JPH03218903A - Hydrogen refiner - Google Patents

Hydrogen refiner

Info

Publication number
JPH03218903A
JPH03218903A JP2011828A JP1182890A JPH03218903A JP H03218903 A JPH03218903 A JP H03218903A JP 2011828 A JP2011828 A JP 2011828A JP 1182890 A JP1182890 A JP 1182890A JP H03218903 A JPH03218903 A JP H03218903A
Authority
JP
Japan
Prior art keywords
reformed gas
hydrogen
combustion
raw material
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011828A
Other languages
Japanese (ja)
Inventor
Ko Wada
和田 香
Takafumi Shimada
嶋田 隆文
Tetsuya Imai
哲也 今井
Masaaki Yanagi
正明 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011828A priority Critical patent/JPH03218903A/en
Publication of JPH03218903A publication Critical patent/JPH03218903A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent loss of hydrogen in the reformed gas and to refine hydrogen with high efficiency by providing an exhaust turbine in the middle of a line for removing gaseous CO contained in the reformed gas obtained by reforming a raw hydrogen material in a reformer from the reformed gas. CONSTITUTION:The hydrogen refiner is provided with a reformer 11 for generating a reformed gas contg. gaseous hydrogen by reforming the heated raw hydrogen material, a CO reducing device 47 for selectively removing the carbon monoxide in the reformed gas by absorption and a CO removing device 55 for further removing a minute amt. of carbon monoxide contained in the reformed gas from the device 47 by oxidation. The following means are further added to the reformer. Namely, an energy recovery device having an exhaust turbine 54 to be driven by the reformed gas flowing from the device 47 to the device 55 is provided in the middle of a reformed gas passage 50 between the device 47 and the device 55.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、水素原料の加熱に伴う改質反応により生成す
る改質ガスか゜ら一酸化炭素を取り除く水素精製装置に
関し、特に比較的低温で作動する固体高分子電解質膜燃
料電池を用いた発電システムに応用して好適なものであ
る。
[Detailed description of the invention] Industrial application field> The present invention relates to a hydrogen purification device that removes carbon monoxide from reformed gas produced by a reforming reaction accompanying heating of a hydrogen raw material, and particularly relates to a hydrogen purification device that removes carbon monoxide from a reformed gas produced by a reforming reaction accompanying heating of a hydrogen raw material. It is suitable for application to a power generation system using an operating solid polymer electrolyte membrane fuel cell.

く従来の技術〉 金属等の還元ガスとして有効な水素は、燃料電池用の反
応ガスとしても利用できることは周知の通りである。こ
の燃料電池は、資源の枯渇問題を有する化石燃料を使う
必要がない上、騒音をほとんど発生せず、エネルギの回
収効率も他のエネルギ機関と較べて非常に高くできる等
の優れた特徴を持っているため、例えばビルディング単
位や工場単位の比較的小型の発電プラントとして利用さ
れている。
BACKGROUND ART It is well known that hydrogen, which is effective as a reducing gas for metals, can also be used as a reaction gas for fuel cells. This fuel cell does not require the use of fossil fuels, which have resource depletion issues, generates almost no noise, and has excellent features such as being able to recover energy much more efficiently than other energy engines. Therefore, it is used as a relatively small power generation plant for each building or factory, for example.

近年、この燃料電池を車載用の内燃機関に代えて作動す
るモータの電源として利用し、このモータにより車両等
を駆動することが考えられている。この場合に重要なこ
とは、反応によって生成する物質等をできるだけ再利用
することは当然のこととして、車載用であることからも
明らかなように、余り大きな出力は必要でないものの、
全ての付帯設備と共に可能な限り小型であることが望ま
しく、このような点から固体高分子電解質膜燃料電池が
注目されている。
In recent years, it has been considered to use this fuel cell as a power source for a motor that operates in place of an internal combustion engine in a vehicle, and to use this motor to drive a vehicle or the like. What is important in this case is that it is natural to reuse the substances produced by the reaction as much as possible, and although it is clear from the fact that it is for automotive use that a large output is not required.
It is desirable that the fuel cell be as small as possible, along with all incidental equipment, and from this point of view, solid polymer electrolyte membrane fuel cells are attracting attention.

かかる固体高分子電解質膜燃料電池は、固体高分子電解
質膜の両側に触媒を含むガス拡散電極を接合したもので
あり、メタノールと水等で構成される水素原料を改質し
て得られる改質ガスを反応ガスとしてガス拡散電極の陽
極(以下、これを水素極と呼称する)側に供給して発電
する形式が取られる。
Such a solid polymer electrolyte membrane fuel cell is a solid polymer electrolyte membrane in which gas diffusion electrodes containing a catalyst are bonded to both sides of the solid polymer electrolyte membrane. A method is adopted in which a gas is supplied as a reaction gas to the anode (hereinafter referred to as a hydrogen electrode) side of a gas diffusion electrode to generate electricity.

ここで問題となるのは、ガス拡散電極に含まれる反応触
媒が一酸化炭素(以下、COと記述する)によって被毒
し、発電効率が低下し易くなることである。特に、10
0゜C前後の低温で作動する燃料電池の場合にはこの傾
向が極端となり、最悪の場合には運転不可能?状態とな
ることが知られている。このため、改質ガスを燃料電池
の水素極側に供給する際には、この改質ガス中のCO濃
度を少なくする必要がある。特に、先に述べた低温で作
動する燃料電池の場合には、これを10ppm以下に抑
えなければならない。
The problem here is that the reaction catalyst contained in the gas diffusion electrode is poisoned by carbon monoxide (hereinafter referred to as CO), which tends to reduce power generation efficiency. In particular, 10
In the case of fuel cells that operate at low temperatures around 0°C, this tendency becomes extreme, and in the worst case, it becomes impossible to operate. It is known that the condition Therefore, when supplying the reformed gas to the hydrogen electrode side of the fuel cell, it is necessary to reduce the CO concentration in the reformed gas. In particular, in the case of a fuel cell that operates at low temperatures as mentioned above, this must be kept below 10 ppm.

