を示すと考えられ
た。
(Means for Solving the Problems) The present inventors have studied the ignition mechanism of fuel that combines CO and H2, and have reached the following conclusion. That is, platinum (Pt), palladium (Pd), rhodium (
In the case of catalysts containing noble metals such as Rh) as active components,
The adsorption power of CO on these catalysts is stronger than that of H2, and if CO and H2 contact the catalyst simultaneously as fuel, CO will be selectively adsorbed on the catalyst, and H2 will not be able to be adsorbed. (For this reason, despite the presence of H2 with a low ignition temperature, the ignition temperature of a mixed gas of H2 and CO was considered to be a high value that was not much different from the ignition temperature of CO.

要するに本発明は、COとH2を含有するガスが触媒と
接触する前の短時間の間、H2と空気とを先に導入する
ことにより、着火温度を大幅に低下せしめる方法、およ
びその原理を利用した装置、すなわち触媒燃焼器の燃料
または燃料と空気の供給ラインに、COの吸収剤または
吸着剤の充填塔を設け、これにより着火時の短時間の間
、燃料中のCOのみを除去、またはその流出を遅らせる
ことにより、着火温度を低下しようとするものである。
In short, the present invention utilizes a method and principle of significantly lowering the ignition temperature by first introducing H2 and air for a short period of time before the gas containing CO and H2 contacts the catalyst. A CO absorbent or adsorbent packed column is installed in the fuel or fuel and air supply line of the catalytic combustor, which removes only the CO in the fuel for a short period of time at the time of ignition, or By delaying its outflow, the ignition temperature is lowered.

すわなち、本発明の第1は、一酸化炭素(C0)および
水素H2含有ガスを触媒を用いて接触的に燃焼させる方
法において、該ガスと空気との混合ガスが触媒と接触す
る前の一定時間、H2と空気の混合ガスを触媒と接触さ
せることを特徴とする。
That is, the first aspect of the present invention is a method of catalytically burning a gas containing carbon monoxide (C0) and hydrogen H2 using a catalyst, in which a mixed gas of the gas and air comes into contact with the catalyst. It is characterized by bringing a mixed gas of H2 and air into contact with a catalyst for a certain period of time.

本発明の第2は、COおよびH2含有ガスの流路および
空気の流路からC01H2および空気を合流させ、触媒
燃焼器の触媒層へ供給して接触燃焼させる接触燃焼装置
において、COおよびH2含有ガスの流路に切替可能な
バイパス流路を設け、該バイパス流路にCO除去装置を
設けたことを特徴とする。
The second aspect of the present invention is a catalytic combustion device that combines CO1H2 and air from a CO and H2 containing gas flow path and an air flow path, and supplies the CO and H2 containing gas to a catalyst layer of a catalytic combustor for catalytic combustion. The present invention is characterized in that a switchable bypass flow path is provided in the gas flow path, and a CO removal device is provided in the bypass flow path.

本発明の第3は、COおよびH2含有ガスの流路および
空気の流路からCO、H2および空気を合流させ、触媒
燃焼器の触媒層へ供給して接触燃焼させる接触燃焼装置
において、前記COおよびH2含有ガスと空気との合流
点と触媒燃焼器との間にCO吸着塔を設けたことを特徴
とする。
The third aspect of the present invention is a catalytic combustion device in which CO, H2, and air are combined from a CO and H2-containing gas flow path and an air flow path, and are supplied to a catalyst layer of a catalytic combustor for catalytic combustion. Also, a CO adsorption tower is provided between the confluence point of H2-containing gas and air and the catalytic combustor.

以下、本発明を図面に示す実施例により詳述する。Hereinafter, the present invention will be explained in detail with reference to embodiments shown in the drawings.

