JP3691996B2 - Steckel hot rolling equipment - Google Patents

Steckel hot rolling equipment Download PDF

Info

Publication number
JP3691996B2
JP3691996B2 JP32556299A JP32556299A JP3691996B2 JP 3691996 B2 JP3691996 B2 JP 3691996B2 JP 32556299 A JP32556299 A JP 32556299A JP 32556299 A JP32556299 A JP 32556299A JP 3691996 B2 JP3691996 B2 JP 3691996B2
Authority
JP
Japan
Prior art keywords
rolling
rolled material
heating
mill
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32556299A
Other languages
Japanese (ja)
Other versions
JP2001137907A (en
Inventor
裕次郎 小林
利幸 梶原
泰嗣 芳村
健治 堀井
平野  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32556299A priority Critical patent/JP3691996B2/en
Priority to KR1020000067578A priority patent/KR20010051685A/en
Priority to CN00132945A priority patent/CN1295893A/en
Priority to DE10056847A priority patent/DE10056847A1/en
Publication of JP2001137907A publication Critical patent/JP2001137907A/en
Application granted granted Critical
Publication of JP3691996B2 publication Critical patent/JP3691996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/30Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
    • B21B1/32Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work
    • B21B1/34Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/02Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally
    • B21B2013/021Twin mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2201/00Special rolling modes
    • B21B2201/02Austenitic rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2201/00Special rolling modes
    • B21B2201/04Ferritic rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2201/00Special rolling modes
    • B21B2201/16Two-phase or mixed-phase rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0245Lubricating devices
    • B21B45/0248Lubricating devices using liquid lubricants, e.g. for sections, for tubes
    • B21B45/0251Lubricating devices using liquid lubricants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/08Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing hydraulically
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/68Furnace coilers; Hot coilers

Description

【0001】
【発明の属する技術分野】
本発明はファーネスコイラと加熱装置を備え、高級炭素鋼に対し可逆式の熱間圧延を行うステッケル熱間圧延設備に関する。
【0002】
【従来の技術】
近年において高強度、高靱性等の製品の製造を目的とした、高級炭素鋼の材料組成及び製造方法が数多く提案されている。例えば、特開平10−147843号公報では、フェライト領域での低温圧延による、深絞り性に優れた材料組成及び製造方法が記載されている。また特開平7−18381号公報では、オーステナイト領域であるA3変態点以上の温度で圧延を完了させることによる深絞り性に優れた材料組成及び製造方法が記載されている。しかし、このような材料組成及び目標品質を得るには、温度制御を含めた種々のプロセスが必要となる。
【0003】
上記のような種々の製造プロセスを考慮した設備技術として、例えば特開平10−277601号公報の記載にあるような加熱又は冷却装置を備えるタンデム型のホットストリップミルがある。これは、ホットストリップミルの熱間仕上げ圧延スタンド列の中間に加熱又は冷却を備える構成となっている。
【0004】
一方、炉内に巻き取り機を設置した所謂ファーネスコイラを、圧延機の入出側に配設したステッケルミルと呼ばれている可逆式圧延設備がある。このステッケル熱間圧延設備は、従来主にステンレス鋼等の圧延に多用されている。
【0005】
また、このようなステッケルミル圧延設備において、1台のハウジングに2セットの圧延ロールを組み込んだ所謂ツインミルを用いたものが例えば特開平11−000702号公報、国際公開WO97/36700号公報などに開示されている。
【0006】
また特公平5−45327号公報には、圧延機とファーネスコイラ間に第一の加熱装置を設けて前記圧延材先後端部の温度低下を防ぎ、更に圧延機と圧延が完了した圧延材を巻き取るダウンコイラ間のホットランテーブル上に第二の加熱装置を設けて、圧延材全体に亘って温度を均一にする設備が開示され、米国特許5755128号明細書には、加熱装置及び冷却装置を配置し、均一な温度で圧延する構成が開示されている。これらの発明の主たる目的は、圧延材を均一にすることで、圧延材の品質を均一にし、かつ製品歩留まりの向上を図ることにある。
【0007】
【発明が解決しようとする課題】
上記のように炭素鋼の圧延で高品質の材料を得るには温度制御を含めた種々のプロセスが必要であり、従来、そのようなプロセスを考慮した設備技術として特開平10−277601号公報に記載のタンデム型のホットストリップミルがある。しかし、タンデム型のストリップミルでは、一般に仕上圧延機を7スタンド程度設置するのが普通であり、巨額な設備投資が必要となる。従って投資効率の観点からは、生産量を極力多く設定せざる得ず、特に薄板での圧延速度は1000mpm以上もの高速で圧延されるのが通常である。このように高速で圧延される設備の仕上げスタンド列の中間に加熱・冷却装置を設けた場合、必要な加熱又は冷却を達成するための加熱・冷却設備長が、非常に長くなるという欠点がある。
【0008】
このことを避けるため、仕上げスタンド列の入側に加熱・冷却装置を設け、温度制御を行わせることも考えられる。この場合、圧延材の走行速度は遅くなるが、仕上圧延前の板厚が厚い位置で加熱・冷却を行うことになる。従って、圧延材の加熱・冷却効率は悪く、内部まで均一な温度に制御しようとすると、結局加熱・冷却装置の長大化が避けられない結果となる。
【0009】
以上のように、従来のタンデム型ホットストリップミルを用いた圧延設備では、炭素鋼の圧延で高品質の材料を得ることは可能となるが、大型且つ設備費も非常に高くなる。
【0010】
また、ステッケル熱間圧延設備は、従来主にステンレス綱等の圧延に多用されており、本設備で炭素鋼を圧延した場合は、圧延材が炉内で巻き取られ保持される工程を繰り返すことにより、圧延材表面に酸化スケールが発生し、高品質な製品の製造が困難である。これに対し、圧延の直前に高圧流体を圧延材表面に噴射し、表面スケールを除去するデスケーリングが通常行われていた。しかしこれにより、特に2〜3mm以下の薄板を圧延する場合、各パス毎にデスケーリングを行うと、圧延材の必要仕上げ温度が確保できないという問題があった。特開平11−000702号公報、国際公開WO97/36700号公報などに記載されたツインミルを用いたステッケルミル圧延設備はその点に対する解決策であり、この技術によりステッケル熱間圧延設備でのデスケーリングによる温度低下の問題は解決されたと言える。
【0011】