従来、固体高分子電解質膜燃料電池を使用する場合には
、改質ガスに水蒸気を添加して改質ガス中に含まれるC
Oを吸着除去するCOシフト触媒と接触させ、このCO
を二酸化炭素(以下、CO■と記述する)に転化するC
Oシフト処理がなされている。つまり、このCOシフト
処理では CO+H20→CO■+H2 なる可逆反応が起こる。この際、反応温度が低いほど、
反応圧力が高いほど、水蒸気ゐ割合が高いほどそれぞれ
残留CO濃度を低下させることができる。例えば、鉄−
クロム系COシフト触媒を用い、反応温度を200゜C
、反応圧力を20atm,CO中の炭素成分に対?る水
の割合を4としてCOシフト処理した場合、残留CO濃
度子約0.1%(1 0 0 0ppm)にまで下げる
ことが可能である。しかし、この燃料電池を用いた発電
システムを車載用にまとめることを前提とすると、種々
の制約が発生してくるため、現実的にはCOシフト処理
による残留CO濃度は、1%前後が限界である。
Conventionally, when using a solid polymer electrolyte membrane fuel cell, water vapor is added to the reformed gas to remove carbon contained in the reformed gas.
This CO is brought into contact with a CO shift catalyst that adsorbs and removes O.
C that converts into carbon dioxide (hereinafter referred to as CO■)
O shift processing is being performed. That is, in this CO shift process, a reversible reaction occurs: CO+H20→CO2+H2. At this time, the lower the reaction temperature, the
The higher the reaction pressure and the higher the water vapor ratio, the lower the residual CO concentration can be. For example, iron-
Using a chromium-based CO shift catalyst, the reaction temperature was set at 200°C.
, the reaction pressure is 20 atm, relative to the carbon component in CO? If the CO shift treatment is carried out with the proportion of water being 4, it is possible to reduce the residual CO concentration to about 0.1% (1000 ppm). However, assuming that a power generation system using this fuel cell is to be installed on a vehicle, various restrictions will occur, so in reality, the residual CO concentration due to CO shift processing is limited to around 1%. be.

このため、100゜C前後の低温で作動する固体高分子
電解質膜燃料電池に対して改質ガスを供給する場合には
、COシフト処理に加えて更にCOの除去を行う必要が
あり、例えば改質ガス中のCOを選択的に酸化させるい
わゆるセレクトオキソ反応と呼称される化学反応を利用
した方法が提案されている。つまり、このセレクトオキ
ソ反応ではセレクトオキソ触媒と接触状態にある改質ガ
ス中に空気或いは酸素を吹き込み、セレクトオキソ触媒
を利用して水素を酸化させることなく、この水素よりも
化学的に不安定なCOをCO■に?化させるのである。
Therefore, when supplying reformed gas to a solid polymer electrolyte membrane fuel cell that operates at a low temperature of around 100°C, it is necessary to remove CO in addition to the CO shift process. A method has been proposed that utilizes a chemical reaction called the so-called select oxo reaction, which selectively oxidizes CO in a quality gas. In other words, in this select oxo reaction, air or oxygen is blown into the reformed gas that is in contact with the select oxo catalyst, and the select oxo catalyst is used to generate hydrogen, which is chemically more unstable than hydrogen, without oxidizing it. CO to CO■? It is to make it become.

く発明が解決しようとする課題〉 セレクトオキソ反応によって改質ガス中の水素を余り酸
化させることなく、選択的にcoをCO■に酸化させよ
うとした場合、改質ガスの反応温度を70゜C程度に設
定することが最も効率良く反応を進めることができる。
Problems to be Solved by the Invention When attempting to selectively oxidize CO to CO without significantly oxidizing hydrogen in the reformed gas by the select oxo reaction, the reaction temperature of the reformed gas should be set at 70°. Setting the temperature to about C allows the reaction to proceed most efficiently.

ところが、COシフト処理後の改質ガスの温度は200
゜C前後の高温のため、この改質ガスがセレクトオキソ
反応の際に当該改質ガス中の水素の一部も酸化されてし
まい、燃料電池に供給すべき水素の絶対量が少な《なる
欠点を有する。
However, the temperature of the reformed gas after the CO shift treatment is 200℃.
Due to the high temperature of around °C, part of the hydrogen in the reformed gas is oxidized when the reformed gas undergoes the select oxo reaction, resulting in a small absolute amount of hydrogen to be supplied to the fuel cell. has.

特に、燃料電池の水素極の被毒をほぼ完全に避ける目的
で残留CO濃度をIOppm程度にまで低下させようと
すると、改質ガス中の水素の相当量が酸化されてしまい
、燃料電池の運転を継続することができなくなる不具合
が発生する。このため、実際には残留しCO濃度を10
0ppm程度にまでしか下げることができなかった。
In particular, if an attempt is made to reduce the residual CO concentration to about IOppm with the aim of almost completely avoiding poisoning of the hydrogen electrode of the fuel cell, a considerable amount of hydrogen in the reformed gas will be oxidized and the fuel cell will not be able to operate. A problem occurs that makes it impossible to continue. Therefore, it actually remains and reduces the CO concentration by 10
It was possible to lower it only to about 0 ppm.

く問題点を解決するための手段〉 本発明による水素精製装置は、水素原料を加熱してこの
加熱に伴う改質反応により前記水素原料から水素ガスを
含む改質ガスを生成させる改質装置と、この改質装置で
生成した改質ガス中のCOを選択的に吸着除去するCO
低減装置と、このCO低減装置からの改質ガスに含まれ
る微量のCOを更に酸化除去するCO除去装置とを具え
た水素精製装置において、前記CO低減装置と前記CO
除去装置との間の改質ガス通路の途中にこれらCO低減
装置からCO除去装置へと流れる前記改質ガスにより回
転する排気タービンを有するエネルギ回収装置を設けた
ことを特徴とするものである。
Means for Solving Problems> The hydrogen purification apparatus according to the present invention is a reformer that heats a hydrogen raw material and generates a reformed gas containing hydrogen gas from the hydrogen raw material through a reforming reaction accompanying the heating. , CO that selectively adsorbs and removes CO in the reformed gas generated by this reformer.
A hydrogen purification device comprising a CO reduction device and a CO removal device that further oxidizes and removes trace amounts of CO contained in the reformed gas from the CO reduction device, wherein the CO reduction device and the CO
The present invention is characterized in that an energy recovery device having an exhaust turbine rotated by the reformed gas flowing from the CO reduction device to the CO removal device is provided in the middle of the reformed gas passage between the CO reduction device and the CO removal device.