(実施例) 実施例1 第1図は、本発明方法をBFGの接触燃焼に通用する場
合の必要量、少限の機器を配した系統図である。起動に
当たっては、まず空気が流路1より流入し、予熱器7に
よって所定温度まで昇温され、流路8を経て触媒燃焼器
9に導入される。触媒燃焼a9に充填されている、貴金
属を活性成分とする触媒10は、予熱された空気と接触
し、時間とともにガス温度に近づく。ここでまずバルブ
13が開かれ、流路3.5および6を経てH2が空気と
混合され、上記した流れにより触媒10に導かれて燃焼
が開始される。バルブ13を開いた後、数秒から数分経
過後、バルブ13を閉じると同時にバルブ12を開放し
、流路2.4および6よりBFGを空気中に注入する。
(Example) Example 1 FIG. 1 is a system diagram showing the necessary amount and a small number of equipment when the method of the present invention is applied to catalytic combustion of BFG. At startup, air first flows in through the flow path 1, is heated to a predetermined temperature by the preheater 7, and is introduced into the catalytic combustor 9 via the flow path 8. The catalyst 10, which is filled in the catalytic combustion a9 and has a noble metal as an active component, comes into contact with the preheated air and approaches the gas temperature over time. First, the valve 13 is opened, H2 is mixed with air through the flow paths 3.5 and 6, and is guided to the catalyst 10 by the above-described flow to start combustion. After several seconds to several minutes have passed after opening the valve 13, the valve 13 is closed and at the same time the valve 12 is opened, and BFG is injected into the air through the channels 2.4 and 6.

空気とBFGの混合ガスは予熱器7、流路8を経て触媒
10と接触し燃焼される。第2図は、上記した操作によ
る場合の触媒10と接触するガス中のCOおよびH2濃
度の経時変化例(実線)を示したものである。本例は、
バルブ13を開放してH2を先行注入する時間を5秒と
し、先行H2濃度をBFGにより導入されるH2濃度と
等しくなるようにした場合のものである。
The mixed gas of air and BFG passes through the preheater 7 and the flow path 8, contacts the catalyst 10, and is combusted. FIG. 2 shows an example of changes over time (solid line) in the CO and H2 concentrations in the gas that comes into contact with the catalyst 10 in the case of the above-described operation. In this example,
This is a case where the time for opening the valve 13 and pre-injecting H2 is 5 seconds, and the pre-H2 concentration is made equal to the H2 concentration introduced by the BFG.

比較例1 第1図の装置の操作において、実施例1に示したバルブ
13の開放操作によるH2の先行注入を行わず、触媒1
0の温度が所定温度に達したら直ちにバルブ12を開放
してBFGを注入した。この時、触媒10と接するガス
中のCOおよびH2濃度の経時変化を第2図の破線で示
す。
Comparative Example 1 In the operation of the apparatus shown in FIG. 1, the preliminary injection of H2 by opening the valve 13 shown in Example 1 was not performed,
As soon as the temperature of 0 reached a predetermined temperature, the valve 12 was opened and BFG was injected. At this time, changes over time in the CO and H2 concentrations in the gas in contact with the catalyst 10 are shown by broken lines in FIG.

実験例1 本発明の効果を明らかにするため、予熱器7の温度を変
化させて実施例1と比較例1の方法によって燃焼試験を
行った結果を第3図に示す。触媒には、ハニカム状Pd
担持B a A 112019触媒を用い、第1表に示
す条件で燃焼試験を行った。第3図の結果から、本発明
になるH2の先行注入操作により、燃焼開始温度を約1
80℃低下せしめ得ることが判る。
Experimental Example 1 In order to clarify the effects of the present invention, a combustion test was conducted using the methods of Example 1 and Comparative Example 1 while changing the temperature of the preheater 7. The results are shown in FIG. The catalyst is honeycomb-shaped Pd.
A combustion test was conducted using the supported B a A 112019 catalyst under the conditions shown in Table 1. From the results shown in FIG.
It can be seen that the temperature can be lowered by 80°C.

以下余白 第1表 ■ 実験例2および3 実験例1に用いた触媒中のPdに替えて、Ptならびに
Rhを担持した触媒を用い同様の試験を行い、着火温度
を調べた。その結果を第2表に実験例1の結果と合わせ
て示す0本表から、本発明の効果がPdのみならずPt
、Rhのごとき貴金属触媒に共通して発揮し得ることが
判る。
Table 1 below (margin) Experimental Examples 2 and 3 A similar test was conducted using a catalyst supporting Pt and Rh instead of Pd in the catalyst used in Experimental Example 1, and the ignition temperature was investigated. The results are shown in Table 2 together with the results of Experimental Example 1. From this table, it is clear that the effect of the present invention is not limited to Pd but also Pt.
, Rh, and other noble metal catalysts.

実験例4 第1表に示したH2の先行時間(5秒)を1から120
秒の間で変化させて着火温度を測定した。
Experimental example 4 The lead time (5 seconds) of H2 shown in Table 1 was changed from 1 to 120.
The ignition temperature was measured by varying the temperature between seconds.