しかし、ステッケルミル圧延設備を用いた高級品質炭素鋼の圧延では、更に金属組織的な問題がある。その1つは、特に圧延材先後端部の温度低下が大きいことである。これにより、圧延材長手方向の金属組織が均一にならず、歩留まりを低下させる要因となっていた。このことに対し特公平5−45327号公報、米国特許5755128号明細書に記載の設備によれば、圧延材温度を均一にすることで、圧延材の品質を均一にし、かつ製品の歩留まりの向上が図れる。しかし、更に高強度材を得るなどの圧延材質の画期的な向上を図るものではない。
【0012】
また、例えば先の特開平10−147843号公報で開示されている、Ti、Nb等の微量添加物を含む高強度、高靱性炭素鋼を、上記ステッケル熱間圧延設備で圧延する場合にも問題がある。即ちステッケル熱間圧延設備では、繰り返し圧延される各パス毎に、圧延材は高温雰囲気中の炉内で巻き取られて保持される工程を繰り返し受けるため、微量添加物を含む析出炭化物の集合肥大化及び金属結晶組織の結晶粒の肥大化、という問題が避けられないからである
ここで、一般に析出物は金属組織内に、微細且つ均一に分散されるのが望ましい。これにより、金属組織結晶粒の成長肥大化を防止する効果が、非常に高くなるからである。しかしながら、文献「低炭素Nb鋼におけるオーステナイト域熱間加工時のNbC析出モデルの開発」鉄と鋼 第75年(1989)第6号に掲載されているように、圧延加工を施した場合には一般的に析出速度が速くなることが知られている。これに対しステッケル熱間圧延設備では、圧延加工された圧延材が更に炉中で巻き取り・保持される工程を繰り返し受けるため、析出物は主に結晶粒界に集中して肥大化することが避けられない結果となる。
【0013】
また金属組織の結晶粒は微細なほど好ましく、強度が高くなることが知られている。例えば、日本鉄鋼協会出版「制御圧延・制御冷却」の第2.2章に、母材の降伏応力は結晶粒径の平方根に逆比例する、というHall−Petchの関係式が記載されている。この点に関しても、高温で長時間巻き取り保持される工程を繰り返すステッケルミルは、望ましくない構成といえる。これは、高温に晒される時間が長いほど、一般に金属組織の結晶粒は成長し、肥大化するためである。
【0014】
以上のように、従来のステッケルミルでの圧延方法では、特に高品質炭素鋼における金属組織的な品質に問題がある。しかしステッケル熱間圧延設備は、従来のタンデム型のホットストリップミルと比較して、設備費が格段に安く、設備長も非常に短くて済む等の有利な点も多く、金属組織的な品質の問題が解決できれば、小中生産量多品種向け圧延設備に最適であると言える。
【0015】
本発明の目的は、炭素鋼の熱間圧延を可能とし、かつ金属組織を改質した高品質材を得ることのできるステッケル熱間圧延設備を提供することである。
【0016】
【課題を解決するための手段】
(1) 上記の目的を達成するために、本発明は、圧延機の入出側のそれぞれにファーネスコイラを設置し、炭素鋼からなる圧延材を圧延するステッケル熱間圧延設備において、前記圧延機と前記入出側ファーネスコイラ間の少なくとも一方の側に設置され、圧延材を加熱する加熱手段と、前記圧延機と前記ファーネスコイラ間に設置されるデスケーリング手段と、前記圧延機と前記ファーネスコイラ間の少なくとも一方の側に前記デスケーリング手段とは別に設置され、圧延材を冷却する冷却手段とを備え、前記加熱手段と冷却手段は、前記圧延機と前記ファーネスコイラ間の同じ側で上下に向き合って配置されていることを特徴とするものである。
以上のように構成したステッケル熱間圧延設備により炭素鋼からなる圧延材を圧延する熱間圧延方法の一例として、前記圧延機による最終パスよりも前に、前記加熱手段により圧延材中の析出炭化物を再固溶させる温度以上に加熱しながら前記ファーネスコイラにより圧延材を巻き取る固溶加熱パスを少なくとも1回行い、前記最終パスにおいて、前記冷却手段により圧延材の温度を未再結晶オーステナイト温度領域に冷却制御しながら強圧下圧延を行う
【0017】
これにより、炭素鋼圧延材中の析出物を金属母材中に再固溶させるため、析出物の集合肥大化を防ぐことになり、ひいてはステッケル熱間圧延設備を用いて炭素鋼の熱間圧延を可能とし、かつ金属組織を改質した高品質材を得ることができる。
【0018】
(2)また上記(1)の熱間圧延方法において、好ましくは、固溶加熱パスを非圧延状態あるいは極軽圧下状態で行い、かつ加熱手段の加熱容量の範囲で圧延材中の析出物を再固溶させ得る温度以上とするに足る低速度で行うものとする。
【0019】
これにより、圧延ロールの接触による圧延材の放熱を低減できるため再固溶のための加熱効率が向上し、また加熱容量の小さい小型の加熱装置によっても析出物を十分再固溶できるような固溶加熱パスが可能となる。
【0020】
(3)また上記(1)又は(2)の熱間圧延方法において、好ましくは、固溶加熱パスでファーネスコイラに巻き取られた圧延材を、所定時間ファーネスコイラ内に保持するものとする。
【0021】
これにより、圧延材中の析出物の再固溶をより確実に行うことができる。
【0022】
(4)また上記(1)から(3)までのいずれか1つの熱間圧延方法において、好ましくは、固溶加熱パスを最終パスの直前あるいはその近傍で行うものとする。
【0023】
これにより、圧延材が十分薄くなった状態で固溶加熱パスを行うため再固溶の加熱効率が向上し、温度分布も一様となる。
【0024】
(5)また上記(1)から(4)までのいずれか1つの熱間圧延方法において、好ましくは、固溶加熱パスを複数回連続して行い、そのうち最後の固溶加熱パスを圧延材中の析出物を再固溶させ得る温度以上となる低速度で行うものとする。
【0025】
これにより、加熱容量の小さい小型の加熱装置によっても効率的かつ確実に析出物を十分再固溶できるような固溶加熱パスが可能となる。
【0026】
(6)また上記(1)から(5)までのいずれか1つの熱間圧延方法において、好ましくは、固溶加熱パスを最終パスよりも前に行い、最終パスの圧延開始前における圧延材の温度を未再結晶オーステナイト温度領域に制御し、その未再結晶オーステナイト温度領域での最終パスにおける累積圧下率を50%以上にするように圧延するものとする。
【0027】
これにより、圧延材の母材金属におけるフェライト結晶粒を微細化することができる。
【0028】
(7)また上記(1)から(6)までのいずれか1つの熱間圧延方法において、好ましくは、固溶加熱パスを最終パスよりも前に行い、最終パスを含めた少なくとも1パスの圧延において、圧延材に熱間圧延油を塗布するものとする。
【0029】
これにより、特に高圧下率が望ましい固溶加熱パス以降の圧延において、圧延油の塗布によりロールと圧延材間の摩擦力を低下させ、圧延荷重・トルク等が小さくなることで高圧下率の圧延が可能となり、金属組織の結晶粒の微細化が図られるため圧延材の品質が向上する。
【0030】
(8)また、上記ステッケル熱間圧延設備により炭素鋼からなる圧延材を圧延する熱間圧延方法の他の一例として、非圧延パスを少なくとも2回以上連続して行い、これら非圧延パスで加熱手段により圧延材を加熱して行うパスと冷却手段により圧延材を冷却して行うパスをそれぞれ少なくとも1回以上行うものとする。
【0031】
これにより、フェライトの再結晶およびオーステナイトの再結晶が繰り返されることになるため金属組織の結晶粒の微細化が可能となり、ひいてはステッケル熱間圧延設備により高品質炭素鋼を適切に熱間圧延できるものとなる。
【0035】
(9)また、以上のように構成したステッケル熱間圧延設備によれば、圧延材表面スケールの除去を行う手段と別の専用の冷却手段によって、固溶加熱パス後の高温にある圧延材を未再結晶オーステナイト領域(A3変態点から概略950℃位の範囲)にまで確実かつ効率よく冷却することができ、固溶処理を施した後における理想的なオーステナイト圧延を可能にする。
(10)上記(1)のステッケル熱間圧延設備において、好ましくは、前記圧延機による最終パスよりも前に、前記加熱手段により圧延材中の析出炭化物を再固溶させる温度である1000°C〜1200°Cに加熱し、前記最終パスにおいて、前記冷却手段により圧延材の温度を未再結晶オーステナイト温度領域に冷却するよう前記加熱手段及び冷却手段を制御する制御手段を更に備える。
【0036】
(11)また上記(1)又は(10)のステッケル熱間圧延設備において、好ましくは、圧延機に熱間圧延油塗布装置を設けたものとする。
【0037】
これにより、特に高圧下率が望ましい固溶加熱パス以降の圧延において、圧延油の塗布によりロールと圧延材間の摩擦力を低下させ、圧延荷重・トルク等が小さくなることで高圧下率の圧延ができるため、金属組織の結晶粒の微細化による品質の向上が可能となる。
【0038】
(12)また上記(1)から(3)までのいずれか1つのステッケル熱間圧延設備において、好ましくは、圧延機がツインミルであるものとする。
【0039】
これにより、圧延材の温度低下を防止すると共に、金属組織の結晶粒を微細化するための累積圧下の効率向上、及びファーネスコイラと圧延機間の通板安定性の向上が可能となる。
【0042】
【発明の実施の形態】
図1に、本発明の実施形態を示す。図1において、本実施形態のステッケル熱間圧延設備は、圧延機としては1つのハウジング2hに2セットのロールを組み込んだ所謂ツインミル2を有し、ツインミル2は2セットのロールが作業ロール2a、2a、補強ロール2b、2bを備えた4段圧延機となっている。ツインミル2の入側及び出側には加熱炉3内に巻き取り機4を設置した、所謂ファーネスコイラ16が設置され、かつ圧延機2とファーネスコイラ16間には、各々圧延材1の加熱装置5及び冷却装置6が設置され、加熱・冷却が自在にできるようにしてある。また、ツインミル2には炭素鋼の圧延を可能とするため、高圧流体を圧延材表面に噴射するデスケーリング用ノズル7を設け、更に熱間圧延油を噴射するノズル8が設置してある。ここで図示されていないスラブ加熱炉等から搬送された圧延材1は、ツインミル2により繰り返し圧延され、その板厚が巻き取り可能な25mm程度になると、ピンチロール9、デフレクタロール10及び圧延材ガイド装置11などでガイドされながら、巻き取り機4で巻き取られる。以降は最終板厚になるまで、左右のファーネスコイラ16で巻き取られながら、繰り返し圧延される。圧延材1の温度制御は、温度検出器12で圧延材1の温度を測定し、温度検出器12の信号を制御装置13に入力し、目的の温度になるように制御装置13で加熱装置5又は冷却装置6を制御することにより行われる。