〈作用〉 改質装置にて生成した改質ガスがCO低減装置に送られ
て来ると、このCO低減装置のCOシフト触媒によって
改質ガス中の残留C0濃度が例えば1%程度にまで低下
する。この改質ガスの温度は200℃程度であり、これ
が改質ガス通路を通ってCO除去装置へと送られる。こ
の時、CO除去装置へと流れる改質ガスの主としてエン
タルピーにより排気タービンが駆動され、改質ガスが保
有するエネルギをエネルギ回収装置によって回収する。
<Operation> When the reformed gas generated in the reformer is sent to the CO reduction device, the residual CO concentration in the reformed gas is reduced to, for example, about 1% by the CO shift catalyst of this CO reduction device. . The temperature of this reformed gas is about 200° C., and it is sent to the CO removal device through the reformed gas passage. At this time, the exhaust turbine is driven mainly by the enthalpy of the reformed gas flowing to the CO removal device, and the energy held by the reformed gas is recovered by the energy recovery device.

この結果、改質ガスは断熱膨張を起こしてその温度が例
えば70゜C程度にまで低下し、CO除去装置のセレク
トオキソ反応により、改質ガス中の残留CO濃度が例え
ば10ppm程度にまで低下する。
As a result, the reformed gas undergoes adiabatic expansion and its temperature drops to, for example, about 70°C, and due to the select oxo reaction of the CO removal device, the residual CO concentration in the reformed gas decreases to, for example, about 10 ppm. .

この時、CO除去装置に送り込まれる改質ガスは、エネ
ルギ回収装置の作用によってその温度が充分低下してお
り、この改質ガス中に含まれる水素の酸化反応はほとん
ど起こらず、水素の消費が抑制される。
At this time, the temperature of the reformed gas sent to the CO removal device has been sufficiently lowered by the action of the energy recovery device, and almost no oxidation reaction of hydrogen contained in this reformed gas occurs, reducing hydrogen consumption. suppressed.

〈実施例〉 本発明による水素精製装置を固体高分子電解質膜燃料電
池(以下、単に燃料電池と呼称する)を用いた発電シス
テムに応用したー実施例の概念を表す第1図及びそのメ
タノール改質装置の部分の断面構造を表す第2図に示す
ように、改質装置11の筒状をなす燃焼筒12の一端側
には、後述する空気とメタノール13とからなる始動用
の燃焼ガス或いは空気と燃料電池本体14からの未反応
ガスとからなる定常運転時の燃焼ガスを燃焼させるため
の燃焼室15が形成されており、400゜C〜1200
℃程度の温度に設定されるこの燃焼室15内には、燃焼
ガスの燃焼を促進させるための燃焼触媒l6が保持され
ている。
<Example> The hydrogen purification apparatus according to the present invention is applied to a power generation system using a solid polymer electrolyte membrane fuel cell (hereinafter simply referred to as a fuel cell). As shown in FIG. 2, which shows the cross-sectional structure of the reformer, one end of the cylindrical combustion tube 12 of the reformer 11 is filled with starting combustion gas consisting of air and methanol 13, which will be described later. A combustion chamber 15 is formed to combust combustion gas during steady operation consisting of air and unreacted gas from the fuel cell main body 14, and has a temperature of 400°C to 1200°C.
A combustion catalyst 16 for promoting combustion of combustion gas is held in the combustion chamber 15, which is set at a temperature of approximately .degree.

なお、この燃焼触媒16としては、例えばプラチナ(P
t)及びパラジウム(Pd)の内の少なくとも一つの元
素を含むもの、或いは鉄(Fe)及びコバルト(C o
)及びニッケル(Ni)及びマンガン(Mn)及び銅(
Cu)の内の少なくとも一つの元素を含むものを挙げる
ことができ、本実施例では直径が4mm〜6mmの球状
のものを燃焼室15内に充填している。
Note that this combustion catalyst 16 is made of platinum (P), for example.
t) and palladium (Pd), or iron (Fe) and cobalt (Co
) and nickel (Ni) and manganese (Mn) and copper (
In this embodiment, the combustion chamber 15 is filled with spherical particles having a diameter of 4 mm to 6 mm.

先端側が燃焼室15に臨む燃焼ノズル17を中央部に貫
通状態で固定した端板18は、この燃焼筒12の一端に
接合されており、前記燃焼ノズルl7の先端部には逆火
防止機能を有する燃料分散器19が装着されている。
An end plate 18, in which a combustion nozzle 17 whose tip side faces the combustion chamber 15 is fixed in a penetrating state in the center thereof, is joined to one end of this combustion tube 12, and the tip of the combustion nozzle l7 is provided with a flashback prevention function. A fuel distributor 19 is installed.

そして、この燃料分散器19から燃焼室15内に供給さ
れる燃焼ガスは、燃焼触媒16により着火燃焼して40
0゜C〜12oO℃程度の温度となる。又、この燃焼ノ
ズル17には燃料供給管20を介してメタノールタンク
21が連結されている。そして、この燃料供給管20の
途中には、燃料電池の始動時に前記メタノールタンク2
1内のメタノール13を燃焼ノズルl7側へ圧送する図
示しない始動用燃料供給ポンプと、この始動用燃料供給
ポンプから供給されるメタノール13を蒸発気化させて
燃焼ノズル17へ送り込むための図示しないメタノール
気化器とを具えた始動装置22が設けられている。
The combustion gas supplied from this fuel distributor 19 into the combustion chamber 15 is ignited and combusted by the combustion catalyst 16, resulting in 40%
The temperature will be about 0°C to 12oO°C. Further, a methanol tank 21 is connected to this combustion nozzle 17 via a fuel supply pipe 20. The methanol tank 2 is placed in the middle of this fuel supply pipe 20 when starting up the fuel cell.
A starting fuel supply pump (not shown) that pressure-feeds methanol 13 in 1 to the combustion nozzle 17 side, and a methanol vaporizer (not shown) that evaporates and vaporizes the methanol 13 supplied from this starting fuel supply pump and sends it to the combustion nozzle 17. A starting device 22 is provided with a device.

