JPS6244523A - Manufacture of austenitic stainless steel bar - Google Patents

Manufacture of austenitic stainless steel bar

Info

Publication number
JPS6244523A
JPS6244523A JP18337985A JP18337985A JPS6244523A JP S6244523 A JPS6244523 A JP S6244523A JP 18337985 A JP18337985 A JP 18337985A JP 18337985 A JP18337985 A JP 18337985A JP S6244523 A JPS6244523 A JP S6244523A
Authority
JP
Japan
Prior art keywords
rolling
steel bar
temperature
temp
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18337985A
Other languages
Japanese (ja)
Inventor
Kazuyuki Nakasuji
中筋 和行
Chihiro Hayashi
千博 林
Tsuyoshi Sanada
真田 強
Yoshio Kobayashi
良夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Nippon Steel Corp
Original Assignee
Nippon Stainless Steel Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd, Sumitomo Metal Industries Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP18337985A priority Critical patent/JPS6244523A/en
Publication of JPS6244523A publication Critical patent/JPS6244523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To simply perform soln. heat treatment with a low cost, by rolling an austenitic stainless steel stock at finishing temp. of >= a specified temp. by a diagonal rolling mill, and cooling the steel as it is without reheating it. CONSTITUTION:The austenitic stainless steel stock 10 rolled previously to shape having a prescribed circular section is rolled to a steel bar 11 having the aimed diameter by the diagonal rolling mill 4 having cone shaped rolls 1, 2, 3. In this case, temp. of the bar 11 after rolling is measured by an optical thermometer 15, the temp. is inputted in a rolling speed controller 16, in case the measured temp. is <=950 deg.C, revolving number of the rolls 1, 2, 3 is increased to increase rolling draft and the temp. just after rolling is controlled to >=950 deg.C. The bar 11 of >=950 deg.C is quenched with water by a cooling apparatus 20 to soln. heat treat it, ppt. of Cr carbide to grain boundary is suppressed and the titled steel bar superior in corrosion resistance is manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧延されたオーステナベ1−系ステンレス棒
鋼を特別に再加熱せずとも強制冷却するのみで溶体化処
理できるオーステナベ1−系ステンレス棒鋼の製造方法
に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides an austenabe 1-series stainless steel bar that can be solution-treated by only forced cooling without special reheating of the rolled austenabe 1-series stainless steel bar. Relating to a manufacturing method.

〔従来技術〕[Prior art]

オーステナイト系ステンレス鋼材は、通電、熱間圧延さ
れて人気中で冷却されたのも溶体化処理が施されている
。これは大気中での冷却の際、鋼材の結晶粒界にクロム
炭化物が析出して耐食性が劣化するのを防止すべく行っ
ている。
Austenitic stainless steel materials are popularly energized, hot rolled, cooled, and solution treated. This is done to prevent corrosion resistance from deteriorating due to precipitation of chromium carbide at grain boundaries of the steel material during cooling in the atmosphere.

溶体化処理方法としては、熱間圧延後の鋼材を例えば1
000’C程度以上の温度に回加りlシしたのら、水槽
中への浸漬等により強制冷却Jる方法が一般的である。
As a solution treatment method, for example, the steel material after hot rolling is
A common method is to forcibly cool the material by immersing it in a water tank after it reaches a temperature of about 0.000'C or higher.

しかし、ごの方法による場合は、再加熱時に結晶粒が粗
大化しで肌荒れ現象が起こり、このため次の2次加工工
程においてその現象を原因とJるトラゾルが発生し、ま
た再加熱炉を必要とし、更にその加熱のためにコス1−
が高いという欠点があった。
However, when using this method, the crystal grains become coarse during reheating, causing a rough surface phenomenon, which causes the generation of torasol in the next secondary processing process, and requires a reheating furnace. In addition, for the heating, cost 1-
It had the disadvantage of being high.

この欠点を解消ずべく、オーステナイト系ステンレス線
材については圧延後の材ネ4温度を利用して回加グ15
せず、強制冷却のみを行うごとにより溶体化処理を実施
し1qる技術が提案されている。例えば特開昭55〜1
6,1036号の方法は、圧延速度を高速化して圧延後
の線材温度を所要温度以上に確保し、その後強制冷却し
て溶体化処理を施さんとする方法である。
In order to eliminate this drawback, for austenitic stainless steel wire rods, the temperature of the material after rolling is applied to
A technique has been proposed in which solution treatment is performed every time only forced cooling is performed, instead of performing forced cooling. For example, JP-A-55-1
The method of No. 6,1036 is a method in which the rolling speed is increased to ensure the wire temperature after rolling is higher than the required temperature, and then forced cooling is performed to perform solution treatment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、特開昭55−164036号の方法は、設備上
高速圧延が可能な、例えば線材圧延設備のように60−
100+n/秒の高速で圧延が可能なものにだけ通用可
能ごある。また高速で圧延するため冷却するまでの温度
低下が少ない。しかし線材よりも外径が大きい棒鋼等の
製造にはこのような高速にて圧延できないため高速圧延
による加工熱が期待できず、適用不可能であった。つま
り、棒鋼等の高速圧延化については、圧延機の各スタン
ドでのロール駆動用モータを非常に大きい出力が得られ
るものにする必要があって非現実的である。
However, the method of JP-A No. 55-164036 requires equipment that is capable of high-speed rolling, such as wire rod rolling equipment.
It is applicable only to products that can be rolled at a high speed of 100+n/sec. In addition, since rolling is performed at high speed, there is little temperature drop before cooling. However, since it is not possible to roll at such a high speed for manufacturing steel bars with a larger outer diameter than wire rods, the processing heat generated by high-speed rolling cannot be expected, and this method cannot be applied. In other words, for high-speed rolling of steel bars and the like, it is necessary to use motors for driving the rolls in each stand of the rolling mill with a very large output, which is unrealistic.