【0043】
本図で圧延機をツインミル2とした理由は、できるだけ圧延材1の温度低下を防ぎ、且つ圧延の操業性を飛躍的に向上させるためであり、これは特開平11−207403号公報に説明してある通りである。
【0044】
次に上記構成にある本実施形態のステッケル熱間圧延設備による運転例を以下に説明する。
【0045】
まず圧延開始前の時点において、温度制御装置13の指令制御により加熱装置5及び冷却装置6は共に非作動の状態にあり、そこに圧延設備前段に位置する不図示のスラブ加熱路等から圧延材1が搬送されてくる。
【0046】
通常の場合まだ送られてきたばかりの圧延材1はかなりの厚みにあり、ファーネスコイラ16による巻き取りが困難であるため、テーブルロール上の圧延材ガイド装置11は下がったまま水平搬送路面上での往復パスにより圧延が繰り返されることとなる。ここでツインミル2による圧延時においては、入出側に備えるデスケーリング装置7から圧延材1の表面に高圧流体が吹き付けられることで圧延材表面スケールの除去が行われ、また同時に圧延油装置8から圧延材1と作業ロール2aとの間に熱間圧延油が塗布される。
【0047】
そして圧延が進んで板厚が25mm程度になった時点でファーネスコイラ16による巻き取りが可能と判断され、圧延ガイド装置11が起き上がって搬送路を形成し、ピンチロール9などのガイドにより巻き取り機4へ送られて巻き取りが行われる。
【0048】
またこの時点で温度制御装置13の指令制御により、ファーネスコイラ16とツインミル2との間に位置する加熱装置5が発熱作動を始め、ファーネスコイラ16が巻き取りきれずに露出させた圧延材1の先後端部に対して温度が低下しないよう、つまり圧延材1全体の温度分布が一様となるように加熱する。この時点での加熱温度は通常、A3変態点(純鉄で約910℃)よりも高い温度となる。2つのファーネスコイラ16がそれぞれ巻き取り、保持、送り戻しを交互に繰り返すことで圧延材1がその間を往復移動し、その間に位置するツインミル2により圧延が進む工程となる。
【0049】
そして最終圧延パスの所定の数パス前において、温度制御装置13の指令制御により加熱装置5を作動させて圧延材1を圧延材1中の析出物の再固溶温度以上にまで加熱し、また非圧延状態あるいは極軽圧下で且つ低速通板させることにより、圧延材1に対して再固溶処理を行う固溶加熱パスを1回あるいは数回行う。ここでこの析出物の再固溶温度については一般的にA3変態点から幾らか高い温度とされており、具体的に一例として圧延材1が炭素含有率0.1%以下の炭素鋼である場合、およそ1000℃から約1200℃(装置能力の上限)となる。また1回の固溶加熱パスの度に加熱された圧延材1はファーネスコイラ16で巻き取られた後一定時間保持される。
【0050】
そして固溶加熱パスが終了すると、温度制御装置13の指令制御により加熱装置5による加熱が停止され、最終パスの圧延開始前に必要に応じ冷却装置6を作動させて圧延材1を未再結晶オーステナイト領域の温度まで冷却した上で、ツインミル2により強圧下の最終パスを行う。最終圧延パス終了後には圧延ガイド装置11が下がることで圧延材1がランナウェイテーブルへ搬送され、ラミナフロー冷却装置14による冷却で固溶物を再析出した後にダウンコイラ15に巻き取られて製品となる。
【0051】
以上の運転例の各工程におけるそれぞれの作用について以下に説明する。
【0052】
まずこのようなステッケルミルを用いて圧延する場合の、金属組織的な問題に関しては先に延べた通りであり、特に問題となる点は析出物の肥大化を防止する方法についてである。特に加熱装置5を備えていない設備では、一旦発生した集中巨大析出物を通常の圧延過程で微細化し且つ均一に分散させることは、非常に困難である。これに対し加熱装置5を備えた設備では、所望のパスで圧延材1を析出物の再固溶温度以上に加熱しながらファーネスコイラ16で巻き取って必要時間保持する(以下、単に固溶加熱パスという)ことにより、析出物を再固溶させることができる。このような加熱装置5の利用方法は、先の公知例、特公平5−45327号公報及び米国特許5755128号明細書には一切記載されていなく、利用目的が本質的に異なっているといえる。即ち、上記の公知例における加熱装置の利用目的は、圧延材1の先後端温度制御又は圧延材1の全長に渡った温度の均一化制御であり、本発明のように圧延材1の金属組織を、積極的に改質するものでないからである。上記析出物の再固溶を確実に実施するためには、再固溶温度以上に加熱された圧延材1を炉3内で巻き取り、必要時間保持する。
【0053】
しかし、上記のような加熱装置5の利用方法には問題もある。それは仕上げ製品板厚にもよるが、一般に最終パス前付近での圧延では、圧延材温度が900℃程度以下まで低下するのが普通である。薄板などを圧延する場合には、オーステナイト圧延で一般的に言われている許容下限温度、A3変態点以下にならざるを得ない場合もある。これに対し析出物の固溶処理を行う温度は、一般的には1000℃以上であり、かなり大きな加熱が必要となる場合がある。このことは加熱装置5の大型化、及び加熱炉3の炉長を長くする必要があることを意味している。しかしステッケルミルでは操業の容易さから、できるだけ圧延機とファーネスコイラ16間の距離の短いことが望まれている。これに対して固溶加熱パスでは、圧延を行なわず又は極軽圧下(例えば5%以下)で、且つ低速で通板しながらの加熱方法とすることで、できるだけ必要加熱炉長を短くすることができる。加熱容量を極力小さくするためには、作業ロール2aと圧延材1を接触させずに通板することが理想であるが、問題もある。即ち、作業ロール2aと圧延材1を非接触状態で長時間放置した場合、作業ロール2aが冷やされることにより、これまでの圧延で発生したロール熱膨張によるロール表面プロフィル(以下、サーマルクラウンという)が変化することになる。これにより、圧延を再開する度に作業ロール2aの形状が変化することになり、次の圧延における圧延材1の形状制御が、これまでの圧延で行われていた形状制御方法と、一変する可能性があるといった問題である。これは形状制御の容易さ・正確さの観点から好ましいことではない。このことは、固溶加熱パスでは、図示していないが通常行われている圧延ロール冷却を行うために作業ロール2aに噴射される冷却液(ロールクーラント)の水量を少なく制御したり、噴射しないようにすることで、サーマルクラウンの形状変化を極力少なくすることが有効であることを示している。
【0054】
また固溶処理を目的とした加熱は、連続した複数回のパスで行なうこともできる。このような方法を採れば、更に加熱装置5を小型化できることは説明の要がない。また、複数回の通板加熱処理を行なう場合は特に、先後端部を巻き取り機のマンドレル4に巻き付けた状態で行なっても良い。これは、マンドレル4に巻き付けた先端部又は後端部は常に炉内にあり温度低下が少ないこと、残りの大部分の圧延材1は通板加熱パスを繰り返すことにより、常に加熱保持がほぼ均等に施され一部分のみが過冷却又は強く加熱されることが無いからである。これは、ステッケルミルにおける通板加熱処理において、何ら操業上の問題を発生させることなく実施できることを意味している。
【0055】
更に圧延材1の板厚が薄いほど加熱効率が高く、従って小型の加熱装置5でも十分に加熱することが可能となる。このことは、固溶加熱パスは、最終パスの一つ手前のパスで行うことが有効であることを意味する。また板厚が薄いほど、加熱後の板厚方向の温度分布が一様となり、固溶処理が容易に均一且つ素早くできることも、上記最終パス前付近で加熱処理を行うことによる効果の1つである。具体例として、上記固溶態処理に必要な時間の一般的目安は、板厚25mm当たり0.5時間位の保持時間が必要と言われていることから、従って板厚2.5mmで固溶態処理を行った場合には、炉内における保持時間が3分程度で済むことになり、即ち板厚が薄いほど生産量が向上する効果があると言える。
【0056】
しかし以上説明したような固溶処理により析出物の肥大化を防止できる一方で、圧延材1をファーネスコイラ16で高温保存することにより金属組織の結晶粒が成長し、肥大化してしまうといった問題が生じることになる。従ってこのままの状態では、前述の如く母材金属における強度の低下という問題が解決できないことになる。しかしこれに関しては、先に掲げた文献「制御圧延・制御技術」の第2.2章にも記載してあるように、フェライトの結晶粒径を決める大きな要因は、未再結晶オーステナイト領域での累積圧下率にあることが明らかとなっている。これを端的に示した文献としては、新日鉄技報第365号(1997)「厚板ペアクロスミルにおける大圧下圧延技術」等がある。上記文献等により、累積圧下率が50%以下の場合は、ほぼ上記圧下率に比例して(圧下率を上げるほど)フェライト粒径が小さくなり、50%以上、望ましくは60%以上では、ほぼ飽和することが示されている。従って、本発明による固溶処理を施すことにより粗大化された結晶粒は、この後未再結晶オーステナイト領域で強圧下することにより、微細なフェライトの結晶粒にすることができることになる。通常1台の圧延機で、50%以上の圧下を行うことは、圧延荷重も大きくなり、形状の制御が難しく非常に困難である。従って、圧延機は複数台設置することが望ましい。特に操業の安定性からは、ツインミル2の適用が理想的であると言える。