その結果を第4図に示す。H2の先行注入による着火温
度の低下効果は1秒でも明確に現れており、先行させて
注入するH2の量は極めて少量でよいことがわかる。こ
のため、本発明の経済的な効果は大きい。
The results are shown in FIG. The effect of lowering the ignition temperature by the advance injection of H2 is clearly visible even for 1 second, indicating that the amount of H2 to be injected in advance only needs to be extremely small. Therefore, the economical effects of the present invention are significant.

実験例5 実験例1のH2の先行注入濃度を0.1から1.6%の
間で変化させて着火温度を測定した。得られた結果を第
5図に示す。H2の先行注入濃度は、第2図に示したよ
うにBFG燃焼時と同一である必要はなく、0.1%程
度の稀薄なものであってもよいが、0.3%以上の方が
効果が著しい。
Experimental Example 5 The ignition temperature was measured while changing the pre-injection concentration of H2 in Experimental Example 1 from 0.1 to 1.6%. The results obtained are shown in FIG. The pre-injection concentration of H2 does not need to be the same as that during BFG combustion as shown in Figure 2, and may be as dilute as 0.1%, but it is better to have a concentration of 0.3% or more. The effect is significant.

以上の実験例で示したように、H2を短時間、先行的に
注入することにより、CO含有ガスの着火温度を著しく
低下せしめることが可能である。
As shown in the above experimental examples, by injecting H2 in advance for a short period of time, it is possible to significantly lower the ignition temperature of the CO-containing gas.

その場合、H2先行量が約1%濃度で数秒間という極め
て微量で、150℃以上の着火温度の低下を実現できる
ため、予熱器の簡略化が可能となり、コンパクトで経済
的にも優れた燃焼器を実現することができる。
In that case, the ignition temperature can be lowered by more than 150°C with an extremely small amount of H2 preceding at a concentration of approximately 1% for several seconds, making it possible to simplify the preheater, resulting in compact and economically superior combustion. can be realized.

H2の先行注入量による触媒の温度上昇は100℃程度
あり、先行注入時間が数secでは数lO℃である。こ
の温度上昇で150℃以上の着火温度の低下が可能であ
ることから、従来の低温着火燃料の使用により触媒を予
熱して着火せしめようとするものとは全く別の機構によ
る着火温度の低減効果が本発明にはあると推定される。
The temperature rise of the catalyst due to the amount of advance injection of H2 is about 100° C., and is several 10° C. when the advance injection time is several seconds. Since this temperature increase can lower the ignition temperature by 150°C or more, the ignition temperature is reduced by a mechanism that is completely different from the conventional method of preheating the catalyst and igniting it by using low-temperature ignition fuel. It is presumed that the present invention includes.

実験例6 本発明の原理を応用した他の実験例を以下に示す。この
実験例では、水素リッチの条件下でのH2先行注入の効
果を見るために、燃料ガスとして水素濃度1.4%、C
O濃度0.14%のガスを用いた。
Experimental Example 6 Another experimental example applying the principle of the present invention is shown below. In this experimental example, in order to see the effect of pre-injection of H2 under hydrogen-rich conditions, we used a hydrogen concentration of 1.4% as fuel gas and a C
A gas with an O concentration of 0.14% was used.

具体的には、実施例1 (第1図)と同様の系統を有す
る装置を用い、流路3からは3秒間だけH21,4%に
なるように注入した。その後H2の注入を中止すると同
時に流路2からCoIO%、H220%のガスを導入し
、空気と混合後、触媒層入口流路でH:1.4%、CO
:0.7%となるように注入した。このときの触媒層1
0の出口流路8で測定した燃焼率と触媒層出口温度を第
6図に示す。
Specifically, using an apparatus having the same system as in Example 1 (FIG. 1), H21.4% was injected from channel 3 for only 3 seconds. After that, the injection of H2 was stopped, and at the same time, gas containing CoIO% and 20% H2 was introduced from channel 2, and after mixing with air, H: 1.4%, CO
: Injected at a concentration of 0.7%. Catalyst layer 1 at this time
The combustion rate and catalyst layer outlet temperature measured in the outlet flow path 8 of 0 are shown in FIG.