C問題点を解決するための手段〕 本発明は斯かる事情に温みてなされたものであり、■バ
スでの加工度を高め、また圧延速度を調整して圧延する
ことにより、再加熱せずに溶体化処理が可能なオーステ
ナイト系ステンレス棒鋼の現遣方法を提供することを目
的とする。
Means for Solving Problem C] The present invention was made in consideration of the above circumstances, and it is possible to: ■ improve the degree of processing in the bath and adjust the rolling speed during rolling, thereby eliminating the need for reheating; The purpose of the present invention is to provide a method for producing austenitic stainless steel bars that can be subjected to solution treatment.

本発明に係るオーステナイト系ステンレス棒鋼の製造方
法は、オーステナイト系ステンレス鋼材を傾斜圧延機に
て棒鋼に仕上圧延する熱間圧延工程を含む棒鋼の製造方
法において、仕上圧延後の棒鋼温度が950℃以上とな
るように前記傾斜圧延機での鋼材の加工度を設定し、ま
た傾斜圧延機の圧延速度を調整して圧延し、仕上圧延さ
れた高温の棒鋼を溶体化処理1−べく900℃以上から
500℃以下の温度まで強制冷却することを特徴とする
The method for manufacturing an austenitic stainless steel bar according to the present invention is a method for manufacturing a steel bar that includes a hot rolling step of finish rolling an austenitic stainless steel material into a steel bar using an inclined rolling mill, wherein the steel bar temperature after finish rolling is 950°C or higher. The working degree of the steel material in the inclined rolling mill is set so that It is characterized by forced cooling to a temperature of 500°C or less.

〔実施例〕〔Example〕

以下本発明を図面に基づき具体的に説明する。 The present invention will be specifically explained below based on the drawings.

第1図は本発明の実施状態を示す模式図(図中ロール1
.2は第2図のI−r線による断面図としている)、第
2図は第1rI!Jの■−■線による正面図、第3図は
傾斜角βを示す側面図であり、図中10は円形断面のオ
ーステナイト系ステンレス鋼材を示す。鋼材10は、図
示しない加熱炉にて所定温度に加熱された連続鋳造鋳片
が圧延ライン上流側の粗・中間孔型圧延機(図示せず)
例えば31目、211iのリバース式圧延機又は211
iの連続的圧延機等により孔型圧延され、製品の棒鋼寸
法に対して所定の比率で断面積が大きいものであり、図
示しない移送装置にて軸長方向(白抜矢符方向)に螺進
移送されつつ、圧延ラインの粗・中間孔型圧延機よりも
下流側に設けられた高加工度圧延が可能な交叉型の傾斜
圧延機4にて仕上げ圧延されて縮径され、これにより棒
鋼工1となり、その後、棒鋼11の温度が所定温度とな
る位置に入口穴21を自する冷却装置20に゛(冷却さ
れ°(更に下流側へ送られる。
FIG. 1 is a schematic diagram showing the implementation state of the present invention (in the figure, roll 1
.. 2 is a cross-sectional view taken along the I-r line in FIG. 2), and FIG. 2 is the 1rI! J is a front view taken along the line ■-■, and FIG. 3 is a side view showing the inclination angle β, and 10 in the figure shows an austenitic stainless steel material having a circular cross section. The steel material 10 is a continuously cast slab heated to a predetermined temperature in a heating furnace (not shown), and then passed through a rough/medium hole type rolling mill (not shown) on the upstream side of a rolling line.
For example, 31st, 211i reverse rolling mill or 211
It is groove-rolled using a continuous rolling mill, etc., and has a large cross-sectional area at a predetermined ratio to the product steel bar dimensions. As the steel bar progresses through the rolling line, it is finished rolled and reduced in diameter in a cross-type inclined rolling mill 4 that is capable of high-deformation rolling and is installed downstream of the rough/medium hole mills in the rolling line. After that, the steel bar 11 is cooled in a cooling device 20 having an inlet hole 21 at a position where the temperature of the steel bar 11 reaches a predetermined temperature.

傾斜圧延機4はパスライン周りに臨んで3個のコーン形
ロール1.2.3を自し、3個のロール1.2.3は鋼
材(0の出側端部にゴージ部1a、 2a。
The inclined rolling mill 4 has three cone-shaped rolls 1.2.3 facing around the pass line, and the three rolls 1.2.3 have gorge parts 1a and 2a at the exit end of the steel material. .

