JPS6245058A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPS6245058A
JPS6245058A JP60185304A JP18530485A JPS6245058A JP S6245058 A JPS6245058 A JP S6245058A JP 60185304 A JP60185304 A JP 60185304A JP 18530485 A JP18530485 A JP 18530485A JP S6245058 A JPS6245058 A JP S6245058A
Authority
JP
Japan
Prior art keywords
region
type
selectively
groove
conduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60185304A
Other languages
Japanese (ja)
Inventor
Masaki Kondo
正樹 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60185304A priority Critical patent/JPS6245058A/en
Publication of JPS6245058A publication Critical patent/JPS6245058A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To stably form a gate length of 1mum or less capable of coping with high speed, by composing both of a process, on which a second conduction-type semiconductor is made to epitaxially grow selectively after a thin oxidizing film is formed on a side face, and a process, on which a high concentration layer is composed to form electrodes at the parts for drain and source regions. CONSTITUTION:A second conduction-type of a first region 103 of high concentration and a second conduction-type of a second region 102 of low concentration are selectively formed on a first conduction-type semiconductor substrate 101, with a first conduction type of a third region 104 formed inside the second region. After both oxidizing film and semiconductor layers are formed in succession all over the substrate, the semiconductor layer is selectively oxidized, and both oxidizing and semiconductor layers on the second region are selectively removed to form a groove 108. With the first conduction-type semiconductor made to epitaxially grow selectively in the groove after a thin oxidizing film is formed on the side face, both the oxidizing film and semiconductor layers in the third region are selectively removed to form a groove. Besides, with the second conduction-type semiconductor made to epitaxially grow selectively in the groove after a thin oxidizing film being formed on the side face, a high concentration layer is composed to form electrodes at the parts for the drain and source regions in each channel.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 不発明は半導体装置に関し、より詳しくは1llA q
lkゲートトランジスタおよびその製造方法に関する0
〔従来の技術〕 絶縁ゲートトランジスタ、時に相袖型絶碌ゲートトラン
ジスタを用いた集積回路(以下、CMO8ICというン
は、低消費電力等の大きな特徴を有している。一般的な
0MO8ICの構成を第3図に示す。
[Detailed Description of the Invention] [Industrial Application Field] The invention relates to semiconductor devices, more specifically 1llA q
0 about lk gate transistor and its manufacturing method
[Prior art] Integrated circuits (hereinafter referred to as CMO8ICs) using insulated gate transistors, sometimes phase-sleeved insulated gate transistors, have major features such as low power consumption. It is shown in Figure 3.

すなわち、N型半尋体基板301内にPワエ・・領域と
呼ばれるP型不純物拡敵領域302が形成され、このP
型不純物拡散領域302内にN型MO8)ランジスタの
ドレイン及びソース304が形成され、基板側にはP型
MO8トランジスタのドレイン及びソース303が形成
されている。両トランジスタのゲート305は多結晶シ
リコン又はアルミニウム等の金楓で形成される。ざらに
、絶縁酸化膜306は選択酸化技術等で形成され、合ソ
ース・ドレイン・ゲートには電極307が形成される。
That is, a P-type impurity expansion region 302 called a Pwae region is formed in the N-type semicircular substrate 301;
The drain and source 304 of an N-type MO8 transistor are formed in the type impurity diffusion region 302, and the drain and source 303 of a P-type MO8 transistor are formed on the substrate side. The gates 305 of both transistors are formed of polycrystalline silicon or gold maple such as aluminum. Roughly speaking, an insulating oxide film 306 is formed by selective oxidation technology or the like, and electrodes 307 are formed at the source, drain, and gate.