比較例2 実験例6と同様の装置および燃料を用い、H2の先行注
入を行わず、同時にCOとH2をそれぞれ0.7%、1
.4%となるように注入した結果を第6図に合わせて示
した。
Comparative Example 2 Using the same equipment and fuel as in Experimental Example 6, without pre-injecting H2, CO and H2 were simultaneously added at 0.7% and 1%, respectively.
.. The results of injection at a concentration of 4% are shown in FIG.

以上に示した実験例6と比較例2の結果、第6図かられ
かるように、燃料中のH2に比べ微量なCOが含有され
ていても、先行注入を行わなければ、着火温度はCOの
それによって決まるため、予熱温度を約250℃以上に
する必要がある。これに対し、H2を数秒間先行注入す
る本発明では約70℃以下から着火せしめることが可能
であり、燃焼温度も200℃と、低温を維持することが
できる。すなわち、COを燃料中に含有する場合には、
前述のようにCOが選択的に触媒に吸着されるため、H
2に比べCO濃度が低い場合であっても、着火温度をC
Oのそれ以下にはできず、250℃以上の高温が必要で
ある。これに対し、本発明によるH2の先行注入法によ
れば、COの影響を軽減でき、極めて低温で着火および
燃焼を行うことができる。たとえば、第6図によれば、
従来法では200℃以上に加熱しなければならなかった
ものが約70℃で着火させ得るだけでなく、70℃〜1
00℃で完全燃焼を持続せしめることができる。
As can be seen from Figure 6, the results of Experimental Example 6 and Comparative Example 2 shown above show that even if the fuel contains a trace amount of CO compared to H2, the ignition temperature will be lower than that of CO2 without prior injection. Therefore, it is necessary to set the preheating temperature to about 250°C or higher. On the other hand, in the present invention, in which H2 is injected in advance for several seconds, it is possible to ignite at a temperature of about 70°C or lower, and the combustion temperature can also be maintained at a low temperature of 200°C. That is, when CO is contained in the fuel,
As mentioned above, since CO is selectively adsorbed on the catalyst, H
Even if the CO concentration is lower than 2, the ignition temperature can be lowered by C.
The temperature cannot be lower than that of O, and a high temperature of 250°C or higher is required. On the other hand, according to the pre-injection method of H2 according to the present invention, the influence of CO can be reduced and ignition and combustion can be performed at extremely low temperatures. For example, according to Figure 6,
In the conventional method, materials that had to be heated to over 200°C can be ignited at approximately 70°C, but can also be heated to temperatures between 70°C and 1°C.
Complete combustion can be sustained at 00°C.

実施例2 第7図は、本発明による接触燃焼の他の実施例を示す装
置系統図を示したもので、本例では、BFG流路2にバ
イパスライン101を設け、そのラインにCO吸収塔1
06を設置し、起動時の短時間の間だけBFG中のCO
を除去し、残存するH2ガスと空気とを触媒に接触させ
ることにより、H2先行注入と同様の効果を得るもので
ある。具体的には、起動時にバルブ104と105を開
放し、CO吸収塔106にBFGが導かれCOのみを除
去する。残存するH2含有ガスは流路6を経て空気流路
1に注入される。一定時間経過後、バルブ104と10
5を閉じると同時にバルブ12を開放しBFGガスが注
入される。
Example 2 FIG. 7 shows an apparatus system diagram showing another example of catalytic combustion according to the present invention. In this example, a bypass line 101 is provided in the BFG flow path 2, and a CO absorption tower is connected to that line. 1
06 is installed and the CO in the BFG is removed for a short time at startup.
By removing the remaining H2 gas and bringing the air into contact with the catalyst, the same effect as the preceding H2 injection can be obtained. Specifically, upon startup, valves 104 and 105 are opened, and BFG is introduced into the CO absorption tower 106 to remove only CO. The remaining H2-containing gas is injected into the air channel 1 via the channel 6. After a certain period of time, valves 104 and 10
At the same time as the valve 5 is closed, the valve 12 is opened and BFG gas is injected.

本例におけるCO吸収塔106には、塩化第一銅(Cu
Cβ)と塩化アルミニウム(A I Cl 3)のトル
エン溶液、塩化第1銅のへキサメチルリン酸トリアミド
錯体などの公知のCO吸収液、またはその担持物の充填
塔などを用いることができる。
The CO absorption tower 106 in this example includes cuprous chloride (Cu
A toluene solution of Cβ) and aluminum chloride (A I Cl 3 ), a known CO absorption liquid such as a hexamethylphosphoric acid triamide complex of cuprous chloride, or a packed column of its support can be used.