3aを備え、ゴージ部を境にして鋼材10の入側は軸端
に向けて暫時直径を縮小され、また出側は拡大されて円
誰台形をなす入口面1b、 2b、 3b及び出口面1
c、 2c、 3cを備えており、出口面1c+ 2c
、3cはパスラインとの距離をゴージ部とパスラインと
の距離に一致させ”ζいる。このようなコーン型のロー
ルl、2.3はいずれもその人口面Lb、2b、3bを
鋼材10の移動方向上流側に位置させた状態とし。
3a, the entrance side of the steel material 10 is temporarily reduced in diameter toward the shaft end with the gorge part as a boundary, and the exit side is enlarged to form an inlet face 1b, 2b, 3b and an outlet face 1.
c, 2c, 3c, exit surface 1c + 2c
, 3c are arranged so that the distance to the pass line matches the distance between the gorge part and the pass line.Such cone-shaped rolls l and 2.3 all have their artificial surfaces Lb, 2b, and 3b made of steel material 10. The position is on the upstream side in the direction of movement.

また軸心線Y−Yと、ゴージ部1a+ 2a、 3aを
含む平面との交点O(以下ロール設定中心という)を、
鋼材IOのパスラインX−Xと直交する同一平面上にて
バスラインX−X周りに略等間隔に位置せしめるべく配
設されている。そして各ロール1.2゜3の軸心線Y−
Yはロール設定中心口りに、鋼材10のパスラインX−
Xとの関係において第1図に示すように前方の!Ib端
がパスラインX−Xに向けて接近するよう交叉角Tだり
交叉(傾!+1)せしめられ、且つ第2図、第3図に示
すように前方の軸端が鋼材10の同方向の同じ側に向け
て傾斜角βだけ傾斜せしめられている。ロールl、2.
3は図示しない駆動源に連繋されており、第2図に矢符
で示す如(同方向に回転駆動され、これらのロール間に
噛み込まれた熱間の鋼材lOはその軸心線回りに回転駆
動されつつ軸長方向に移動される、即ち螺進移動せしめ
られる。
In addition, the intersection point O between the axis Y-Y and the plane including the gorge portions 1a+2a and 3a (hereinafter referred to as the roll setting center) is
They are arranged at approximately equal intervals around the bus line XX on the same plane perpendicular to the pass line XX of the steel material IO. And the axis line Y- of each roll 1.2゜3
Y is the pass line X- of steel material 10 at the center of the roll setting.
In relation to X, the front ! as shown in Figure 1! The Ib end approaches the pass line XX at an intersecting angle T or intersects (inclination! +1), and as shown in FIGS. They are tilted toward the same side by a tilt angle β. Roll l, 2.
3 is connected to a drive source (not shown), and as shown by the arrow in FIG. It is moved in the axial direction while being rotationally driven, that is, it is caused to move in a spiral manner.

鋼材IOはロール間を螺進移動せしめられる間に、第1
図に示すごとくロールハイド部Aにて外径を絞られて、
例えば最大減面率が80〜90%の高圧下を受け、鋼材
IOの圧下面Bが円錐台形状に成形された後、ゴージ部
、出口面にて所定の外径の棒鋼11となる。
While the steel material IO is being spirally moved between the rolls, the first
As shown in the figure, the outer diameter is narrowed down at the roll hide part A,
For example, the steel material IO is subjected to high pressure with a maximum area reduction rate of 80 to 90%, and after the reduced surface B of the steel material IO is formed into a truncated conical shape, it becomes a steel bar 11 having a predetermined outer diameter at the gorge portion and the exit surface.

ロール1.2.3の下流側の棒鋼11の移動域に測温視
野を臨ませて光学式温度計15が設りられており、温度
計15は棒鋼11の温度をi++定し、測定信号を圧延
速度制御装置1Gへ出力する。圧延速度制御装置16は
この入力信号、つまり棒鋼11の温度と、予め設定され
゛(いる所定温度(950℃以上)との大小を判定し、
棒鋼11の温度が所定温度よりも高い場合には予め定め
た基準ロール回転数でロールl、2.3を回転させる信
号をロールl、2.3の駆動源(図示せず)へ出力し、
棒鋼11の温度が所定温度よりも低い場合にはロール1
.2.3の駆動源へ基準ロール回転数よりも所要数回転
数を増大させる信号を出力する。
An optical thermometer 15 is provided with a temperature measuring field facing the movement area of the steel bar 11 on the downstream side of the roll 1.2.3, and the thermometer 15 determines the temperature of the steel bar 11 i++ and sends a measurement signal. is output to the rolling speed control device 1G. The rolling speed control device 16 determines the magnitude of this input signal, that is, the temperature of the steel bar 11, and a predetermined temperature (950° C. or higher) set in advance.
If the temperature of the steel bar 11 is higher than a predetermined temperature, output a signal to the drive source (not shown) of the rolls 1 and 2.3 to rotate the rolls 1 and 2.3 at a predetermined standard roll rotation speed,
When the temperature of the steel bar 11 is lower than the predetermined temperature, the roll 1
.. 2. Output a signal to the drive source 3 to increase the required number of rotations from the reference roll rotation speed.