この始動装置2゛2と燃焼ノズル17との間の燃料供給
管20の途中には、一端側が空気を燃焼室l5側に送り
込むだめのブロワ23に接続する燃焼用空気供給管24
の他端部が連結されている。前記ブロワ23には、電源
である蓄電池25から電気を供給されるブロワ駆動モー
タ26が連結され、このブロワ駆動モータ26を作動さ
せることによって、燃焼用の空気が前記燃焼ガスの一部
として燃焼用空気供給管24から燃料供給管20及び燃
焼ノズル17を介し燃焼室15に送り込まれるようにな
っている。
In the middle of the fuel supply pipe 20 between the starter 2'2 and the combustion nozzle 17, there is a combustion air supply pipe 24 whose one end is connected to a blower 23 for feeding air into the combustion chamber 15.
The other end is connected. A blower drive motor 26 that is supplied with electricity from a storage battery 25 as a power source is connected to the blower 23, and by operating the blower drive motor 26, combustion air is converted into combustion air as part of the combustion gas. The air is fed from the air supply pipe 24 to the combustion chamber 15 via the fuel supply pipe 20 and the combustion nozzle 17.

SUS310S材等のステンレス鋼で形成される前記燃
焼筒12の内周面には、耐熱れんが等で構成した断熱層
27が形成されて燃焼室15内を保温し、燃焼筒12の
外周面からの熱放散を防止している。これにより、燃焼
室15内が充分高温となった場合には、燃焼触媒l6の
作用と相俟って後述する燃料電池本体14からの未反応
ガスと空気とを供給するだけで燃焼室15内を充分高温
に保つことができるので、始動装置22・゛の運転を停
止し、メタノールl3の供給は行わないようになってい
る。
A heat insulating layer 27 made of heat-resistant brick or the like is formed on the inner circumferential surface of the combustion tube 12 made of stainless steel such as SUS310S material to keep the inside of the combustion chamber 15 warm and to prevent heat from the outer circumferential surface of the combustion tube 12. Prevents heat dissipation. As a result, when the inside of the combustion chamber 15 reaches a sufficiently high temperature, the inside of the combustion chamber 15 can be heated by simply supplying unreacted gas and air from the fuel cell main body 14, which will be described later, together with the action of the combustion catalyst l6. can be kept at a sufficiently high temperature, the operation of the starter device 22.' is stopped and methanol 13 is not supplied.

前記燃焼筒12の周囲には、熱交換笥28がこの燃焼筒
12の外周面と隙間を隔てて同心状に配置されている。
A heat exchange tray 28 is disposed concentrically around the combustion tube 12 with a gap spaced from the outer peripheral surface of the combustion tube 12.

これら燃焼筒12と熱交換筒28との隙間の他端側は、
燃焼筒12の他端部に刻設した切欠通路29を介して燃
焼室15内に連通し、この隙間の一端側には燃焼室15
内で燃焼した燃焼排ガスを外部に導く排気管30が接続
している。
The other end of the gap between the combustion tube 12 and the heat exchange tube 28 is
The combustion chamber 15 is communicated with the combustion chamber 15 through a notch passage 29 carved in the other end of the combustion tube 12, and the combustion chamber 15 is connected to one end of this gap.
An exhaust pipe 30 is connected to guide the combustion exhaust gas burned inside to the outside.

前記燃焼笥12と熱交換筒28との隙間には、改質原料
予熱管31が螺旋状に配管されている。そして、この改
質原料予熱管31の一端側か熱交換筒28を貫通し、水
素原料供給管32を介して前記メタノールタンク21に
接続する一方、当該改質原料予熱管31の他端側が燃焼
室l5の内周面に沿って螺旋状に配管された改質原料加
熱管33の一端側に連結されている。前記改質装置11
とメタノールタンク21との間の水素原料供給・管32
の途中には、原料ポンプ駆動モータ34の作動により、
メタノールタンク21内のメタノール13を改質装置l
l側へ圧送する原料供給ボンブ35が取り付けられてい
る。更に、この水素原料供給管32の途中には、一端側
が水タンク36に連通ずる水供給管37の他端側か接続
しており、この水供給管37の途中には、前記メタノー
ル13と共に水素原料を構成する水タンク36内の水3
8を水ボンブ駆動モータ39の作動により、水素原料供
給管32内に圧送するための水供給ボンブ40が取り付
けられている。
A reforming material preheating pipe 31 is spirally arranged in the gap between the combustion stove 12 and the heat exchange cylinder 28 . One end of this reforming material preheating pipe 31 passes through the heat exchange cylinder 28 and is connected to the methanol tank 21 via the hydrogen material supply pipe 32, while the other end of the reforming material preheating pipe 31 is combusted. It is connected to one end side of a reforming material heating pipe 33 that is spirally piped along the inner peripheral surface of the chamber l5. The reformer 11
Hydrogen raw material supply/pipe 32 between the and methanol tank 21
During the process, due to the operation of the raw material pump drive motor 34,
The methanol 13 in the methanol tank 21 is converted into a reformer l.
A raw material supply bomb 35 is attached to feed the raw material under pressure to the l side. Furthermore, one end of this hydrogen raw material supply pipe 32 is connected to the other end of a water supply pipe 37 whose one end communicates with a water tank 36 , and the hydrogen raw material supply pipe 32 is connected to the other end of a water supply pipe 37 which communicates with a water tank 36 . Water 3 in the water tank 36 constituting the raw material
A water supply bomb 40 is attached to feed the hydrogen gas into the hydrogen raw material supply pipe 32 by the operation of a water bomb drive motor 39.

従って、メタノールl3と水38とからなる改質原料が
改質原料予熱管31を通って水素原料加熱管33へと移
動する間に、燃焼室l5から燃焼筒12と熱交換笥28
との隙間を通って排気管30へ向けて流れる高温の燃焼
排ガスとの間で熱交換が行われ、水素原料は200゜C
〜500゜C程度にまで予熱されるようになっている。
Therefore, while the reformed raw material consisting of methanol l3 and water 38 passes through the reformed raw material preheating pipe 31 and moves to the hydrogen raw material heating pipe 33, from the combustion chamber l5 to the combustion tube 12 and the heat exchange column 28.
Heat exchange is performed between the hydrogen raw material and the high-temperature combustion exhaust gas flowing toward the exhaust pipe 30 through the gap between the
It is designed to be preheated to about ~500°C.