実施例3 実施例1と同じ効果を得る他の実施例を第8図に示す。Example 3 Another embodiment that achieves the same effect as the first embodiment is shown in FIG.

本例では、活性炭、ゼオライトなどの公知のCO吸着剤
を充填したCO吸着塔203を設け、起動時の一定時間
の間燃料中のCOを除去し、残存するH2と空気とが先
行して触媒に接触できるようにしたものである。起動に
当たって、BFGが流路2がら空気中に注入されたのち
、CO吸着塔203、予熱器7および触媒燃焼器9に順
次導かれるが、BFG中に含有されていたCOはCO吸
着塔203に充填されている前記吸着剤に吸着されるた
め、起動時の一定時間はBFG中のH2と空気のみが触
媒10と接触する。これにより低温で着火された後、C
O吸着の破過が起こり、吸着塔203からCOが流出す
るようになる。それに伴って燃焼温度が上昇し、所定の
触媒燃焼が行われる。燃焼排ガスはバルブ106を閉じ
、バルブ106を開くことにより、CO吸着塔203の
前流に設けた熱交換器201を通り、これによりガス温
度が上昇し、吸着したCOが脱離され、次の起動時に再
びCOを吸着できるように再生される。
In this example, a CO adsorption tower 203 filled with a known CO adsorbent such as activated carbon or zeolite is provided to remove CO from the fuel for a certain period of time at startup, and the remaining H2 and air are absorbed into the catalyst. This allows for contact with the public. At startup, BFG is injected into the air through the flow path 2, and then guided to the CO adsorption tower 203, the preheater 7, and the catalytic combustor 9 in order. Because they are adsorbed by the filled adsorbent, only H2 in the BFG and air come into contact with the catalyst 10 for a certain period of time during startup. After being ignited at a low temperature, C
Breakthrough of O adsorption occurs, and CO begins to flow out from the adsorption tower 203. Accordingly, the combustion temperature rises, and a predetermined catalytic combustion is performed. By closing the valve 106 and opening the valve 106, the combustion exhaust gas passes through the heat exchanger 201 installed upstream of the CO adsorption tower 203, thereby increasing the gas temperature and desorbing the adsorbed CO, which leads to the next generation. At startup, it is regenerated so that it can adsorb CO again.

(発明の効果) 本発明によれば、COとH2を含有するガスの着火温度
を例えば150℃以上低下させることができ、これによ
り、起動時の予熱装置をコンパクトにすると同時に、予
熱に必要なエネルギーを著しく低減することができる。
(Effects of the Invention) According to the present invention, the ignition temperature of gas containing CO and H2 can be lowered by, for example, 150°C or more, thereby making the preheating device at the time of startup compact and at the same time reducing the ignition temperature required for preheating. Energy can be significantly reduced.

また本発明に必要な先行注入すべきH2の量は約1%濃
度、数秒〜数十秒と微量でよく、経済的にも優れたもの
となる。
Further, the amount of H2 to be injected in advance necessary for the present invention may be as small as approximately 1% concentration and several seconds to several tens of seconds, making it economically advantageous.