そしζ、傾斜圧延機4にて仕上圧延された棒鋼11は放
熱しつつ下流側の所定位置に設けた冷却装置20へ送ら
れる。冷却装置20は、外観が六面体の箱であり、その
」−9下流側の2つの側板22.23には夫々棒鋼11
が挿通可能な大きさの入口穴21及び出口穴24が開設
されており、入口穴21の位置が棒鋼11が後述の所定
温度(900℃以上)となる位置と一致するように設り
られている。
Then, the steel bar 11 finish-rolled by the inclined rolling mill 4 is sent to the cooling device 20 provided at a predetermined position on the downstream side while radiating heat. The cooling device 20 is a box with a hexahedral appearance, and two side plates 22 and 23 on the downstream side of the cooling device 20 are provided with steel bars 11, respectively.
An inlet hole 21 and an outlet hole 24 are formed to have a size that allows the steel bar 11 to be inserted therethrough, and the position of the inlet hole 21 is set so as to coincide with the position where the steel bar 11 reaches a predetermined temperature (900° C. or more), which will be described later. There is.

棒鋼11は入口穴21より冷却装置20内へ入って冷却
され、出口穴24より外へ出る。冷却装置20内は棒鋼
11の移動域に臨ませて棒鋼全周を均一に冷却できるよ
うに冷却水配管26(図には棒鋼11の上部面を冷却す
る冷却水配管のみが現れている)及びスプレーチップ2
7.27.・・・、27が設けられている。
The steel bar 11 enters the cooling device 20 through the inlet hole 21, is cooled, and exits through the outlet hole 24. Inside the cooling device 20, there are cooling water pipes 26 (only the cooling water pipes for cooling the upper surface of the steel bar 11 are shown in the figure) and a cooling water pipe 26 (only the cooling water pipe that cools the upper surface of the steel bar 11 is shown in the figure) so that the entire circumference of the steel bar 11 can be uniformly cooled. spray tip 2
7.27. ..., 27 are provided.

このように構成された装置によるオーステナイト系ステ
ンレス棒鋼の溶体化処理原理について説明する。粗・中
間孔型圧延機の1バス当たりの最高減面率(最高加工度
)は25%程度であるので、圧延により鋼材温度は低下
していくが、交叉型の傾斜圧延機4は前述の如(1バス
当たりの最高減面率は80〜90%程度と高いため高加
工度圧延が可能であり、これにより圧延速度が低くても
、大きい加工熱を発生せしめ得る。
The principle of solution treatment of austenitic stainless steel bars using the apparatus configured as described above will be explained. Since the maximum area reduction rate (maximum working degree) per bus of rough and intermediate hole type rolling mills is about 25%, the temperature of the steel material decreases during rolling, but the cross type inclined rolling mill 4 has the above-mentioned (Since the maximum area reduction rate per bath is as high as about 80 to 90%, high-deformation rolling is possible, and as a result, even if the rolling speed is low, a large amount of processing heat can be generated.

ところで、加工熱の発注量は材料の変形抵抗。By the way, the order amount of processing heat is the deformation resistance of the material.

歪量(主とし゛C加工度(減面率))及び歪速度(主と
して圧延速度による)等により定まる関数として求めら
れ、また材料の変形抵抗は材質、圧延温度、歪量及び歪
速度等により定まるごとが知られている。
It is determined as a function determined by the amount of strain (mainly the degree of C processing (area reduction rate)) and the strain rate (mainly due to the rolling speed), and the deformation resistance of the material is determined by the material, rolling temperature, amount of strain, strain rate, etc. The whole thing is known.

第4図は横軸に1バス当たりの減面率(%)をとり、縦
軸に傾斜圧延機ごの出側材料温度と入側材料温度との温
度差(’C)をとって、入側材料温度か1000℃の鋼
材10を、ロールl、2.3の回転数を50rpm、 
1100rp、 150rpmと3レベルで変更して圧
延した場合の各ロール回転数における両者の関係を示し
たグラフであり、○印は5Qrpmの場合の結果、×印
はLOOrpmの場合の結果及び・印は150rpI1
1の場合の結果を夫々示す。
In Figure 4, the horizontal axis shows the area reduction rate (%) per bath, and the vertical axis shows the temperature difference ('C) between the material temperature on the exit side and the material temperature on the inlet side of each inclined rolling mill. Steel material 10 with a side material temperature of 1000°C, roll L, rotation speed of 2.3 50 rpm,
This is a graph showing the relationship between the two at each roll rotation speed when rolling was performed at three levels: 1100 rpm and 150 rpm. The ○ mark is the result for 5 Q rpm, the × mark is the result for LOO rpm, and the * mark is the result for LO O rpm. 150rpI1
The results for case 1 are shown respectively.

第5図は横軸に傾斜圧延機入側材料温度(”c)をとり
、また縦軸に同じく出側材料温度と入側材料温度との温
度差(’C)をとって、ロール1,2゜3の回転数を1
100rpに一定にしたまま減面率を59.4%、 6
7.7%、 73.7%と3レヘルで変更した場合の各
減面率におりる両省の関係を示したグラフであり、O印
は59.4%の場合の結果、X印は67.7%の場合の
結果及び・印は73.7%の場合の結果を夫々示す。な
お圧延条件は圧延対象材: SUS 304のオーステ
ナイ1−系スう−ンレス鋼、交叉角γ:5゛。
In Fig. 5, the horizontal axis shows the material temperature at the entrance of the inclined rolling machine ('c), and the vertical axis shows the temperature difference ('C) between the material temperature at the exit side and the material temperature at the entrance side of the roll 1, 2゜3 rotation speed to 1
While keeping the rpm constant at 100 rp, the area reduction rate was 59.4%, 6
This is a graph showing the relationship between the two ministries in each area reduction rate when changed by 7.7% and 73.7%, and the O mark is the result when it is 59.4%, and the X mark is the result when it is 67%. The results for .7% and the marks indicate the results for 73.7%, respectively. The rolling conditions are as follows: Material to be rolled: SUS 304 austenite 1-series stainless steel, intersection angle γ: 5゛.