この場合、メタノール13と水38との混合比は、1モ
ルのメタノールに対して水を0.05モルから5モル程
度に設定することが望ましく、更に燃焼排ガスを完全燃
焼させるために燃焼筒12と熱交換笥28との隙間に前
述した燃焼触媒16を充填することも有効である。本実
施例では、直径が1mm〜3mmの球状をなす前述した
燃焼触媒l6をこれら燃焼筒l2と熱交換筒25との隙
間に充填している。
In this case, it is desirable to set the mixing ratio of methanol 13 and water 38 to approximately 0.05 to 5 moles of water per 1 mole of methanol. It is also effective to fill the gap between the combustion catalyst 16 and the heat exchange tray 28 with the combustion catalyst 16 described above. In this embodiment, the above-described combustion catalyst l6 having a spherical shape with a diameter of 1 mm to 3 mm is filled in the gap between the combustion cylinder l2 and the heat exchange cylinder 25.

なお、前記原料ポンプ駆動モータ34や水ポンプ駆動モ
ータ39は、蓄電池25から供給される電気によって運
転されるようになっている。
The raw material pump drive motor 34 and the water pump drive motor 39 are operated by electricity supplied from the storage battery 25.

前記燃焼笥12の中央部には、改質原料加熱管33の他
端側に接続する改質用ヘツダ41が設けられており、こ
の改質用ヘツダ41には燃焼筒12の他端側に延びる相
互に平行な複数本の改質ガス生成管42の一端側が整流
?オリフィス43を介してそれぞれ連結されている。こ
・れら改質ガス生成管42の他端側には、多数の連通口
44を有するパンチングメタルで形成した一枚の封板4
5が接合されており、当該改質ガス生成管42の内部に
は水素原料加熱管33で加熱された水素原料の改質反応
を促進するための改質用触媒46がそれぞれ充填されて
いる。メタノール13と水38とが混合した水素原料は
この改質ガス生成管42内で CH30H+nH20  −”  (1−n)CO+n
CO■+(2+n)H2但し、0<n<1 なる改質反応を起こし、上記化学式の右辺に示される改
質ガスを生成する。この場合、原料ガスの改質反応を効
率良《行わせるためには、改質ガス生成管42内の圧力
を一平方センチメートル当たり3 kg重〜20kg重
程度に設定し、又、この改質ガス生成管42内の温度を
200゜C〜600゜C程度に設定することが望ましい
A reforming header 41 connected to the other end of the reforming material heating pipe 33 is provided in the center of the combustion chamber 12. Is one end side of the plurality of mutually extending reformed gas generation pipes 42 rectified? They are connected to each other via an orifice 43. On the other end side of these reformed gas generation tubes 42, there is a sealing plate 4 made of punched metal having a large number of communication ports 44.
5 are connected to each other, and a reforming catalyst 46 for promoting the reforming reaction of the hydrogen raw material heated by the hydrogen raw material heating tube 33 is filled inside each of the reformed gas generation pipes 42 . The hydrogen raw material in which methanol 13 and water 38 are mixed is CH30H+nH20 −” (1-n)CO+n in this reformed gas generation pipe 42.
CO■+(2+n)H2 However, a reforming reaction occurs where 0<n<1, and the reformed gas shown on the right side of the above chemical formula is produced. In this case, in order to carry out the reforming reaction of the raw material gas efficiently, the pressure inside the reformed gas generation pipe 42 is set to about 3 kg to 20 kg per square centimeter, and the reformed gas generated It is desirable to set the temperature inside the tube 42 to about 200°C to 600°C.

なお、この改質用触媒46としては、例えばプラチナ(
Pt)及.びパラジウム(Pd)及びロジウム(Rh)
及びニッケル(Ni)の内の少な《とも一つの元素を含
むもの、或いは銅(Cu)及び亜鉛(Zn)及びクロム
(Cr)の内の少なくとも一つの元素を含むものを挙げ
ることができ、本実施例では直径が3mmで長さが3 
mmの円笥状のものを改質ガス生成管42の内部に充填
している。
Note that this reforming catalyst 46 may be made of, for example, platinum (
Pt) and. and palladium (Pd) and rhodium (Rh)
and nickel (Ni), or copper (Cu), zinc (Zn), and chromium (Cr); In the example, the diameter is 3 mm and the length is 3 mm.
The inside of the reformed gas generation pipe 42 is filled with a round cup-shaped material having a diameter of mm.

ところで、本発明では燃焼筒12内の改質ガス生成管4
2の周囲に燃焼触媒16を充填しているため、この改質
ガス生成管42の周囲を流れる燃焼排ガスの流速が高め
られる結果、改質ガス生成管39内での改質原料の改質
反応に必要な熱を効率良く供給することが可能である。
By the way, in the present invention, the reformed gas generation pipe 4 in the combustion tube 12
Since the combustion catalyst 16 is filled around the reformed gas generating pipe 2, the flow rate of the combustion exhaust gas flowing around the reformed gas generating pipe 42 is increased, resulting in a reforming reaction of the reformed raw material in the reformed gas generating pipe 39. It is possible to efficiently supply the heat required for

一方、この改質装置11の他端側には、CO低減装置4
7が封板45に隣接状態で取り付けられており、改質ガ
ス生成管42゛とこのCO低減装置47とは、封板45
の連通口44を介して連通している。そして、CO低減
装置47には改質ガス生成管4・2内での水素原料の改
質反応により生成する改質ガス中のCOを低減させるC
Oシフト触媒48が充填されているが、この改質ガスか
らCOを除去するのは、周知のように燃料電池本体14
の水素極49がCOによって被毒してしまい、電池とし
ての能力が極端に低下するのを防止するためである。
On the other hand, on the other end side of this reformer 11, a CO reduction device 4 is provided.
7 is attached adjacent to the sealing plate 45, and the reformed gas generation pipe 42' and this CO reduction device 47 are connected to the sealing plate 45.
The communication ports 44 communicate with each other. The CO reduction device 47 is equipped with a carbon dioxide gas that reduces CO in the reformed gas generated by the reforming reaction of the hydrogen raw material in the reformed gas generation pipes 4 and 2.
Although the O shift catalyst 48 is filled, as is well known, the fuel cell main body 14 is responsible for removing CO from the reformed gas.
This is to prevent the hydrogen electrode 49 from being poisoned by CO and the performance of the battery to be extremely reduced.