ここで基板301としてP型のものを用いても、N型拡
散領域302を形成して同様にCMO8半導体装置を構
1戎できる。
Here, even if a P-type substrate is used as the substrate 301, a CMO8 semiconductor device can be constructed in the same manner by forming an N-type diffusion region 302.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の構造では、ゲート電極305によるチャ
ンネル電流が基板に対して横力向に流れる為に1高速動
作に最も影響を及ぼすチャンネル長はゲート305を形
成する為の写真食刻技術で限定される。しかし、現f、
安定して写AX刻技術で形成できるチャンネル長は1μ
m程度であシ、今後の筒速化に対応する1μm以下のゲ
ート長を安定して形成することが不可能である。加えて
、従来の構造では、寄生バイポーラ・トランジスターに
よるラッチ・アップ現象が発生する欠点がある0 〔問題点を解決するための手段〕 本発明の半導体装置の攬造方法は、第1導電型の半導体
基板に第2専篭型の尚譲度第1饋域と第2導電型の低護
度第2憤域とを選択的に形成し。
In the conventional structure described above, since the channel current due to the gate electrode 305 flows in the direction of lateral force with respect to the substrate, the channel length that most affects high-speed operation is limited by the photolithography technique used to form the gate 305. Ru. However, the current f,
The channel length that can be stably formed using Sha-AX engraving technology is 1μ.
However, it is impossible to stably form a gate length of 1 μm or less, which corresponds to future increases in cylinder speed. In addition, the conventional structure has the disadvantage that a latch-up phenomenon occurs due to a parasitic bipolar transistor. A second conductivity type low protection first region and a second conductivity type low protection second region are selectively formed on the semiconductor substrate.

該第2領域の内側に第1導電型の第3領域を形成する工
程と、基板全面に酸化膜、半導体ノーを順に形成する工
程と、半導体層を選択的に酸化して酸化膜に変える工程
と、第2領域上の酸化膜層と半導体層を選択的に*り去
いて溝を形成する工程と、該溝の側面に薄い酸化膜を形
成した後に、該溝に選択的に第1導電型の半導体をエピ
タキシャル成長する工程と、前記第3領域の酸化膜層と
半導体層を選択的に取り去いて溝を形成し、該溝の側面
に薄い酸化膜を形成した後に、該碑に迅択的に第2導電
型の半導体をエピタキシャル成長する工程ト、谷チャン
ネルのドレイン及びソース狽域となる部分に高纜度層を
設け、電極を形成する工程から構成されている。
A step of forming a third region of the first conductivity type inside the second region, a step of sequentially forming an oxide film and a semiconductor layer on the entire surface of the substrate, and a step of selectively oxidizing the semiconductor layer to convert it into an oxide film. a step of selectively removing* the oxide film layer and the semiconductor layer on the second region to form a groove; and after forming a thin oxide film on the side surfaces of the groove, selectively removing a first conductive layer in the groove; A step of epitaxially growing a type of semiconductor, selectively removing the oxide film layer and the semiconductor layer in the third region to form a groove, and forming a thin oxide film on the side surfaces of the groove, followed by a step of epitaxially growing a semiconductor layer on the monument. The method generally consists of a step of epitaxially growing a semiconductor of the second conductivity type, and a step of providing a high-strength layer in the portions that will become the drain and source regions of the valley channel to form electrodes.

〔実施例〕〔Example〕

久に、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will now be described with reference to the drawings.

第1図(a)乃至tj)は不発明の一実施例によるCM
(JS  ICを製造工程順に示した断面図である。ま
ず、 NlJl手導体基板101に低戚度P型領域10
2を形成し1次いで高訣度P型領域103を低濃度P型
領域102以外の部分に、高痕度N型頂域104を低濃
度P型領域102内へ形成する。各拡散領域のそれぞれ
の濃度は、103,104の濃度が1019〜10”C
l1L ’、 l 02の濃度は1016c!IL−3
程度、基板101の濃度はl O’ 4 r3程度であ
)、熱拡散又はイオン注入技術を用いて形成する(第1
図a)。
FIG. 1(a) to tj) are commercials according to an embodiment of the non-invention.
(This is a sectional view showing the JSIC in the order of manufacturing steps.
Then, a high density P type region 103 is formed in a portion other than the low concentration P type region 102, and a high density N type top region 104 is formed in the low concentration P type region 102. The concentration of each diffusion region is 103,104 from 1019 to 10"C.
The concentration of l1L', l02 is 1016c! IL-3
The concentration of the substrate 101 is about lO' 4 r3), and is formed using thermal diffusion or ion implantation technology (the first
Diagram a).