傾斜角β:15°としている。Inclination angle β: 15°.

これら両図から理解される如く圧延速度及び/又は減面
率を調整することにより、加工熱発生をa、l+御でき
る。Ilシ、減面率が小さい場合には圧延速度のみによ
る調整は、傾斜圧延機の圧延速度が0.5〜2.Qnt
/秒と低速であるため不可能である。
As understood from these two figures, processing heat generation can be controlled by adjusting the rolling speed and/or area reduction rate. When the area reduction rate is small, adjustment by rolling speed only is possible when the rolling speed of the inclined rolling mill is 0.5 to 2. Qnt
This is not possible due to the slow speed of 1/sec.

そして、傾斜圧延機4における通電の圧延条件は圧延中
、歪量及び加熱炉による加熱温度等が決定されたとおり
に一定値に維持、管理されている。
The rolling conditions for energization in the inclined rolling mill 4 are maintained and controlled at constant values during rolling, such as the amount of strain and the heating temperature by the heating furnace, as determined.

また仕上圧延後の鋼材の温度を確保−Jるために加熱炉
による加熱温度を上昇させるごとも考えられるが、この
場合は省エネルギーの観点から好ましくない。
It is also conceivable that the heating temperature in the heating furnace is increased in order to ensure the temperature of the steel material after finish rolling, but this is not preferred from the viewpoint of energy saving.

従って加工熱発生量の制御は圧延前に加工度を所要値に
設定しておき、これに加えて圧延速度を調節するごとに
より、容易になし得ることになる。
Therefore, the amount of processing heat generated can be easily controlled by setting the processing degree to a required value before rolling, and in addition, adjusting the rolling speed each time.

次に、本発明の製造内容を第6図(フローチャー1・)
に基づき説明場る。
Next, the manufacturing details of the present invention are shown in FIG. 6 (flowchart 1).
Explanation based on.

まず、パススケジュールにて定まる次圧延成品の鋼種1
寸法等に基づきその成品に関しての過去の圧延結果より
傾斜圧延機入側の材料温度、基準圧延速度(ロール回転
数)及び基準圧延速度で所要の加工熱発生が可能な延伸
比〔−(入側材料径/出側材料iイ)2〕を決定し、決
定した各圧延条件に夫々を調整する。
First, the steel type 1 of the next rolled product is determined by the pass schedule.
Based on the past rolling results of the product based on the dimensions, etc., the material temperature at the entrance side of the inclined rolling mill, the standard rolling speed (roll rotation speed), and the drawing ratio that can generate the required processing heat at the standard rolling speed [- (inlet side) Material diameter/output side material i)2) is determined, and each is adjusted to the determined rolling conditions.

上記調整後、圧延を開始し、温度計15に−(その圧延
の際の傾斜圧延機4出側、つまり圧延ライン出例での棒
鋼11の温度が1fil+定され、圧延速度制御装置1
6はそのヨ11定(+11と基準温度950℃との大小
関係を求め、その測定値が950℃以上であれば基準圧
延速度にて圧延を継続し、950℃以下であればロール
回転数を所要量上げるべく設定変更する。
After the above adjustment, rolling is started, and the temperature of the steel bar 11 at the outlet side of the inclined rolling mill 4 during rolling, that is, the temperature of the steel bar 11 at the rolling line example, is set at 1fil+, and the temperature of the steel bar 11 is set at -(1fil+) by the thermometer 15.
6 determines the magnitude relationship between the constant (+11) and the standard temperature of 950°C, and if the measured value is 950°C or higher, rolling is continued at the standard rolling speed, and if it is 950°C or lower, the roll rotation speed is Change the settings to increase the required amount.

これにより圧延ライン出側での棒鋼11の温度は950
℃以上に維持される。そして冷却装置20にて棒鋼II
は強制冷却され、溶体化処理に必要な900℃以上の温
度から500℃以下の温度にまで急冷される。
As a result, the temperature of the steel bar 11 at the exit side of the rolling line is 950.
maintained above ℃. Then, in the cooling device 20, the steel bar II
is forcedly cooled and rapidly cooled from a temperature of 900° C. or higher required for solution treatment to a temperature of 500° C. or lower.

従って本発明による場合は、強制冷却後の棒鋼の結晶粒
界にクロム炭化物の析出がなく、使用により耐食性が劣
化せず、また微細な結晶組織を有し、機械的性質のバラ
ツキが少ないオーステナイト系ステンレス棒鋼を安価に
M造できる。
Therefore, in the case of the present invention, there is no precipitation of chromium carbide at the grain boundaries of the steel bar after forced cooling, the corrosion resistance does not deteriorate with use, and the austenitic steel bar has a fine crystal structure and less variation in mechanical properties. Stainless steel bars can be made into M-manufactured at low cost.

次に、加工度の調整対象である仕上圧延時の棒鋼温度及
び強制冷却場る温度範囲の限定理由につき説明する。
Next, the reason for limiting the temperature range of the steel bar during finish rolling and the temperature range of the forced cooling field, which are targets for adjusting the working degree, will be explained.