なお、前記COシフト触媒48としては、例えば銅(C
u)及び亜鉛(Zn)の内の少なくとも一つの元素を含
むものを挙げることができるが、本実施例では直径が3
mmで長さが3mmの円筒状のものを採用している。
In addition, as the CO shift catalyst 48, for example, copper (C
u) and zinc (Zn), but in this example, the diameter is 3.
A cylindrical piece with a length of 3 mm is used.

更に、前記CO低減装置47に連通ずる改質ガス供給管
50には、燃料電池本体14の水素導入口51が加湿装
置52を介して接続し、改質ガス供給管50内の改質ガ
スを適当な湿度に自動調整した状態で、燃料電池本体1
4の水素極49側に送り込むようになっている。そして
、CO低減装置47とこの加湿装置52との間の改質ガ
ス供給管50の途中には、前記蓄電池25に接続する発
電機53を連結した排気タービン54と、改質ガス中の
COをセレクトオキソ反応によって除去する図示しない
セレクトオキソ触媒を充填したCO除去装置55とが、
改質装置11側から順に設けられ、このCO除去装置5
5によって精製された改質ガスが加湿装置52により加
湿されて燃料電池本体14の水素導入口5lへ送り込ま
れるようになっている。そして、この水素導入口51か
ら燃料電池本体14の水素極49に送り込まれた改質ガ
スのうち、余剰の未反応ガスは燃料電池本体14と前記
燃料供給管20とを連通ずる燃焼用余剰ガス供給管56
を介して燃焼ノズル17に供給され、燃焼室15内で燃
焼して水素原料加熱管33内を流れる水素原料を加熱す
る。
Further, a hydrogen inlet 51 of the fuel cell main body 14 is connected to the reformed gas supply pipe 50 communicating with the CO reduction device 47 via a humidifier 52, so that the reformed gas in the reformed gas supply pipe 50 is The fuel cell body 1 is placed in a state where the humidity is automatically adjusted to an appropriate level.
4 to the hydrogen electrode 49 side. In the middle of the reformed gas supply pipe 50 between the CO reduction device 47 and this humidifying device 52, there is an exhaust turbine 54 connected to a generator 53 connected to the storage battery 25, and an exhaust turbine 54 for reducing CO in the reformed gas. A CO removal device 55 filled with a select oxo catalyst (not shown) that removes CO by a select oxo reaction,
The CO removal device 5 is provided in order from the reformer 11 side.
The reformed gas purified by step 5 is humidified by a humidifier 52 and sent to the hydrogen inlet 5l of the fuel cell main body 14. Of the reformed gas sent from the hydrogen inlet 51 to the hydrogen electrode 49 of the fuel cell main body 14, surplus unreacted gas is used as surplus combustion gas that communicates the fuel cell main body 14 and the fuel supply pipe 20. Supply pipe 56
The hydrogen raw material is supplied to the combustion nozzle 17 through the combustion chamber 15 and burned in the combustion chamber 15 to heat the hydrogen raw material flowing through the hydrogen raw material heating pipe 33.

本実施例におけるエネルギ回収装置である排気タービン
54を有する発電機53は、C0低減装置47からCO
除去装置55へ向けて改質ガス供給管50内を流れる高
温の改質ガスにより、排気タービン54を介して作動す
るものである。この時、排気タービン54を通過してこ
れを駆動回転させる高温の改質ガスが断熱膨張するため
、その温度が急激に下降して低温となった改質ガスがC
O除去装置55へ送られる。これにより、CO除去装置
55でのセレクトオキソ反応が理想的に進み、水素の酸
化をほとんどさせることなく残留CO濃度を例えば10
ppm程度にまで低下させることができ、低温作動の燃
料電池であっても効率良《運転することが可能となる。
A generator 53 having an exhaust turbine 54, which is an energy recovery device in this embodiment, collects CO from a CO reduction device 47.
It is operated by high-temperature reformed gas flowing through the reformed gas supply pipe 50 toward the removal device 55 via the exhaust turbine 54. At this time, the high-temperature reformed gas that passes through the exhaust turbine 54 and drives it to rotate expands adiabatically, so its temperature rapidly drops and the low-temperature reformed gas becomes carbon
It is sent to the O removal device 55. As a result, the select oxo reaction in the CO removal device 55 progresses ideally, and the residual CO concentration is reduced to, for example, 10% without oxidizing hydrogen.
It can be reduced to about ppm, making it possible to operate efficiently even in low-temperature operation fuel cells.

このような運転を実現するためには、先にも述べたよう
に改質ガス生成管42内の改質ガスの圧力を一平方セン
チメートル当たり3kg重以上20kg重程度までの範
囲に設定することが望ましい。又、本実施例では、エネ
ルギ回収装置として発電機53を採用し、この発電機5
3により発電された電気を蓄電池25に蓄え、ブロワ駆
動モータ26や原料ポンプ駆動モーター34,水ポンプ
駆動モータ39等の電源として利用するようにしたが、
空気圧縮器等を排気タービン54に連結し、これによっ
て得られる圧縮空気を燃焼室15や燃料電池本体14の
酸素極57に供給するようにしても良い。
In order to realize such an operation, as mentioned earlier, it is desirable to set the pressure of the reformed gas in the reformed gas generation pipe 42 to a range of 3 kg to 20 kg per square centimeter. . Further, in this embodiment, a generator 53 is employed as an energy recovery device, and this generator 5
The electricity generated by 3 is stored in the storage battery 25 and used as a power source for the blower drive motor 26, raw material pump drive motor 34, water pump drive motor 39, etc.
An air compressor or the like may be connected to the exhaust turbine 54, and compressed air obtained thereby may be supplied to the combustion chamber 15 or the oxygen electrode 57 of the fuel cell main body 14.