【0057】
以上のように圧延された圧延材1は出側ランナウトテーブル上に設置された冷却装置14により冷却され、ダウンコイラ15で巻き取られ製品化されるが、このときランナウトテーブルでの冷却が最終製品の品質を決定する上で重要であることは、従来の制御圧延技術と同様である。即ち、本発明による圧延方法で固溶された析出物は、上記冷却装置14で冷却されることにより、再析出することになる。ここで固溶処理された圧延材1を用いる意味は、最終製品に残る析出物の大部分は、上記ランナウトテーブル上の冷却で生成されると言うことである。従って、ランナウトテーブル上の冷却を、圧延鋼種に応じて制御することにより、固溶処理前の圧延履歴に係わらず、析出物の最適な析出制御ができることになる。具体的には、できるだけ微細な析出物を均一に、母材中に分散させるように行われる。このようにすることにより、ランナウトテーブル上でオーステナイトからフェライトに変態するフェライト結晶粒の成長を抑制し、製品強度を向上させると共に、母材中の固溶炭素量を減少させ、靱性に富む製品の生産が可能となる。
【0058】
以上が本発明で提案する、圧延方法及び圧延設備に適用される新たな圧延製造プロセスに対する、基本的な考え方である。しかし更に説明を加えれば、オーステナイト圧延では固溶処理を施した後の圧延は、未再結晶オーステナイト領域で行われることが望ましい。これは圧延材1の温度で、A3変態点から概略950℃位の範囲における圧延を意味している。従って、本発明における固溶処理で、上記の範囲以上に温度を上げた場合、効率よく上記範囲内で圧延を行なうためには、固溶処理の後冷却することが望ましい。冷却手段としては、デスケーリング装置7を用いることもできるが、本来目的の異なっている装置を用いて圧延材1の温度を制御することは好ましいことではない。デスケーリング装置7の本来の目的は、圧延材表面スケールの除去であり、このためには一般に100kg/cm2以上の高圧流体を、多量に圧延材表面に噴射するような、設備となっている。このような装置を用いて温度制御するためには、圧力、流量等を制御する必要があり、実際には非常に困難であり、また効率の悪い使い方であると言える。圧延材1の冷却が目的であれば、このような高圧流体は必要でなく、例えばラミナフロー冷却といった水冷却など従来より用いられている専用の冷却装置6を備えた方が良い。しかしこのような場合、最終圧延の数パス前で固溶処理を行い、継続する後の圧延で結果的に未再結晶オーステナイト領域での圧延となるように、圧延スケジュールを組むことも可能であることは、言うまでもない。
【0059】
また特にフェライト圧延を行なう場合、上記冷却装置6とデスケーリング装置7のどちらか又は両方を用いて、A3変態点以下に制御することは当然である。板厚が厚く、設置された冷却装置6の能力では固溶処理後の1回の冷却で所定の温度まで下がらない場合は、非圧延状態又は通常の圧延パスを複数回繰り返し、所定の温度に達するまで冷却を行うこともできる。
【0060】
また以上のような設備で、少なくとも固溶処理以後の圧延において、少なくとも1パス以上の圧延に熱間圧延油を塗布することは格別の効果を発揮する。熱間圧延油を適用することにより、作業ロール2aと圧延材1間の摩擦力が低下し、圧延荷重・トルク等が小さくなることは自明である。このことは特に、フェライト圧延等の低温圧延時に有効であることは当然である。本発明に付随した固有の効果としては、最終的に得られるフェライト粒径を極力小さくするためには、累積圧下率を高くすることが効果的であることを前述した。このことは、少なくとも固溶処理以降の圧延は、できるだけ高圧下率とすることが望ましいと言える。高圧下圧延を実現するためには、できるだけ小径の作業ロール2aを利用することである。また圧延の安定性から言えば、できるだけ作業ロール2aでの駆動が望ましい。しかしこのことは、駆動系、特にスピンドルの許容トルクが、小さく抑さえられることになり、大きなトルクが伝達できないことになる。この制限を緩和するために、特に高圧下率が望ましい固溶処理以降の圧延に、熱間圧延油を用いることは、高圧下率の圧延を可能とし、金属組織の粒径を微細化し品質を高める効果がある。更に組織に及ぼす直接的効果として、作業ロール2aと圧延材1間の摩擦力が低減するということは、圧延材1と作業ロール2a間に作用するせん断力が小さくなると言う事である。このことは、圧延材表層付近に作用する局部的なせん断変形が小さくなることを意味し、圧延組織を板厚方向にも均一にする効果がある。これは、均一な高品質材を生産するという本発明の目的を、更に高めると言える。
【0061】
第1図に示した実施形態では、圧延機としてツインミル2を用いたが、通常の1スタンド又ば複数スタンドの圧延機としても、同様な効果を奏することは当然である。しかし、圧延機とファーネスコイラ16間に、加熱装置5及び冷却装置6を設置した場合、圧延機をツインミル2とすることは、格別の効果がある。即ち、加熱装置5及び冷却装置6を設けると1m程度は確実に圧延機とファーネスコイラ16間の距離が長くなるため、巻き取り作業の困難さが増加する。これは、圧延材1の先端が巻き取り機に達するまで、無張力で圧延・通板することになり、蛇行の発生する危険性が高く、通板の安定性が悪くなるためである。これに対し、ツインミル2とした場合は、2セットの圧延ロール間距離は非常に短く、通板中は上記2セットの圧延ロールで確実に圧延材1が拘束されるため、通板の安定性が著しく高まり、上記操業性の困難を解消できるからである。このように、圧延機とファーネスコイラ16間の距離が、必然的に長くなる本圧延設備のような場合には、特にツインミル2の設置が効果的であると言える。
【0062】
また加熱装置5は効率よく加熱するために、電磁誘導加熱とすることが望ましい。及び、このようなステッケル熱間圧延設備の前に粗圧延機を設置したり、後ろに複数の仕上げ圧延機を設置してもよい。特に、後ろに仕上げ圧延機を設置すれば、最終パスでの累積圧下率を更に大きくできることは当然である。
【0063】
更に、第1図では冷却装置6及び加熱装置5を、同時に設置した場合を示したが、圧延鋼種によっては例えば加熱装置5のみを設置しても良い。また、同図には加熱装置5を上側、冷却装置6を下側に設置した場合を示したが、各々の装置を上下両方に設置する、又は入側と出側で両者の設置位置を逆にする、更に片側は冷却装置6のみとし、もう一方は加熱装置5のみとする等でも、同様な効果を有することは当然である。
【0064】
図1に示したステッケル熱間圧延設備を用いた他の運転例として、少なくとも1パス以上のパスで、圧延を行なわず又は極軽圧下、低速で通板しながら、加熱装置5及び冷却装置6を選択的に作動させて加熱・冷却を順次繰り返す圧延方法を採っても良い。例えば、最初にA3変態点以上のオーステナイト組織の圧延材1を、A3変態点以下のフェライト生成領域に温度を下げ、その後フェライト組織の圧延材1を、A3変態点以上のオーステナイト組織に加熱する、等である。一般に炭素鋼においてはA3変態点を通過すると、金属組織は例えばオーステナイトからフェライト、或いはフェライトからオーステナイトヘの再結晶を起こし、これを利用して金属組織の結晶粒を微細化することができる。即ち、最終パスの前に上記の熱処理プロセスにより、できるだけ母材の結晶粒を事前に微細化して置くことは、最終製品の品質向上に更に有用であることは当然なことである。しかも、上記の加熱と冷却のどちらか又は両方を制御することにより、簡単に2相(オーステナイト及びフェライトの混合組織)圧延も可能になる。
【0065】
以上により、従来の大型ホットストリップ圧延設備では、実質非常に困難であった圧延前の金属組織の自由な造り込みが、本実施形態により簡単に達成できるものとなる。これはまた、従来のステッケルミルはステンレス鋼等の特殊鋼に専ら適用されていたものを、一気に高品質炭素鋼の圧延にも適用可能とするものである。
【0066】
【発明の効果】
本発明によれば、炭素鋼圧延材中の析出物を金属母材中に再固溶させるため、析出物の集合肥大化を防ぐことになり、ひいてはステッケル熱間圧延設備を用いて炭素鋼の熱間圧延を可能とし、かつ金属組織を改質した高品質材を得ることができる。
【0067】
また本発明によれば、未再結晶オーステナイト温度領域での最終パスにおける累積圧下率を50%以上にするように圧延することで、圧延材の母材金属におけるフェライト結晶粒を微細化することができる。
【0068】
また本発明によれば、フェライトの再結晶およびオーステナイトの再結晶が繰り返されることになるため金属組織の結晶粒の微細化が可能となり、ひいてはステッケル熱間圧延設備により高品質炭素鋼を適切に熱間圧延できるものとなる。
【図面の簡単な説明】
【図1】本発明の実施例にあるステッケル熱間圧延設備の縦断面図である。
【符号の説明】
1 圧延材
2 ツインミル
2a 作業ロール
2b 補強ロール
2h ハウジング
3 加熱炉
4 マンドレル
5 加熱装置
6 冷却装置
7 デスケーリング装置
8 圧延油装置
9 ピンチロール
10 デフレクタロール
11 圧延材ガイド装置
12 温度検出器
13 温度制御装置
14 ラミナフロー冷却装置
15 ダウンコイラ
16 ファーネスコイラ
[0001]
BACKGROUND OF THE INVENTION
  The present invention comprises a furnace coiler and a heating device.Yeah, highReversible hot rolling on high grade carbon steelUsuIt relates to Teckel hot rolling equipment.