(11仕上圧延時の棒鋼温度=950℃以上第7図はオ
ーステナイト系ステンレス棒であるSO5304につい
て仕上材料温度を変えて本発明と同様の高加工度圧延を
行って251φの棒鋼を製造した場合のロックウェル硬
度(I(RB)を、横軸に仕上材料温度(℃)をとり、
縦軸に硬度(I(IIB)をとって示している。なお仕
上材′NIJL度の変更は、冷却装置20による冷却速
度を一定とずべく傾斜圧延機入側の材料径を30s−φ
〜50難厘φと変えて加熱炉にて再加熱し、圧延後、傾
斜圧延機出側の材料1蚤を251φ一定にしご減面率を
変更する方式を採用した。また傾斜圧延条件は、交叉角
γ:5°、傾斜角β;15”、ロール1,2.3の径:
150龍φ、ロール回転数: 100 rpm 、ロー
ル材質: SKD 61、阿加熱温度: 1000℃、
 1050℃、 1100℃、減面率:30.6%、 
60.9%、 69.1%、 75.0%の4レベルと
し、冷却装置20の水冷開始温度は900℃とした。
(11 Steel bar temperature during finish rolling = 950°C or higher Figure 7 shows the results when a 251φ steel bar is manufactured by changing the finishing material temperature and performing high-deformation rolling similar to the present invention for SO5304, which is an austenitic stainless steel bar. The Rockwell hardness (I (RB)) is taken as the horizontal axis, and the finishing material temperature (°C) is taken.
The hardness (I (IIB)) is plotted on the vertical axis.The degree of finishing material'NIJL is changed by changing the diameter of the material at the entrance of the inclined rolling mill to 30s-φ in order to keep the cooling rate by the cooling device 20 constant.
A method was adopted in which the material was reheated in a heating furnace by changing the diameter to ~50 mm, and after rolling, the number of fleas of the material on the exit side of the inclined rolling mill was kept constant at 251 mm, and the area reduction rate was changed. The inclined rolling conditions were as follows: cross angle γ: 5°, inclination angle β: 15”, diameter of rolls 1 and 2.3:
150mm diameter, roll rotation speed: 100 rpm, roll material: SKD 61, heating temperature: 1000℃,
1050℃, 1100℃, area reduction rate: 30.6%,
There were four levels: 60.9%, 69.1%, and 75.0%, and the water cooling start temperature of the cooling device 20 was 900°C.

第7図より理解される如く仕上材料温度を950℃以上
とした場合は硬度がJISの規定値を満足する。
As understood from FIG. 7, when the finishing material temperature is 950° C. or higher, the hardness satisfies the specified value of JIS.

第8図は同様の5US304について仕上材料温度を変
えて本発明と同様の高加工度圧延を行って251φの棒
鋼を製造した場合の引張試験結果(JIS4号)を示タ
グラフであり、横軸に仕上材料温度(’C)をとり、縦
軸に耐力(kg/mm2) 、引張強さくkg/、、2
)、伸び(%)及び絞り(%)をとって示している。図
中・印は耐力、ム印は引張強さ、■印は伸び、○印は絞
りを夫々示し、回春側の矢符で示ずレヘルはJISの規
定値を指す。なお、圧延はね・中間孔型圧延機のタイプ
とし°il”311iのりバース式圧延機を使用し、加
熱炉にて1250℃に加熱された125麿mφの連続鋳
造鋳片をこれにより50重−φに孔型圧延し、次いで傾
斜圧延機にて25■−φに絞り圧延した。そのときの傾
斜圧延条件は、交叉角γ:5°、傾斜角β:15°、ロ
ール1,2.3の径:150 m−φ、ロール回転数:
 80〜130rpm 、o−ル材質:5KD61、仕
上圧延温度:920〜1060’cであり、また冷却装
置20の水冷開始温度は900〜1000℃であった。
Figure 8 is a graph showing the tensile test results (JIS No. 4) for the same 5US304 when a 251φ steel bar was produced by changing the finishing material temperature and performing high-deformation rolling as in the present invention. The finishing material temperature ('C) is taken, and the vertical axis shows the yield strength (kg/mm2) and the tensile strength kg/, 2
), elongation (%) and reduction of area (%) are shown. In the figure, the mark indicates the yield strength, the mark indicates the tensile strength, the symbol ■ indicates the elongation, and the mark ○ indicates the reduction, respectively. A 311i glue berth type rolling mill with a strip/middle hole type was used, and a continuous cast slab of 125 mφ heated to 1250°C in a heating furnace was rolled into 50 layers. -φ, and then reduced to 25mm-φ using an inclined rolling mill.The inclined rolling conditions were: crossing angle γ: 5°, inclination angle β: 15°, rolls 1, 2. 3 diameter: 150 m-φ, roll rotation speed:
80 to 130 rpm, o-roll material: 5KD61, finish rolling temperature: 920 to 1060'C, and water cooling start temperature of the cooling device 20 was 900 to 1000C.

第7図、第8図より理解される如く仕上圧延温度を95
0℃以上とした場合には種々の機械的性質を十分に満足
する。したがって仕上圧延後の棒鋼温度は950℃以上
とした。
As understood from Figures 7 and 8, the finish rolling temperature was set at 95
When the temperature is 0°C or higher, various mechanical properties are sufficiently satisfied. Therefore, the steel bar temperature after finish rolling was set at 950°C or higher.