前記ブロワ23と燃料電池本体14に形成された空気導
入口58とは、前記燃焼用空気供給管24から分岐する
反応用空気供給管59を介して連結され、前記ブロヮ駆
動モータ26によって駆動されるブロワ23からの加圧
空気が、この燃料電池本体14の空気導入口58に接続
する酸素極57へ圧送されるようになっている。そして
、この空気導入口58から燃料電池本体14に送り込ま
れた空気は、この燃料電池本体14内での反応生成水を
含んだ状態となって、燃料電池本体l4の酸素極57に
接続する気水分離器6Ωに供給され、この内の水分が水
回収管61を介して水タンク36に回収され、気体分が
排気管62から外部に排出される。
The blower 23 and an air inlet 58 formed in the fuel cell main body 14 are connected via a reaction air supply pipe 59 branching from the combustion air supply pipe 24, and are driven by the blower drive motor 26. Pressurized air from the blower 23 is forced to be sent to the oxygen electrode 57 connected to the air inlet 58 of the fuel cell main body 14. The air sent into the fuel cell main body 14 from this air inlet 58 contains water produced by the reaction within the fuel cell main body 14, and the air is connected to the oxygen electrode 57 of the fuel cell main body 14. The water is supplied to a water separator 6Ω, the water contained therein is collected into the water tank 36 via a water recovery pipe 61, and the gas component is discharged to the outside through an exhaust pipe 62.

一方、前記水タンク36と燃料電池本体14と加湿装置
52とは、冷却用循環配管63を介して連結されており
、これら水タンク36と燃料電池本体14との間の冷却
用循環配管63の途中には、蓄電池25から電気が供給
される循環ポンプ駆動モータ64の作動により、水タン
ク36内の水38を燃料電池本体14に供給してこの燃
料電池本体14を冷却する循環ポンブ65が設けられて
いる。前記加湿装置52内には、燃料電池本体14を冷
却した冷却水循環配管63からの水38と、改質ガス供
給管50からの改質ガスとを仕切る図示しないガス拡散
膜が組み込まれており、この加湿装置52内の水38の
水蒸気分圧に対応した水蒸気が改質ガスに添加され、余
剰の水蒸気が冷却水循環配管63から水タンク36に戻
されるようになっている。
On the other hand, the water tank 36, the fuel cell main body 14, and the humidifier 52 are connected via a cooling circulation pipe 63. A circulation pump 65 is provided in the middle, which cools the fuel cell body 14 by supplying water 38 in the water tank 36 to the fuel cell body 14 by operating a circulation pump drive motor 64 supplied with electricity from the storage battery 25. It is being A gas diffusion membrane (not shown) that partitions the water 38 from the cooling water circulation pipe 63 that cooled the fuel cell main body 14 and the reformed gas from the reformed gas supply pipe 50 is incorporated in the humidifying device 52. Water vapor corresponding to the water vapor partial pressure of the water 38 in the humidifier 52 is added to the reformed gas, and excess water vapor is returned to the water tank 36 from the cooling water circulation pipe 63.

このように、本実施例ではメタノールと水との混合物に
よる燃料電池を使用した発電システムとして本発明の水
素精製装置を応用したが、これ以外の例えば金属還元用
の水素製造装置等にも応用することができる。又、当然
のことであるが、本実施例以外の構造であっても水素精
製装置としてこの明細書の「特許請求の範囲」の欄に記
載した概念に含まれるものでありさえすれば、いがなる
構造のものを採用しても何ら問題は無い。
As described above, in this example, the hydrogen purification device of the present invention was applied as a power generation system using a fuel cell using a mixture of methanol and water, but it can also be applied to other systems such as a hydrogen production device for metal reduction, etc. be able to. Also, as a matter of course, even structures other than those of this embodiment are acceptable as long as they are included in the concept described in the "Claims" column of this specification as a hydrogen purification device. There is no problem in adopting a structure in which

く発明の効果〉 本発明の水素精製装置によると、CO低減装置とCO除
去装置との間にCO低減装置からの改質ガスによって回
転する排気タービンを具えたエネルギ回収装置を組み込
んだので、CO低減装置からの高温の改質ガスがエネル
ギ回収装置を通過する間に断熱膨張し、低温となった改
質ガスがCO除去装置に送られる。
Effects of the Invention According to the hydrogen purification device of the present invention, an energy recovery device equipped with an exhaust turbine rotated by reformed gas from the CO reduction device is installed between the CO reduction device and the CO removal device, so that CO The hot reformed gas from the reduction device undergoes adiabatic expansion while passing through the energy recovery device, and the cooled reformed gas is sent to the CO removal device.

この結果、水素を酸化させることなくCOを選択的に酸
化させ、残留CO濃度を従来のものよりも大幅に低減さ
せることができ、小型の装置であっても高効率で水素を
精製することが可能となった。
As a result, CO can be selectively oxidized without oxidizing hydrogen, and the residual CO concentration can be significantly reduced compared to conventional methods, making it possible to purify hydrogen with high efficiency even with a small device. It has become possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を燃料電池による発電システムに応用し
た一実施例の概念図、第2図はその改質装置の部分の断
面図である。 又、図中の符号で11は改質装置、12は燃焼筒、l3
はメタノール、14は燃料電池本体、15は燃焼室、1
6は燃焼触媒、17は燃焼バーナ、20は燃料供給管、
21はメタノールタンク、22は始動装置、23はブロ
ワ、24は燃焼用空気供給管、25は蓄電池、28は熱
交換筒、31は水素原料予熱管、32は水素原料供給管
、33は水素原料加熱管、36は水タンク、37は水供
給管、38は水、41は改質用ヘッダ、42は改質ガス
生成管、46は改質用触媒、47はCO低減装置、48
はCOシフト触媒、49は水素極、50は改質ガス供給
管、53は発電機、54は排気タービン、55はCO除
去装置、56は燃焼用余剰ガス供給管、57は酸素極、 5 9は反応用空気供給管である。
FIG. 1 is a conceptual diagram of an embodiment in which the present invention is applied to a power generation system using a fuel cell, and FIG. 2 is a sectional view of a portion of the reformer. Also, in the figure, 11 is a reformer, 12 is a combustion tube, and l3
is methanol, 14 is the fuel cell body, 15 is the combustion chamber, 1
6 is a combustion catalyst, 17 is a combustion burner, 20 is a fuel supply pipe,
21 is a methanol tank, 22 is a starter, 23 is a blower, 24 is a combustion air supply pipe, 25 is a storage battery, 28 is a heat exchange cylinder, 31 is a hydrogen raw material preheating pipe, 32 is a hydrogen raw material supply pipe, 33 is a hydrogen raw material Heating pipe, 36 is a water tank, 37 is a water supply pipe, 38 is water, 41 is a reforming header, 42 is a reformed gas generation pipe, 46 is a reforming catalyst, 47 is a CO reduction device, 48
is a CO shift catalyst, 49 is a hydrogen electrode, 50 is a reformed gas supply pipe, 53 is a generator, 54 is an exhaust turbine, 55 is a CO removal device, 56 is a surplus gas supply pipe for combustion, 57 is an oxygen electrode, 5 9 is the reaction air supply pipe.