[0002]
[Prior art]
In recent years, many material compositions and production methods for high-grade carbon steel have been proposed for the purpose of producing products having high strength and high toughness. For example, Japanese Patent Application Laid-Open No. 10-147843 describes a material composition and manufacturing method excellent in deep drawability by low temperature rolling in a ferrite region. Japanese Patent Application Laid-Open No. 7-18381 describes a material composition and manufacturing method excellent in deep drawability by completing rolling at a temperature equal to or higher than the A3 transformation point in the austenite region. However, in order to obtain such material composition and target quality, various processes including temperature control are required.
[0003]
As an equipment technique considering the various manufacturing processes as described above, for example, there is a tandem type hot strip mill having a heating or cooling device as described in JP-A-10-277601. This is configured to include heating or cooling in the middle of the hot finish rolling stand row of the hot strip mill.
[0004]
On the other hand, there is a reversible rolling facility called a stickel mill in which a so-called furnace coiler in which a winder is installed in a furnace is arranged on the entrance / exit side of the rolling mill. This Steckel hot rolling facility has been widely used mainly for rolling stainless steel or the like.
[0005]
Further, in such a stickel mill rolling facility, what uses a so-called twin mill in which two sets of rolling rolls are incorporated in one housing is disclosed in, for example, Japanese Patent Application Laid-Open No. 11-000702 and International Publication WO 97/36700. ing.
[0006]
In Japanese Patent Publication No. 5-45327, a first heating device is provided between a rolling mill and a furnace coiler to prevent a temperature drop at the front and rear end portions of the rolled material, and a rolling material that has been completely rolled with the rolling mill is provided. An apparatus is disclosed in which a second heating device is provided on the hot run table between the winding downcoilers to make the temperature uniform throughout the rolled material. US Pat. No. 5,755,128 discloses a heating device and a cooling device. And the structure rolled at a uniform temperature is disclosed. The main object of these inventions is to make the quality of the rolled material uniform and to improve the product yield by making the rolled material uniform.
[0007]
[Problems to be solved by the invention]
As described above, various processes including temperature control are required to obtain a high-quality material by rolling carbon steel. Conventionally, Japanese Patent Application Laid-Open No. 10-277601 discloses an equipment technique considering such a process. There is a tandem type hot strip mill as described. However, in a tandem type strip mill, generally, about 7 finishing mills are usually installed, and a huge capital investment is required. Therefore, from the viewpoint of investment efficiency, it is unavoidable to set the production amount as much as possible. In particular, the rolling speed for thin plates is usually rolled at a high speed of 1000 mpm or more. When the heating / cooling device is provided in the middle of the finishing stand row of the equipment that is rolled at such a high speed, there is a disadvantage that the length of the heating / cooling equipment for achieving necessary heating or cooling becomes very long. .
[0008]
In order to avoid this, it is conceivable to provide a heating / cooling device on the entry side of the finishing stand row to control the temperature. In this case, although the running speed of the rolled material is slow, heating and cooling are performed at a position where the plate thickness before finish rolling is thick. Therefore, the heating / cooling efficiency of the rolled material is poor, and if it is attempted to control the temperature uniformly to the inside, the result is that an increase in the length of the heating / cooling device cannot be avoided.
[0009]
As described above, in the rolling equipment using the conventional tandem hot strip mill, it is possible to obtain a high quality material by rolling carbon steel, but the size and equipment cost are very high.
[0010]
In addition, the stickel hot rolling equipment has been conventionally used mainly for rolling stainless steel. When carbon steel is rolled with this equipment, the process of rolling and holding the rolled material in the furnace is repeated. As a result, oxidized scale is generated on the surface of the rolled material, and it is difficult to produce a high-quality product. On the other hand, descaling in which a high-pressure fluid is sprayed onto the surface of the rolled material immediately before rolling to remove the surface scale has been generally performed. However, in particular, when a thin plate having a thickness of 2 to 3 mm or less is rolled, there is a problem that the required finishing temperature of the rolled material cannot be ensured if the descaling is performed for each pass. The Steckel mill rolling equipment using twin mills described in JP-A-11-000702, International Publication WO97 / 36700, and the like is a solution to that point, and this technique enables temperature by descaling in the Steckel hot rolling equipment. It can be said that the problem of decline has been solved.
[0011]
However, the rolling of high-quality carbon steel using the Steckel mill rolling equipment has a further metallographic problem. One of them is that the temperature drop at the front and rear ends of the rolled material is particularly large. As a result, the metal structure in the longitudinal direction of the rolled material is not uniform, which has been a factor in reducing the yield. On the other hand, according to the facilities described in Japanese Patent Publication No. 5-45327 and US Pat. No. 5,755,128, the quality of the rolled material is made uniform and the product yield is improved by making the temperature of the rolled material uniform. Can be planned. However, it does not intend to make an epoch-making improvement in the rolling material such as obtaining a higher strength material.
[0012]
Further, for example, there is a problem even when a high-strength, high-toughness carbon steel containing a small amount of additive such as Ti and Nb disclosed in Japanese Patent Laid-Open No. 10-147843 is rolled with the above-mentioned Steckel hot rolling equipment. There is. That is, in the Steckel hot rolling facility, the rolled material is repeatedly wound and held in a furnace in a high-temperature atmosphere for each pass that is repeatedly rolled. This is because the problem of crystallization and enlargement of the crystal grain of the metal crystal structure cannot be avoided.
Here, it is generally desirable that the precipitate is finely and uniformly dispersed in the metal structure. This is because the effect of preventing the growth of the metal structure crystal grains becomes very high. However, as described in the document "Development of NbC precipitation model during austenitic hot working in low carbon Nb steel" Iron and Steel 75th (1989) No. 6, when rolling was applied It is generally known that the deposition rate is increased. On the other hand, in the stickel hot rolling facility, the rolled material that has been rolled is repeatedly subjected to a process of being wound and held in a furnace, so that the precipitates are concentrated mainly on the grain boundaries and become enlarged. Inevitable results.
[0013]
It is known that the finer the crystal grain of the metal structure, the higher the strength. For example, Chapter 2.2 of “Controlled Rolling / Controlled Cooling” published by Japan Iron and Steel Institute describes the Hall-Petch relational expression that the yield stress of the base metal is inversely proportional to the square root of the crystal grain size. Also in this regard, a Steckel mill that repeats the process of winding and holding at a high temperature for a long time can be said to be an undesirable configuration. This is because, as the time of exposure to high temperature is longer, the crystal grains of the metal structure generally grow and enlarge.