さらに公知のCO吸収あるいは吸着技術により、燃料ガ
ス中のH2を残しCOを起動時の短時間の間除去するこ
とにより、水素源を新たに設けることなく、着火温度の
低温化が可能になる。
Further, by using known CO absorption or adsorption technology to remove CO for a short time during startup while leaving H2 in the fuel gas, it is possible to lower the ignition temperature without providing a new hydrogen source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す触媒燃焼方法の製造
系統図、第2図は、本発明の実施例と比較例における操
作結果を示す図、第3図は、本発明の実施例と比較例の
効果を比較して示す図、第4図、第5図は、本発明の実
施例における操作条件の影響を示す図、第6図は、本発
明の他の実施例の結果を示す図、第7図、第8図は、そ
れぞれ本発明の他の実施例を示す装置系統図、第9図は
、従来の触媒燃焼装置を示す系統図である。 7・・・予熱器、9・・・触媒燃焼器、10・・・触媒
、12.13・・・バルブ、106・・・CO吸収塔、
201・・・熱交換器、203・・・CO吸着塔。 代理人 弁理士  川 北 武 長 7:予熱器 9:触媒燃焼器 10:触媒 12:バルブ 13:バルブ 第2図 第3図 ガス予熱温度(C0) 第4図 H2先行時間   (Sec) 第5図 H2先行濃度     (’/、) 触媒層入口温度(0C) 第7図 第8図
Fig. 1 is a production system diagram of a catalytic combustion method showing an embodiment of the present invention, Fig. 2 is a diagram showing operation results in an embodiment of the present invention and a comparative example, and Fig. 3 is a diagram showing the operation results of an embodiment of the present invention. Figures 4 and 5 are diagrams showing the effects of operating conditions in the examples of the present invention, and Figure 6 is the results of other examples of the present invention. , FIG. 7, and FIG. 8 are device system diagrams showing other embodiments of the present invention, and FIG. 9 is a system diagram showing a conventional catalytic combustion device. 7... Preheater, 9... Catalytic combustor, 10... Catalyst, 12.13... Valve, 106... CO absorption tower,
201... Heat exchanger, 203... CO adsorption tower. Agent Patent Attorney Takeshi Kawakita Cho7: Preheater 9: Catalytic combustor 10: Catalyst 12: Valve 13: Valve Figure 2 Figure 3 Gas preheating temperature (C0) Figure 4 H2 lead time (Sec) Figure 5 H2 prior concentration ('/,) Catalyst layer inlet temperature (0C) Fig. 7 Fig. 8

Claims (4)

【特許請求の範囲】[Claims] (1)一酸化炭素(CO)および水素(H_2)含有ガ
スを触媒を用いて接触的に燃焼させる方法において、該
ガスと空気との混合ガスが触媒と接触する前の一定時間
、H_2と空気の混合ガスを触媒と接触させることを特
徴とする一酸化炭素および水素含有ガスの接触燃焼方法
(1) In a method of catalytically burning a gas containing carbon monoxide (CO) and hydrogen (H_2) using a catalyst, H_2 and air are A method for catalytic combustion of a gas containing carbon monoxide and hydrogen, characterized by bringing a mixed gas of the above into contact with a catalyst.
(2)COおよびH_2含有ガスの流路および空気の流
路からCO、H_2および空気を合流させ、触媒燃焼器
の触媒層へ供給して接触燃焼させる接触燃焼装置におい
て、COおよびH_2含有ガスの流路に切替可能なバイ
パス流路を設け、該バイパス流路にCO除去装置を設け
たことを特徴とする一酸化炭素および水素含有ガスの接
触燃焼装置。
(2) In a catalytic combustion device, CO, H_2 and air are combined from the CO and H_2 containing gas flow path and the air flow path, and are supplied to the catalyst layer of the catalytic combustor for catalytic combustion. A catalytic combustion device for gas containing carbon monoxide and hydrogen, characterized in that a switchable bypass flow path is provided in the flow path, and a CO removal device is provided in the bypass flow path.
(3)COおよびH_2含有ガスの流路および空気の流
路からCO、H_2および空気を合流させ、触媒燃焼器
の触媒層へ供給して接触燃焼させる接触燃焼装置におい
て、前記COおよびH_2含有ガスと空気との合流点と
、触媒燃焼器との間にCO吸着塔を設けたことを特徴と
する一酸化炭素および水素含有ガスの接触燃焼装置。
(3) In a catalytic combustion device in which CO, H_2, and air are combined from a CO- and H_2-containing gas flow path and an air flow path, and are supplied to a catalyst layer of a catalytic combustor for catalytic combustion, the CO- and H_2-containing gas is A catalytic combustion device for gas containing carbon monoxide and hydrogen, characterized in that a CO adsorption tower is provided between a confluence point of carbon monoxide and air and a catalytic combustor.
(4)特許請求の範囲(3)において、前記合流点の前
流側に熱交換器を設け、燃焼排ガスと空気とを熱交換す
ることにより、吸着塔に流入するガス温度を高め、吸着
剤の吸着能を回復させるようにしたことを特徴とする一
酸化炭素および水素含有ガスの接触燃焼装置。
(4) In claim (3), a heat exchanger is provided on the upstream side of the confluence point to exchange heat between the combustion exhaust gas and air, thereby increasing the temperature of the gas flowing into the adsorption tower and increasing the temperature of the gas flowing into the adsorption tower. A catalytic combustion device for gases containing carbon monoxide and hydrogen, characterized in that the adsorption capacity of the gas is recovered.
JP60185578A 1985-08-23 1985-08-23 Catalytic combustion device for gas containing carbon monoxide and hydrogen Expired - Lifetime JPH0617734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60185578A JPH0617734B2 (en) 1985-08-23 1985-08-23 Catalytic combustion device for gas containing carbon monoxide and hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60185578A JPH0617734B2 (en) 1985-08-23 1985-08-23 Catalytic combustion device for gas containing carbon monoxide and hydrogen