全面に、3000〜4000A程夏の1i化膜105を
気相成長法等を用いて形成し、その上部に多結晶シリコ
ン膜106を形成する。この多結晶シリコン膜106の
膜厚はゲート長を医定し、1μm以下の所定の膜厚に設
定する(第1図り)0この後に、選択的に多結晶シリコ
ン膜106をα化し゛C1酸化膜107を形成する(第
1図C)。
A 1i film 105 with a thickness of about 3000 to 4000 A is formed on the entire surface using a vapor phase growth method, and a polycrystalline silicon film 106 is formed on top of the 1i film 105. The film thickness of this polycrystalline silicon film 106 is set to a predetermined film thickness of 1 μm or less by medically determining the gate length (first diagram). After this, the polycrystalline silicon film 106 is selectively alphanized and C1 oxidized. A film 107 is formed (FIG. 1C).

全面に薄い酸化膜(100〜500A)を形成した後に
N型不純物をイオン注入して、多結晶シリコン膜106
に導入する(第1図d)。
After forming a thin oxide film (100 to 500 A) on the entire surface, N-type impurity ions are implanted to form a polycrystalline silicon film 106.
(Fig. 1d).

熱処理を行ない多結晶シリコン膜106中の不純物一度
を一定にした後に、先ず^濃匿P型饋域lO:3上の一
+M晶シリコン膜106及び高濃度NW領域104上の
酸化膜107を選択的にRIEを用いて異7j性工、テ
ングを行ない、溝108を形成する。全体を酸化し溝部
分の側面に露出している多結晶シリコン膜を酸化し、再
び異カ性エツチングを行なうことにより、側壁のみに5
0〜500八程鍵の膜厚のゲート酸化膜150を形成す
る(第1図e)。
After heat treatment is performed to make the impurity level in the polycrystalline silicon film 106 constant, first, the 1+M crystal silicon film 106 on the concentrated P-type region lO:3 and the oxide film 107 on the high concentration NW region 104 are selected. Then, a groove 108 is formed using RIE. By oxidizing the entire surface, oxidizing the polycrystalline silicon film exposed on the side surfaces of the groove portion, and then performing heterocrystalline etching again, 55% is applied to only the side walls.
A gate oxide film 150 having a thickness of about 0 to 500 mm is formed (FIG. 1e).

溝領域108にN型低濃度シリコ7層109゜110を
選択エピタキシャル成長法により形成する。bi、長後
、ぼ化を行ないエピタキシャル成長したシリコン層10
9,110上に酸化膜を形成する(第1図f)o次に、
高磯度P型饋域103上の酸化!I!4107及び爾伽
匿N型頚域104上の多結晶シリコン膜106を選択的
に几IEを用いて異方性エツチングを行ない溝111を
形成する0111108の場合と同様の方法で側面に5
0〜500Aのゲートば化膜となるべき鹸化禮160を
形成するCM1図g)。
Seven N-type low concentration silicon layers 109° and 110 are formed in the groove region 108 by selective epitaxial growth. bi, silicon layer 10 epitaxially grown after long and blurring
9, 110 (FIG. 1f) o Next,
Oxidation on high-level P-type feeding area 103! I! 4107 and the polycrystalline silicon film 106 on the hidden N-type neck region 104 are selectively anisotropically etched using IE to form grooves 111.
CM1 (g) showing the formation of a saponification film 160 that is to become a gate film of 0 to 500A.

久にn4偵域Illに選択的にP緘低一度シリコン/f
i1112.113t−エビター?7ヤル収長し、数比
を行なうことによジシリコン層112,113の上に酸
化膜を形成する(第1図h)。
Selectively low silicon/f in n4 reconnaissance area for a long time
i1112.113t-evitar? An oxide film is formed on the di-silicon layers 112 and 113 by performing a numerical ratio (FIG. 1h).

イ万ン注入技術を用いてPW低低濃度職域112上部と
N型低濃度領域109の上部にP型筒一度領域114,
115をそJ’Lぞれ形成する。家た同様に、P聖像f
h、度幀域113の上部と1q型低線度領域110の上
部KN型I!16礫度偵城116゜117をそれぞれ形
成する(第1図1)。
Using the ion implantation technique, a P-type tube region 114 is placed in the upper part of the PW low-concentration work area 112 and the upper part of the N-type low-concentration region 109.
115 are formed respectively. Similarly, the P holy image f
h, KN-type I! above the high-intensity area 113 and above the 1q-type low-intensity area 110! 16-grained castles 116° and 117 are formed respectively (Fig. 1 1).