[0014]
As described above, the conventional rolling method using a stickel mill has a problem in the quality of metal structure particularly in high-quality carbon steel. However, compared with the conventional tandem type hot strip mill, the Steckel hot rolling equipment has many advantages such as significantly lower equipment costs and a very short equipment length. If the problem can be solved, it can be said that it is most suitable for rolling equipment for small / medium production / multiple types.
[0015]
  The purpose of the present invention is to, CharcoalEnables hot rolling of raw steel and high quality material with modified metal structureRusuIt is to provide Teckel hot rolling equipment.
[0016]
[Means for Solving the Problems]
  (1) In order to achieve the above object, the present inventionRespectivelyInstalled a furnace coiler, Rolling material made of carbon steelSteckel hot rolling equipmentA heating means for heating the rolled material, installed on at least one side between the rolling mill and the entrance / exit furnace coiler, and a descaling means installed between the rolling mill and the furnace coiler A cooling means for cooling the rolled material is provided separately from the descaling means on at least one side between the rolling mill and the furnace coiler, and the heating means and the cooling means include the rolling mill and the It is characterized by being arranged facing the top and bottom on the same side between the furnace coilers.
As an example of a hot rolling method for rolling a rolled material made of carbon steel with a steel rolling hot rolling facility configured as described above, before the final pass by the rolling mill,Precipitation in rolled material by the heating meansCarbonizationPerform at least one solid solution heating pass to wind the rolled material with the furnace coiler while heating it above the temperature at which the product is re-dissolved.In the final pass, rolling is performed under high pressure while controlling the temperature of the rolled material to the non-recrystallized austenite temperature range by the cooling means..
[0017]
As a result, the precipitates in the rolled carbon steel are re-dissolved in the metal base material, so that the aggregates of the precipitates are prevented from being enlarged, and as a result, the hot rolling of the carbon steel is performed using the Steckel hot rolling equipment. And a high quality material with a modified metal structure can be obtained.
[0018]
(2) In the hot rolling method of (1) above, preferably, the solid solution heating pass is performed in a non-rolled state or under extremely light pressure, and precipitates in the rolled material are removed within the heating capacity range of the heating means. It shall be performed at a low speed sufficient to make the temperature higher than the temperature at which it can be dissolved again.
[0019]
As a result, the heat radiation of the rolling material due to the contact with the rolling rolls can be reduced, so that the heating efficiency for re-solidification is improved, and the precipitate can be sufficiently re-dissolved by a small heating device with a small heating capacity. A melting heating pass is possible.
[0020]
(3) In the hot rolling method of (1) or (2), preferably, the rolled material wound around the furnace coiler by the solid solution heating pass is held in the furnace coiler for a predetermined time. To do.
[0021]
Thereby, the re-dissolution of the precipitate in the rolled material can be performed more reliably.
[0022]
(4) In any one of the hot rolling methods (1) to (3), preferably, the solid solution heating pass is performed immediately before or near the final pass.
[0023]
Thereby, since the solid solution heating pass is performed in a state where the rolled material is sufficiently thin, the heating efficiency of the re-solid solution is improved and the temperature distribution is uniform.
[0024]
(5) In any one of the hot rolling methods (1) to (4) above, preferably, the solid solution heating pass is continuously performed a plurality of times, and the last solid solution heating pass is performed in the rolled material. The deposition is performed at a low speed that is equal to or higher than the temperature at which the precipitate can be dissolved again.
[0025]
As a result, a solid solution heating path is possible in which the precipitate can be sufficiently re-dissolved efficiently and reliably even with a small heating device having a small heating capacity.
[0026]
(6) In the hot rolling method of any one of (1) to (5) above, preferably, the solid solution heating pass is performed before the final pass, and the rolling material before the start of rolling in the final pass is performed. The temperature is controlled to the non-recrystallized austenite temperature region, and rolling is performed so that the cumulative reduction ratio in the final pass in the non-recrystallized austenite temperature region is 50% or more.
[0027]
Thereby, the ferrite crystal grains in the base metal of the rolled material can be refined.
[0028]
(7) In any one of the above hot rolling methods (1) to (6), preferably, the solid solution heating pass is performed before the final pass, and at least one pass rolling including the final pass is performed. The hot rolled oil is applied to the rolled material.
[0029]
As a result, in rolling after the solid solution heating pass, in which a high pressure reduction rate is desirable, the frictional force between the roll and the rolled material is reduced by the application of rolling oil, and the rolling load, torque, etc. are reduced to reduce the high pressure reduction rate rolling. Since the crystal grains of the metal structure are made finer, the quality of the rolled material is improved.
[0030]
(8) See alsoAs another example of a hot rolling method of rolling a rolled material made of carbon steel by the above Steckel hot rolling equipment,A non-rolling pass is performed continuously at least twice or more, and each of the non-rolling passes is performed by heating the rolled material with heating means and the cooling material is cooled with the rolling material at least once. To do.
[0031]
As a result, the recrystallization of ferrite and the recrystallization of austenite are repeated, so that the crystal grains of the metal structure can be refined, and as a result, high-quality carbon steel can be appropriately hot-rolled by the Steckel hot-rolling equipment. It becomes.
[0035]
  (9) According to the Steckel hot rolling facility configured as described above,By means of removing the scale on the surface of the rolled material and a dedicated cooling means, the rolled material at a high temperature after the solid solution heating pass is surely brought into the non-recrystallized austenite region (a range of about 950 ° C. from the A3 transformation point). And it can cool efficiently and enables ideal austenite rolling after performing a solid solution treatment.
(10) In the Steckel hot rolling facility of (1) above, preferably, the temperature at which the precipitated carbide in the rolled material is re-dissolved by the heating means before the final pass by the rolling mill is 1000 ° C. It further comprises control means for controlling the heating means and the cooling means so that the temperature of the rolled material is cooled to the unrecrystallized austenite temperature region by the cooling means in the final pass.
[0036]
  (11) Also(1) or (10) aboveIn the stickel hot rolling facility, it is preferable that a hot rolling oil application device is provided in the rolling mill.
[0037]
As a result, in rolling after the solid solution heating pass, in which a high pressure reduction rate is desirable, the frictional force between the roll and the rolled material is reduced by the application of rolling oil, and the rolling load, torque, etc. are reduced to reduce the high pressure reduction rate rolling. Therefore, the quality can be improved by refining the crystal grains of the metal structure.
[0038]
(12) Also above(1)From(3)In any one of the above-mentioned Steckel hot rolling facilities, preferably, the rolling mill is a twin mill.
[0039]
Accordingly, it is possible to prevent the temperature of the rolled material from being lowered, improve the efficiency of cumulative reduction for refining the crystal grains of the metal structure, and improve the sheet feeding stability between the furnace coiler and the rolling mill.
[0042]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of the present invention. In FIG. 1, the Steckel hot rolling facility of this embodiment has a so-called twin mill 2 in which two sets of rolls are incorporated in one housing 2h as a rolling mill, and the twin mill 2 has two sets of work rolls 2a, It is a four-high rolling mill provided with 2a and reinforcing rolls 2b and 2b. A so-called furnace coiler 16 in which a winder 4 is installed in the heating furnace 3 is installed on the entry side and the exit side of the twin mill 2, and between the rolling mill 2 and the furnace coiler 16, the rolling material 1 is in each case. A heating device 5 and a cooling device 6 are installed so that heating and cooling can be performed freely. Further, in order to enable the rolling of carbon steel, the twin mill 2 is provided with a descaling nozzle 7 for injecting a high-pressure fluid onto the surface of the rolled material, and further provided with a nozzle 8 for injecting hot rolling oil. When the rolled material 1 conveyed from a slab heating furnace or the like not shown here is repeatedly rolled by a twin mill 2 and its thickness is about 25 mm that can be wound, the pinch roll 9, the deflector roll 10, and the rolled material guide It is wound up by the winder 4 while being guided by the apparatus 11 or the like. Thereafter, the sheet is repeatedly rolled while being wound by the left and right furnace coils 16 until the final thickness is reached. The temperature control of the rolled material 1 is performed by measuring the temperature of the rolled material 1 with the temperature detector 12, inputting a signal from the temperature detector 12 to the control device 13, and heating the device 5 with the control device 13 so that the target temperature is reached. Alternatively, it is performed by controlling the cooling device 6.