(2)  強制冷却する温度範囲:900℃以上〜50
0℃以下 900℃〜600℃の温度範囲では製造された棒鋼11
の結晶粒界にクロム炭化物が析出して好ましくないので
、強制冷却する温度範囲は900℃以上から500℃以
下の温度に急冷する範囲とした。
(2) Temperature range for forced cooling: 900℃ or higher - 50℃
Steel bars manufactured in the temperature range of 900°C to 600°C below 0°C11
Since chromium carbide precipitates at grain boundaries, which is undesirable, the temperature range for forced cooling is set to a range of quenching from 900° C. or higher to 500° C. or lower.

なお、上記実施例では粗・中間孔型圧延機と交父型の傾
斜圧延機とを備えた圧延ラインで棒鋼を製造しているが
、本発明はこれに限らず圧延ラインに少なくとも交叉型
の傾斜圧延機又は通常の傾斜圧延機を備えζいれば実施
ごきるごとは勿論である。
In the above embodiment, the steel bar is manufactured on a rolling line equipped with a rough/medium hole type rolling mill and an intersecting type inclined rolling mill, but the present invention is not limited to this. Of course, it can be carried out if an inclined rolling mill or a normal inclined rolling mill is provided.

〔効果〕〔effect〕

以」−詳述した如く、本発明による場合は傾斜圧延機を
用いるので高加工度圧延が可能であり、また減面率及び
圧延速度を適当に調整するので仕上圧延された棒鋼の温
度を傾斜圧延により所要温度にすることが可能であるの
で、これにより回加f45せずとも直接冷却場れば棒鋼
を溶体化処理でき、また回加グJ、H炉の設置不要及び
その熱エネルギ不要に伴うコスト低減を図り14、オー
ステナイト系ステンレス棒鋼を安価に製造できる。また
製造された棒鋼にクロム炭化物の住成がなく、このため
これを使用しても耐食性の劣化がない等、本発明は優れ
た効果を奥−4る。
- As described in detail, in the case of the present invention, since an inclined rolling mill is used, high-deformation rolling is possible, and since the area reduction rate and rolling speed are appropriately adjusted, the temperature of the finish-rolled steel bar can be adjusted at an angle. Since it is possible to reach the required temperature by rolling, the steel bar can be solution-treated in a direct cooling field without the need for F45 reheating, and there is no need to install reheating J and H furnaces and their thermal energy. As a result, the austenitic stainless steel bar can be produced at low cost. Furthermore, the manufactured steel bar does not have chromium carbide deposits, so even when it is used, there is no deterioration in corrosion resistance, and the present invention has excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施状態を示す模式図、第2図は第1
図のrt−n線による正面図、第3図は(頃斜角βを示
す側面図、第4図、第5図は本発明の原理説明図、第6
図は本発明の製造内容を示すフローチャー1−1第7図
、第8図ば本発明の温度限定理由説明図である。 1.2.3.・・・ロール  4・・・交叉型傾斜圧延
機10・・・鋼材  11・・・棒鋼  16・・・圧
延速度制御装置20・・・冷却装置 特 許 出願人 住友金屈工業株式会社外I名 代理人 弁理士 河  野  登  夫第 2 図 第 3 図 牛を 許帛屑匂、X、 イ宇lζイtソ鐸しエ、1(ホ
枦べA発ネ虹タトへ裡A介9十C軒 訃  替 イC#4トナノL延オ唾九°入イVゲJ)t−す蕩ン5
 (’lJ第5図 第6 図 第 7 図 v78図
FIG. 1 is a schematic diagram showing the implementation state of the present invention, and FIG.
3 is a side view showing the oblique angle β, FIGS. 4 and 5 are illustrations of the principle of the present invention, and FIG.
The drawings are flowchart 1-1 showing the manufacturing details of the present invention. FIGS. 7 and 8 are diagrams for explaining the reason for temperature limitation of the present invention. 1.2.3. ...Roll 4...Cross-type inclined rolling mill 10...Steel material 11...Steel bar 16...Rolling speed control device 20...Cooling device patent Applicant I name outside Sumitomo Kinku Kogyo Co., Ltd. Agent Patent Attorney Noboru Kono No. 2 Figure 3 Figure 3 Figure 1. Eaves 訃 Substitute C # 4 Tonano L Nobu O spit 9° in I V game J) t-Suboun 5
('lJ Figure 5 Figure 6 Figure 7 Figure v78

Claims (1)

【特許請求の範囲】 1、オーステナイト系ステンレス鋼材を傾斜圧延機にて
棒鋼に仕上圧延する熱間圧延工程を含む棒鋼の製造方法
において、 仕上圧延後の棒鋼温度が950℃以上となるように前記
傾斜圧延機での鋼材の加工度を設定し、また傾斜圧延機
の圧延速度を調整して圧延し、 仕上圧延された高温の棒鋼を溶体化処理す べく900℃以上から500℃以下の温度まで強制冷却
することを特徴とするオーステナイト系ステンレス棒鋼
の製造方法。
[Scope of Claims] 1. A method for manufacturing a steel bar including a hot rolling step of finish rolling an austenitic stainless steel material into a steel bar using an inclined rolling mill, comprising: The processing degree of the steel material in the inclined rolling mill is set, and the rolling speed of the inclined rolling mill is adjusted to perform rolling, and the finished rolled high-temperature steel bar is heated from 900°C to 500°C for solution treatment. A method for manufacturing an austenitic stainless steel bar characterized by forced cooling.
JP18337985A 1985-08-20 1985-08-20 Manufacture of austenitic stainless steel bar Pending JPS6244523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18337985A JPS6244523A (en) 1985-08-20 1985-08-20 Manufacture of austenitic stainless steel bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18337985A JPS6244523A (en) 1985-08-20 1985-08-20 Manufacture of austenitic stainless steel bar