最後に領域114,115,116,117及D;11
5と116の間の多結晶シリコン膜106上のは化膜を
選択的に取り去き、金楓を極118゜119.120,
121,122を形成して素子が完成する(第1図j)
Finally, areas 114, 115, 116, 117 and D; 11
The oxide film on the polycrystalline silicon film 106 between 5 and 116 is selectively removed, and the gold maple is coated at 118°, 119.120°,
121 and 122 are formed to complete the device (Fig. 1j)
.

ここで、電極118がPチャタネ4MO8)ランジスタ
リソース、119は同トランジスタのドレインまた、電
極121はNチャンネルMOSトランジスタのドレイン
、122は同トランジスタソースに、電極120は共通
のゲートに相当する。
Here, the electrode 118 corresponds to the transistor source, 119 corresponds to the drain of the same transistor, the electrode 121 corresponds to the drain of the N-channel MOS transistor, 122 corresponds to the source of the same transistor, and the electrode 120 corresponds to the common gate.

第2図は素子の半面構造である。前述の説明からも明ら
かなように、1(j6は共通ケート部、103はPチャ
タネ4MO8のソース部、102はPウェル、104は
NチャンネルM(J8のソース部、150はPチャンネ
ルのゲート[化膜、160はINチャンネルMO8のゲ
ート酸化膜、118.119はそれぞれPチャタネ4M
O8のソース及びドレイン・コンタクト部、120は共
通ゲートのコンタクト部、121,122はそれぞれN
チャンネルMO8のドレイン及ソース・コンタクト部で
ある。以上は、N型基板てついて述べたが、P型基板に
ついても同僚に適用することができる◇ 〔発明の効果〕 以上説明したとおり、本発明によれば、高度な写真策刻
茂術を用いろことなく、ゲート唄城の多結晶7リコン膜
の膜厚を制御することにより容易て、高速化に対応した
1μm以下のゲート長を実現cif能であり、カロえて
谷トランジスターのドレインがそれぞれフェルと半導体
基板から離れている為に、寄生トランジスター効果が押
えらn、ラッチ・アップ現象が発生しにくい縦1icy
roS牛導体装置を提供できる。
FIG. 2 shows a half-plane structure of the device. As is clear from the above description, 1 (j6 is the common gate part, 103 is the source part of P channel MO8, 102 is the P well, 104 is the N channel M (source part of J8, 150 is the gate of P channel) 160 is the gate oxide film of IN channel MO8, 118 and 119 are P chatane 4M, respectively.
Source and drain contacts of O8, 120 is a common gate contact, 121 and 122 are N
This is the drain and source contact portion of the channel MO8. The above has been described for N-type substrates, but it can also be applied to P-type substrates ◇ [Effects of the Invention] As explained above, according to the present invention, advanced photo engraving techniques can be used. By controlling the thickness of the polycrystalline 7-licon film in the gate, it is easy to achieve a gate length of 1 μm or less, which is compatible with high-speed operation. Because it is far from the semiconductor substrate, the parasitic transistor effect is suppressed, and the latch-up phenomenon is less likely to occur.
We can provide roS conductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜lj)は不発明の一実施例を説明するた
めに工程順に示した@面図、第2図は本発明の実り例に
おける平面構造図、第3図は従来の牛轡体装置の製造方
法を説明するための断■図である。
Figures 1 (a) to lj) are @ side views shown in the order of steps to explain an embodiment of the invention, Figure 2 is a plan view of the structure of a fruitful example of the present invention, and Figure 3 is a conventional cow. FIG. 3 is a cross-sectional view for explaining a method of manufacturing the housing device.