[0043]
The reason why the rolling mill is the twin mill 2 in this figure is to prevent the temperature drop of the rolled material 1 as much as possible and to greatly improve the operability of rolling, which is described in Japanese Patent Application Laid-Open No. 11-207403. As it is.
[0044]
Next, an example of operation by the stickel hot rolling facility of the present embodiment having the above-described configuration will be described below.
[0045]
First, at the time prior to the start of rolling, both the heating device 5 and the cooling device 6 are in an inactive state by command control of the temperature control device 13, and the rolled material from a slab heating path (not shown) located in the preceding stage of the rolling equipment there. 1 is conveyed.
[0046]
Usually, the rolled material 1 that has just been sent has a considerable thickness and is difficult to wind by the furnace coiler 16, so that the rolled material guide device 11 on the table roll is lowered on the horizontal conveyance path surface. The rolling is repeated by the reciprocating path. Here, at the time of rolling by the twin mill 2, the surface of the rolled material 1 is sprayed from the descaling device 7 provided on the entry / exit side to remove the scale of the rolled material surface, and at the same time, the rolling oil device 8 performs rolling. Hot rolling oil is applied between the material 1 and the work roll 2a.
[0047]
Then, when rolling progresses and the sheet thickness reaches about 25 mm, it is determined that winding by the furnace coiler 16 is possible, the rolling guide device 11 rises to form a conveyance path, and is wound by a guide such as a pinch roll 9. It is sent to the machine 4 and is wound up.
[0048]
Further, at this time, by the command control of the temperature control device 13, the heating device 5 located between the furnace coiler 16 and the twin mill 2 starts to generate heat, and the rolled material that the furnace coiler 16 is exposed without being wound up. It heats so that temperature may not fall with respect to the front-and-rear end part of 1, and the temperature distribution of the rolling material 1 whole may become uniform. The heating temperature at this point is usually higher than the A3 transformation point (about 910 ° C. for pure iron). The rolling furnace 1 is reciprocated between the two furnace coilers 16 alternately by alternately winding, holding, and returning, and rolling proceeds by the twin mill 2 positioned therebetween.
[0049]
Then, a predetermined number of passes before the final rolling pass, the heating device 5 is operated by command control of the temperature control device 13 to heat the rolled material 1 to a temperature higher than the re-solution temperature of precipitates in the rolled material 1, or A solid solution heating pass for performing re-solution treatment on the rolled material 1 is performed once or several times by passing the sheet at a low speed in a non-rolled state or under extremely light pressure. Here, the re-solution temperature of the precipitate is generally a temperature somewhat higher than the A3 transformation point. Specifically, the rolled material 1 is a carbon steel having a carbon content of 0.1% or less. In this case, the temperature is about 1000 ° C. to about 1200 ° C. (upper limit of apparatus capacity). Further, the rolled material 1 heated at each solid solution heating pass is wound by the furnace coiler 16 and then held for a certain period of time.
[0050]
When the solid solution heating pass is completed, heating by the heating device 5 is stopped by command control of the temperature control device 13, and the cooling device 6 is operated as necessary before the rolling of the final pass is started, so that the rolled material 1 is not recrystallized. After cooling to the temperature of the austenite region, the final pass under strong pressure is performed by the twin mill 2. After the final rolling pass is completed, the rolling guide device 11 is lowered so that the rolled material 1 is conveyed to the runaway table, and the solid solution is reprecipitated by cooling by the laminar flow cooling device 14, and then wound around the downcoiler 15 to become a product. .
[0051]
Each effect | action in each process of the above operation example is demonstrated below.
[0052]
First, as to the metallographic problem in the case of rolling using such a stickel mill, it is as described above, and a particularly problematic point is a method for preventing the enlargement of precipitates. In particular, in equipment that does not include the heating device 5, it is very difficult to refine and uniformly disperse the concentrated giant precipitate once generated in a normal rolling process. On the other hand, in the equipment provided with the heating device 5, the rolled material 1 is wound up by the furnace coiler 16 while being heated above the re-solution temperature of the precipitate in a desired pass and held for a required time (hereinafter simply referred to as solid solution). (Referred to as a heating pass), the precipitate can be dissolved again. Such a method of using the heating device 5 is not described at all in the above-mentioned known example, Japanese Patent Publication No. 5-45327 and US Pat. No. 5,755,128, and it can be said that the purpose of use is essentially different. That is, the purpose of use of the heating device in the above-described known example is to control the temperature at the leading and trailing ends of the rolled material 1 or to control the temperature uniformity over the entire length of the rolled material 1, and the metal structure of the rolled material 1 as in the present invention. This is because the material is not actively modified. In order to carry out the re-solution of the precipitates with certainty, the rolled material 1 heated to the re-solution temperature or higher is wound up in the furnace 3 and held for a necessary time.
[0053]
However, there is a problem with the method of using the heating device 5 as described above. Although it depends on the finished product plate thickness, generally, in rolling near the final pass, the temperature of the rolled material is usually lowered to about 900 ° C. or less. When rolling a thin plate or the like, it may be unavoidable to be below the allowable lower limit temperature generally referred to in austenite rolling, the A3 transformation point. On the other hand, the temperature at which the solid solution treatment of the precipitate is generally 1000 ° C. or higher, and a considerably large heating may be required. This means that it is necessary to increase the size of the heating device 5 and to increase the length of the heating furnace 3. However, it is desirable that the distance between the rolling mill and the furnace coiler 16 be as short as possible in the Steckel mill because of its ease of operation. On the other hand, in the solid solution heating pass, the necessary heating furnace length should be shortened as much as possible by using a heating method that does not perform rolling or under extremely light pressure (for example, 5% or less) and passes through at low speed. Can do. In order to reduce the heating capacity as much as possible, it is ideal to pass the work roll 2a and the rolling material 1 without contacting them, but there is also a problem. That is, when the work roll 2a and the rolled material 1 are left in a non-contact state for a long time, the work roll 2a is cooled, so that a roll surface profile (hereinafter referred to as a thermal crown) due to roll thermal expansion generated in the rolling so far. Will change. Thereby, the shape of the work roll 2a changes every time the rolling is restarted, and the shape control of the rolled material 1 in the next rolling can be completely changed from the shape control method performed in the previous rolling. It is a problem that there is sex. This is not preferable from the viewpoint of ease and accuracy of shape control. This means that in the solid solution heating pass, the amount of coolant (roll coolant) sprayed to the work roll 2a is controlled to be small or not sprayed in order to perform the rolling roll cooling that is normally performed although not shown. By doing so, it is shown that it is effective to minimize the change in shape of the thermal crown.
[0054]
Heating for the purpose of solid solution treatment can be performed in a plurality of consecutive passes. There is no need for explanation that the heating device 5 can be further miniaturized by adopting such a method. In addition, when performing a plurality of plate heating processes, the front and rear end portions may be wound around the mandrel 4 of the winder. This is because the front end or the rear end wound around the mandrel 4 is always in the furnace and the temperature drop is small, and most of the remaining rolled material 1 is always heated and held almost uniformly by repeating the plate-pass heating path. This is because only a part of the film is not supercooled or strongly heated. This means that it can be carried out without causing any operational problems in the plate heating process in the Steckel mill.
[0055]
Furthermore, the thinner the rolled material 1 is, the higher the heating efficiency is. Therefore, even a small heating device 5 can be sufficiently heated. This means that it is effective to perform the solid solution heating pass one pass before the final pass. In addition, as the plate thickness is thinner, the temperature distribution in the plate thickness direction after heating becomes more uniform, and the solid solution treatment can be easily and uniformly performed. One of the effects of performing the heat treatment in the vicinity of the final pass is one of the effects. is there. As a specific example, a general guideline for the time required for the above solid solution treatment is said to require a holding time of about 0.5 hour per 25 mm of plate thickness. When the state treatment is performed, the holding time in the furnace is only about 3 minutes, that is, it can be said that the thinner the plate thickness, the more effective the production.