Publications (1)

Publication Number Publication Date
JPS6244523A true JPS6244523A (en) 1987-02-26

Family

ID=16134737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18337985A Pending JPS6244523A (en) 1985-08-20 1985-08-20 Manufacture of austenitic stainless steel bar

Country Status (1)

Country Link
JP (1) JPS6244523A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108326041A (en) * 2018-03-01 2018-07-27 西北工业大学 A kind of equidistant milling method of helical tapered roll of large-scale titanium alloy ultra fine grained steel bar
CN108580548A (en) * 2018-03-01 2018-09-28 西北工业大学 A kind of equidistant milling method of helical tapered roll of 45 steel ultra fine grained steel bar of large scale
CN108637012A (en) * 2018-03-01 2018-10-12 西北工业大学 The roll spacings milling methods such as the helical tapered roll of large scale high temperature alloy ultra fine grained steel bar

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107729A (en) * 1979-02-13 1980-08-19 Sumitomo Metal Ind Ltd Solution-treating method for austenitic stainless steel
JPS55164036A (en) * 1979-06-09 1980-12-20 Nippon Steel Corp Direct heat treatment of austenitic stainless steel rolled wire material
JPS6089518A (en) * 1983-10-22 1985-05-20 Sumitomo Metal Ind Ltd Manufacture of austenitic material
JPS60208459A (en) * 1984-03-30 1985-10-21 Aichi Steel Works Ltd High strength stainless steel and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107729A (en) * 1979-02-13 1980-08-19 Sumitomo Metal Ind Ltd Solution-treating method for austenitic stainless steel
JPS55164036A (en) * 1979-06-09 1980-12-20 Nippon Steel Corp Direct heat treatment of austenitic stainless steel rolled wire material
JPS6089518A (en) * 1983-10-22 1985-05-20 Sumitomo Metal Ind Ltd Manufacture of austenitic material
JPS60208459A (en) * 1984-03-30 1985-10-21 Aichi Steel Works Ltd High strength stainless steel and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108326041A (en) * 2018-03-01 2018-07-27 西北工业大学 A kind of equidistant milling method of helical tapered roll of large-scale titanium alloy ultra fine grained steel bar
CN108580548A (en) * 2018-03-01 2018-09-28 西北工业大学 A kind of equidistant milling method of helical tapered roll of 45 steel ultra fine grained steel bar of large scale
CN108637012A (en) * 2018-03-01 2018-10-12 西北工业大学 The roll spacings milling methods such as the helical tapered roll of large scale high temperature alloy ultra fine grained steel bar

Similar Documents

Publication Publication Date Title
RU2320431C2 (en) Method for producing super-thin hot rolled strips of hot slabs and production line for performing the same
EP0787541B1 (en) Method of manufacturing seamless steel pipes and manufacturing equipment therefor
MXPA97002792A (en) Procedure for manufacturing steel tubes without cost
JP3691996B2 (en) Steckel hot rolling equipment
EP1825008B1 (en) Treatment process for bars
US4786338A (en) Method for cooling rolled steels
BRPI0407621B1 (en) Method for processing a steel product, method for producing a steel product, steel product produced and continuous casting steel plate, strip or bar
US3979231A (en) Method for producing large diameter steel pipes
JPS6244523A (en) Manufacture of austenitic stainless steel bar
JP3460583B2 (en) Thick steel plate manufacturing apparatus and thick steel plate manufacturing method
CN107739794A (en) Online quenching device, production line and production process for quenching and tempering heat treatment of steel pipe
JP3081729B2 (en) Temperature control method in thermomechanical treatment of seamless steel pipe
JPH06346146A (en) Production of wire rod for cold forming coil spring and device therefor
KR930010322B1 (en) Large diameter high strength rolled steel bar and a process for the production of the same
JPH0115324B2 (en)
SU816612A1 (en) Method of apparatus for straightening hot rolled stock
JP2005296978A (en) Method and equipment for manufacturing thick steel plate
JP2002167619A (en) Ferritic stainless steel wire rod and its manufacturing method
CN1203933C (en) Warm machining method for making stainless steel pipe
JPS6013411B2 (en) Steel manufacturing equipment row and how to operate the equipment row
RU2650651C1 (en) Method of austenitic anticorrosion steel section hot rolled plates production
JPS5941508B2 (en) Manufacturing method of titanium hot rolled sheet
JPS6024322A (en) Heat treatment of large-diameter steel bar over entire section thereof and heat treating device with continuous movement
JPS58164731A (en) Direct heat treatment of wire rod
JPH04107213A (en) Inline softening treatment for air-hardening seamless steel tube