Claims (1)

【特許請求の範囲】[Claims] 水素原料を加熱してこの加熱に伴う改質反応により前記
水素原料から水素ガスを含む改質ガスを生成させる改質
装置と、この改質装置で生成した改質ガス中の一酸化炭
素を選択的に吸着除去するCO低減装置と、このCO低
減装置からの改質ガスに含まれる微量の一酸化炭素を更
に酸化除去するCO除去装置とを具えた水素精製装置に
おいて、前記CO低減装置と前記CO除去装置との間の
改質ガス通路の途中にこれらCO低減装置からCO除去
装置へと流れる前記改質ガスにより回転する排気タービ
ンを有するエネルギ回収装置を設けたことを特徴とする
水素精製装置。
Select a reformer that heats a hydrogen raw material and generates a reformed gas containing hydrogen gas from the hydrogen raw material through a reforming reaction accompanying this heating, and carbon monoxide in the reformed gas produced by this reformer. A hydrogen purification device comprising a CO reduction device that adsorbs and removes carbon dioxide, and a CO removal device that further oxidizes and removes trace amounts of carbon monoxide contained in the reformed gas from the CO reduction device. A hydrogen purification device characterized in that an energy recovery device having an exhaust turbine rotated by the reformed gas flowing from the CO reduction device to the CO removal device is provided in the middle of the reformed gas passage between the CO removal device and the CO removal device. .
JP2011828A 1990-01-23 1990-01-23 Hydrogen refiner Pending JPH03218903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011828A JPH03218903A (en) 1990-01-23 1990-01-23 Hydrogen refiner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011828A JPH03218903A (en) 1990-01-23 1990-01-23 Hydrogen refiner

Publications (1)

Publication Number Publication Date
JPH03218903A true JPH03218903A (en) 1991-09-26

Family

ID=11788626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011828A Pending JPH03218903A (en) 1990-01-23 1990-01-23 Hydrogen refiner

Country Status (1)

Country Link
JP (1) JPH03218903A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652880A (en) * 1992-07-28 1994-02-25 Mitsubishi Electric Corp Phosphoric acid type fuel cell power generating unit
EP0598530A1 (en) * 1992-11-11 1994-05-25 Vickers Shipbuilding &amp; Engineering Limited Processing of fuel gases, in particular for fuel cells and apparatus therefor
EP0671059A1 (en) * 1993-08-20 1995-09-13 Ballard Power Systems Inc. Hydrocarbon fueled solid polymer fuel cell electric power generation system
JPH09147897A (en) * 1995-11-17 1997-06-06 Mitsubishi Heavy Ind Ltd Solid high polymer fuel cell
JP2002154803A (en) * 2000-11-15 2002-05-28 Toyota Motor Corp Gaseous hydrogen producing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652880A (en) * 1992-07-28 1994-02-25 Mitsubishi Electric Corp Phosphoric acid type fuel cell power generating unit
EP0598530A1 (en) * 1992-11-11 1994-05-25 Vickers Shipbuilding &amp; Engineering Limited Processing of fuel gases, in particular for fuel cells and apparatus therefor
US5436086A (en) * 1992-11-11 1995-07-25 Vickers Shipbuilding & Engineering Limited Processing of fuel gases, in particular for fuel cells and apparatus therefor
EP0671059A1 (en) * 1993-08-20 1995-09-13 Ballard Power Systems Inc. Hydrocarbon fueled solid polymer fuel cell electric power generation system
EP0671059A4 (en) * 1993-08-20 1999-05-26 Ballard Power Systems Hydrocarbon fueled solid polymer fuel cell electric power generation system.
JPH09147897A (en) * 1995-11-17 1997-06-06 Mitsubishi Heavy Ind Ltd Solid high polymer fuel cell
JP2002154803A (en) * 2000-11-15 2002-05-28 Toyota Motor Corp Gaseous hydrogen producing device

Similar Documents

Publication Publication Date Title
US7399327B2 (en) Direct water vaporization for fuel processor startup and transients
JP3556638B2 (en) Fuel cell device
JP4979935B2 (en) Fuel reformer
JPH07315801A (en) System for producing high-purity hydrogen, production of high-purity hydrogen and fuel cell system
US20060143983A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
CN106082127B (en) Selective oxidation purifies the methanol steam reforming device of CO
CN100542948C (en) Hydrogen generator and working method thereof with double burner
JP3530413B2 (en) Fuel cell power generation system and operation method thereof
JP2001223017A (en) Fuel gas generating system for fuel cell
JP4090234B2 (en) Hydrogen-containing gas generator
JPH03218903A (en) Hydrogen refiner
JP2670168B2 (en) Hydrogen raw material reformer
JP4008051B2 (en) Power generation method
JPH05129029A (en) Power generation system formed by using fuel cell
JP2003123815A (en) Fuel cell system
JP3697955B2 (en) Catalytic combustor and method for raising temperature
JPH03218902A (en) Method for starting raw hydrogen material reformer
JPS5826002A (en) Steam reforming method and reaction tube for steam reforming
JP2000327304A (en) Hydrogen generation apparatus
JP4128803B2 (en) Fuel cell system
JPH10338501A (en) Power generating system of fuel cell
JP2003317778A (en) Exhaust gas combustor of fuel cell, and fuel cell power generation system
JP2002326805A (en) Reformer and fuel cell system which is equipped with this
JP2000323163A (en) Fuel reforming device
JP2003303610A (en) Fuel cell system and its operating method and auto- thermal reforming device