Claims (2)

【特許請求の範囲】[Claims] (1)ソースおよびドレイン領域の一方となる一導電型
の第1領域と、該第1領域上に選択的に形成された逆導
電型の柱状半導体領域と、該柱状半導体領域の上部に形
成されたソースおよびドレイン領域の他方となる前記一
導電型の第2領域と、前記柱状半導体領域の側面に形成
されたゲート絶縁膜と、この絶縁膜上に形成されたゲー
ト電極とを有することを特徴とする半導体装置。
(1) A first region of one conductivity type that becomes one of the source and drain regions, a columnar semiconductor region of the opposite conductivity type selectively formed on the first region, and a columnar semiconductor region formed on the top of the columnar semiconductor region. the second region of one conductivity type, which is the other of the source and drain regions; a gate insulating film formed on a side surface of the columnar semiconductor region; and a gate electrode formed on the insulating film. semiconductor device.
(2)ソースおよびドレインの一方となる一導電型の第
1領域上に絶縁膜を介して半導体層を形成する工程と、
前記半導体層を選択的に取り去いて溝を形成する工程と
、該溝の側面にゲート絶縁膜を形成し、該溝内に逆導電
型の半導体を選択エピタキシャル成長する工程と、この
エピタキシャル層の表面部分にソースおよびドレインの
他方となる前記一導電型の第2領域を形成する工程とを
有することを特徴とする半導体の製造方法。
(2) forming a semiconductor layer on a first region of one conductivity type, which becomes one of a source and a drain, with an insulating film interposed therebetween;
a step of selectively removing the semiconductor layer to form a groove; a step of forming a gate insulating film on the side surface of the groove; and selectively epitaxially growing a semiconductor of the opposite conductivity type in the groove; and a step of forming a groove on the surface of the epitaxial layer. A method of manufacturing a semiconductor, comprising the step of forming a second region of one conductivity type, which becomes the other of a source and a drain, in a portion thereof.
JP60185304A 1985-08-22 1985-08-22 Semiconductor device and its manufacture Pending JPS6245058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60185304A JPS6245058A (en) 1985-08-22 1985-08-22 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60185304A JPS6245058A (en) 1985-08-22 1985-08-22 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPS6245058A true JPS6245058A (en) 1987-02-27

Family

ID=16168514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60185304A Pending JPS6245058A (en) 1985-08-22 1985-08-22 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPS6245058A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223668A (en) * 1988-07-12 1990-01-25 Seiko Epson Corp Semiconductor device
JP2003163282A (en) * 2001-09-21 2003-06-06 Agere Systems Guardian Corp Vertical replacement-gate (vrg) transistor of multiple- operation-voltage
JP2006514425A (en) * 2002-09-29 2006-04-27 アドバンスト・アナロジック・テクノロジーズ・インコーポレイテッド Modular bipolar-CMOS-DMOS analog integrated circuit and power transistor technology
JP2008502139A (en) * 2004-05-26 2008-01-24 マイクロン テクノロジー,インコーポレーテッド Semiconductor structure, memory element structure, and method for forming semiconductor structure
JP2010062574A (en) * 2000-08-25 2010-03-18 Agere Systems Inc Circuit connection architecture of vertical type transistor
JP2011061181A (en) * 2009-08-11 2011-03-24 Unisantis Electronics Japan Ltd Semiconductor device and method of manufacturing the same
JP2011077437A (en) * 2009-10-01 2011-04-14 Unisantis Electronics Japan Ltd Semiconductor device
JP2011086900A (en) * 2009-09-16 2011-04-28 Unisantis Electronics Japan Ltd Semiconductor device
US8097910B2 (en) 2004-09-01 2012-01-17 Micron Technology, Inc. Vertical transistors
US8319293B2 (en) 2009-03-25 2012-11-27 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
US8772881B2 (en) 2009-06-05 2014-07-08 Unisantis Electronics Singapore Pte Ltd. Semiconductor device
US8916478B2 (en) 2011-12-19 2014-12-23 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9035384B2 (en) 2011-12-19 2015-05-19 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9153697B2 (en) 2010-06-15 2015-10-06 Unisantis Electronics Singapore Pte Ltd. Surrounding gate transistor (SGT) structure
US10515801B2 (en) 2007-06-04 2019-12-24 Micron Technology, Inc. Pitch multiplication using self-assembling materials
WO2023157048A1 (en) * 2022-02-15 2023-08-24 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device and method for manufacturing same