Publications (2)

Publication Number Publication Date
JPS6246116A true JPS6246116A (en) 1987-02-28
JPH0617734B2 JPH0617734B2 (en) 1994-03-09

Family

ID=16173261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60185578A Expired - Lifetime JPH0617734B2 (en) 1985-08-23 1985-08-23 Catalytic combustion device for gas containing carbon monoxide and hydrogen

Country Status (1)

Country Link
JP (1) JPH0617734B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
JPH0611119A (en) * 1992-06-24 1994-01-21 Sanyo Electric Co Ltd Catalyst combustion device
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
EP0743294A1 (en) * 1995-05-19 1996-11-20 Corning Incorporated Dehydration of alkanes in the presence of barium silicate
JP2006282451A (en) * 2005-03-31 2006-10-19 Toyota Central Res & Dev Lab Inc Hydrogen fuel supply system
US7345641B2 (en) 2002-11-05 2008-03-18 Mitsumi Electric Co., Ltd. Antenna apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132338A (en) * 1976-04-30 1977-11-07 Shin Kobe Electric Machinery Method of producing battery plate lattice

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132338A (en) * 1976-04-30 1977-11-07 Shin Kobe Electric Machinery Method of producing battery plate lattice

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5405260A (en) * 1990-11-26 1995-04-11 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
JPH0611119A (en) * 1992-06-24 1994-01-21 Sanyo Electric Co Ltd Catalyst combustion device
EP0743294A1 (en) * 1995-05-19 1996-11-20 Corning Incorporated Dehydration of alkanes in the presence of barium silicate
US7345641B2 (en) 2002-11-05 2008-03-18 Mitsumi Electric Co., Ltd. Antenna apparatus
JP2006282451A (en) * 2005-03-31 2006-10-19 Toyota Central Res & Dev Lab Inc Hydrogen fuel supply system
JP4559900B2 (en) * 2005-03-31 2010-10-13 株式会社豊田中央研究所 Hydrogen fuel supply system

Also Published As

Publication number Publication date
JPH0617734B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
JP3826770B2 (en) Fuel reforming system
US6635372B2 (en) Method of delivering fuel and air to a fuel cell system
WO2004031073A3 (en) Reforming and hydrogen purification system
JPS6246116A (en) Method of contact combusting for carbon monoxide and hydrogen containing gas and equipment thereof
JP2010513835A (en) Hybrid combustor for fuel processing applications
JP2006512523A (en) Method and apparatus for regenerating NOX adsorption device
WO2003070628A1 (en) Direct water vaporization for fuel processor startup and transients
JP2007509282A (en) Intermittent use of synthesis gas to NOx traps and / or diesel engines
JP4625449B2 (en) Method and apparatus for catalytic conversion of hydrocarbons to generate hydrogen rich gas
KR20020096932A (en) A process for preparing a low-sulfur reformate gas for use in a fuel cell system
JP2018135808A (en) Exhaust gas purification device
EP0871537B1 (en) Method and system for heat transfer using a material for the unmixed combustion of fuel and air
JP2972261B2 (en) Nitrogen purge method and heating method for fuel cell power generation system
JP2002060204A (en) Fuel reformer, its operating method and fuel cell power generation unit using the same
JP4784047B2 (en) Fuel cell system
CN211925787U (en) Waste gas treatment system
JP3916485B2 (en) Pretreatment method for hydrogen-containing gas generator
JP3608872B2 (en) Fuel cell power generation system
JP3637894B2 (en) Fuel cell system
JP2002098010A (en) Natural gas reforming engine system and its driving method
JPH03218903A (en) Hydrogen refiner
JP2769556B2 (en) Fuel cell generator
JP2003303610A (en) Fuel cell system and its operating method and auto- thermal reforming device
JP2005029433A (en) Hydrogen production equipment and stop-start method of the equipment
JPH02160602A (en) Reforming of fuel for fuel cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term