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223668A (en) * 1988-07-12 1990-01-25 Seiko Epson Corp Semiconductor device
JP2010062574A (en) * 2000-08-25 2010-03-18 Agere Systems Inc Circuit connection architecture of vertical type transistor
JP2003163282A (en) * 2001-09-21 2003-06-06 Agere Systems Guardian Corp Vertical replacement-gate (vrg) transistor of multiple- operation-voltage
JP2012178592A (en) * 2001-09-21 2012-09-13 Agere Systems Inc Multiple operating voltage vertical replacement-gate (vrg) transistor
JP2006514425A (en) * 2002-09-29 2006-04-27 アドバンスト・アナロジック・テクノロジーズ・インコーポレイテッド Modular bipolar-CMOS-DMOS analog integrated circuit and power transistor technology
JP2008502139A (en) * 2004-05-26 2008-01-24 マイクロン テクノロジー,インコーポレーテッド Semiconductor structure, memory element structure, and method for forming semiconductor structure
US8829602B2 (en) 2004-05-26 2014-09-09 Micron Technology, Inc. Integrated circuits and transistor design therefor
US8097910B2 (en) 2004-09-01 2012-01-17 Micron Technology, Inc. Vertical transistors
US8372710B2 (en) 2004-09-01 2013-02-12 Micron Technology, Inc. Vertical transistors
US8633529B2 (en) 2004-09-01 2014-01-21 Micron Technology, Inc. Vertical transistors
US10515801B2 (en) 2007-06-04 2019-12-24 Micron Technology, Inc. Pitch multiplication using self-assembling materials
US8319293B2 (en) 2009-03-25 2012-11-27 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
US8642426B2 (en) 2009-03-25 2014-02-04 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
US8772881B2 (en) 2009-06-05 2014-07-08 Unisantis Electronics Singapore Pte Ltd. Semiconductor device
US9059309B2 (en) 2009-08-11 2015-06-16 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method
US9484268B2 (en) 2009-08-11 2016-11-01 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method
US8558317B2 (en) 2009-08-11 2013-10-15 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method
JP2011061181A (en) * 2009-08-11 2011-03-24 Unisantis Electronics Japan Ltd Semiconductor device and method of manufacturing the same
JP2011086900A (en) * 2009-09-16 2011-04-28 Unisantis Electronics Japan Ltd Semiconductor device
US8441066B2 (en) 2009-09-16 2013-05-14 Unisantis Electronics Singapore Pte Ltd. Semiconductor device
JP2011077437A (en) * 2009-10-01 2011-04-14 Unisantis Electronics Japan Ltd Semiconductor device
US9153697B2 (en) 2010-06-15 2015-10-06 Unisantis Electronics Singapore Pte Ltd. Surrounding gate transistor (SGT) structure
US9035384B2 (en) 2011-12-19 2015-05-19 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8916478B2 (en) 2011-12-19 2014-12-23 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9245889B2 (en) 2011-12-19 2016-01-26 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9362353B2 (en) 2011-12-19 2016-06-07 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9478545B2 (en) 2011-12-19 2016-10-25 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9748244B2 (en) 2011-12-19 2017-08-29 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9806163B2 (en) 2011-12-19 2017-10-31 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device having an nMOS SGT and a pMOS SGT
WO2023157048A1 (en) * 2022-02-15 2023-08-24 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPS6245058A (en) Semiconductor device and its manufacture
JPS638622B2 (en)
JPH09213948A (en) Mos type field-effect transistor and manufacture thereof
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPH06151738A (en) Semiconductor device and manufacture thereof
JPH09252129A (en) Field-effect transistor and its manufacturing method
JPS5935463A (en) Complementary metal-oxide semiconductor device and manufacture thereof
JPH0661260A (en) Manufacture of semiconductor device
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JPS6237543B2 (en)
JPH0548108A (en) Semiconductor device and its manufacture
JPS60105247A (en) Manufacture of semiconductor device
JPH0469433B2 (en)
JPH02105576A (en) Field effect transistor
JPH0738445B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS61212067A (en) Manufacture of semiconductor device
JPS61242079A (en) Manufacture of mos type semiconductor element
JPS60134473A (en) Manufacture of semiconductor device
JPH0330307B2 (en)
JPH0213827B2 (en)
JPS6126223B2 (en)
JPS63150965A (en) Manufacture of semiconductor device
JP2002329728A (en) High voltage transistor and method of manufacturing semiconductor device and high voltage transistor
JPS6143476A (en) Mos semiconductor device and manufacture thereof
JPS6345860A (en) Manufacture of semiconductor device