[0056]
However, while the solid solution treatment as described above can prevent the enlargement of the precipitates, the rolled material 1 is stored at a high temperature in the furnace coiler 16 so that crystal grains of the metal structure grow and become enlarged. Will occur. Therefore, in this state, the problem of strength reduction in the base metal cannot be solved as described above. However, in this regard, as described in Chapter 2.2 of the above-mentioned document “Controlled Rolling / Control Technology”, the major factor that determines the crystal grain size of ferrite is the unrecrystallized austenite region. It is clear that there is a cumulative reduction rate. As a document that clearly shows this, Nippon Steel Technical Report No. 365 (1997) “Large reduction rolling technology in thick plate pair cross mill” and the like. According to the above literature, etc., when the cumulative rolling reduction is 50% or less, the ferrite grain size becomes smaller in proportion to the above rolling reduction (as the rolling reduction is increased), and when the cumulative rolling reduction is 50% or more, preferably 60% or more, It has been shown to saturate. Therefore, the crystal grains coarsened by performing the solid solution treatment according to the present invention can be made into fine ferrite crystal grains by subsequently reducing the pressure in the non-recrystallized austenite region. Usually, rolling down by 50% or more with a single rolling mill increases the rolling load and makes it difficult to control the shape. Therefore, it is desirable to install a plurality of rolling mills. In particular, it can be said that the twin mill 2 is ideal in terms of operational stability.
[0057]
The rolled material 1 rolled as described above is cooled by the cooling device 14 installed on the outlet side runout table, wound up by the downcoiler 15 and commercialized. At this time, the cooling on the runout table is the final product. What is important in determining quality is similar to the conventional controlled rolling technique. That is, the precipitate dissolved by the rolling method according to the present invention is reprecipitated by being cooled by the cooling device 14. The meaning of using the rolled material 1 subjected to the solid solution treatment here is that most of the precipitates remaining in the final product are generated by cooling on the runout table. Therefore, by controlling the cooling on the run-out table according to the rolled steel type, optimum precipitation control of the precipitate can be performed regardless of the rolling history before the solid solution treatment. Specifically, it is performed so as to disperse the finest precipitate as uniformly as possible in the base material. By doing so, the growth of ferrite crystal grains that transform from austenite to ferrite on the run-out table is suppressed, the product strength is improved, the amount of solid solution carbon in the base material is reduced, and the tough product is rich. Production becomes possible.
[0058]
The above is the basic idea for the new rolling manufacturing process applied to the rolling method and rolling equipment proposed in the present invention. However, if further explained, in austenite rolling, it is desirable that the rolling after the solid solution treatment is performed in the non-recrystallized austenite region. This means the rolling in the range of about 950 ° C. from the A3 transformation point at the temperature of the rolled material 1. Therefore, when the temperature is raised above the above range in the solid solution treatment in the present invention, it is desirable to cool after the solid solution treatment in order to perform rolling efficiently within the above range. Although the descaling device 7 can be used as the cooling means, it is not preferable to control the temperature of the rolled material 1 using a device that originally has a different purpose. The original purpose of the descaling device 7 is to remove the scale of the rolled material surface. For this purpose, the descaling device 7 is generally equipped with a high-pressure fluid of 100 kg / cm 2 or more on the surface of the rolled material. In order to control the temperature using such an apparatus, it is necessary to control the pressure, the flow rate, etc., which is actually very difficult and can be said to be an inefficient usage. For the purpose of cooling the rolled material 1, such a high-pressure fluid is not necessary, and it is better to provide a dedicated cooling device 6 that has been conventionally used, such as water cooling such as laminar flow cooling. However, in such a case, it is also possible to set a rolling schedule so that the solid solution treatment is performed several passes before the final rolling, and the subsequent rolling continues to result in rolling in the non-recrystallized austenite region. Needless to say.
[0059]
In particular, when ferrite rolling is performed, it is natural that the cooling device 6 and / or the descaling device 7 are used to control the A3 transformation point or lower. If the plate thickness is large and the installed cooling device 6 does not drop to the predetermined temperature by one cooling after the solid solution treatment, the non-rolled state or the normal rolling pass is repeated a plurality of times until the predetermined temperature is reached. Cooling can be performed until it reaches.
[0060]
In the above-described equipment, at least in rolling after the solid solution treatment, applying hot rolling oil to rolling at least one pass exhibits a special effect. It is obvious that by applying the hot rolling oil, the frictional force between the work roll 2a and the rolled material 1 is reduced, and the rolling load, torque, etc. are reduced. This is naturally effective especially at low temperature rolling such as ferrite rolling. As described above, as an inherent effect associated with the present invention, it is effective to increase the cumulative rolling reduction in order to make the finally obtained ferrite grain size as small as possible. This can be said that it is desirable that at least the rolling after the solid solution treatment is as high as possible under a high pressure. In order to realize rolling under high pressure, the work roll 2a having a diameter as small as possible should be used. In terms of rolling stability, it is desirable to drive with the work roll 2a as much as possible. However, this means that the allowable torque of the drive system, particularly the spindle, is suppressed to a small level, and a large torque cannot be transmitted. In order to alleviate this limitation, the use of hot rolling oil in rolling after the solid solution treatment, in which a high pressure reduction rate is particularly desirable, enables rolling at a high pressure reduction rate, refines the grain size of the metallographic structure and improves the quality. Has the effect of increasing Further, as a direct effect on the structure, the fact that the frictional force between the work roll 2a and the rolled material 1 is reduced means that the shearing force acting between the rolled material 1 and the work roll 2a is reduced. This means that local shear deformation acting in the vicinity of the surface layer of the rolled material is reduced, and there is an effect of making the rolled structure uniform in the plate thickness direction. This can be said to further enhance the object of the present invention to produce a uniform high quality material.
[0061]
In the embodiment shown in FIG. 1, the twin mill 2 is used as a rolling mill, but it is natural that the same effect can be achieved even with a normal one-stand or multi-stand rolling mill. However, when the heating device 5 and the cooling device 6 are installed between the rolling mill and the furnace coiler 16, setting the rolling mill to the twin mill 2 has a special effect. That is, when the heating device 5 and the cooling device 6 are provided, the distance between the rolling mill and the furnace coiler 16 is reliably increased by about 1 m, so that the difficulty of the winding operation increases. This is because rolling and threading are performed without tension until the tip of the rolled material 1 reaches the winder, and there is a high risk of occurrence of meandering, and the stability of the threading plate deteriorates. On the other hand, when the twin mill 2 is used, the distance between the two sets of rolling rolls is very short, and the rolling material 1 is surely restrained by the two sets of rolling rolls during the threading, so the stability of the threading plate This is because the above-mentioned difficulty in operability can be solved. Thus, it can be said that the installation of the twin mill 2 is particularly effective in the case of a main rolling facility in which the distance between the rolling mill and the furnace coiler 16 is inevitably long.
[0062]
Moreover, in order to heat the heating apparatus 5 efficiently, it is desirable to use electromagnetic induction heating. And a rough rolling mill may be installed in front of such a stickel hot rolling equipment, and a plurality of finish rolling mills may be installed behind. In particular, if a finish rolling mill is installed behind, it is natural that the cumulative reduction ratio in the final pass can be further increased.
[0063]
Furthermore, although FIG. 1 shows the case where the cooling device 6 and the heating device 5 are installed at the same time, for example, only the heating device 5 may be installed depending on the type of rolled steel. Although the figure shows the case where the heating device 5 is installed on the upper side and the cooling device 6 is installed on the lower side, each device is installed both on the top and bottom, or the installation positions of both are reversed on the entry side and the exit side. Furthermore, it is natural that the same effect can be obtained by using only the cooling device 6 on one side and only the heating device 5 on the other side.
[0064]
As another example of operation using the Steckel hot rolling facility shown in FIG. 1, the heating device 5 and the cooling device 6 are used in at least one pass or more, without rolling or passing at a low speed under extremely light pressure. Alternatively, a rolling method may be employed in which heating and cooling are sequentially performed by selectively operating the. For example, first, the temperature of the rolled material 1 having an austenitic structure at or above the A3 transformation point is lowered to a ferrite generation region below the A3 transformation point, and then the rolled material 1 having a ferrite structure is heated to an austenitic structure at or above the A3 transformation point. Etc. In general, when passing through the A3 transformation point in carbon steel, the metal structure recrystallizes, for example, from austenite to ferrite, or from ferrite to austenite, and this can be used to refine crystal grains of the metal structure. In other words, it is a matter of course that it is further useful to improve the quality of the final product to make the crystal grains of the base material as fine as possible by the above heat treatment process before the final pass. In addition, two-phase (austenite and ferrite mixed structure) rolling can be easily performed by controlling either or both of the above heating and cooling.
[0065]
As described above, according to the present embodiment, the free fabrication of the metal structure before rolling, which is very difficult in the conventional large hot strip rolling equipment, can be easily achieved by the present embodiment. In addition, the conventional stickel mill can be applied to the rolling of high-quality carbon steel at a stroke, which was applied exclusively to special steel such as stainless steel.
[0066]
【The invention's effect】
According to the present invention, the precipitate in the carbon steel rolled material is re-dissolved in the metal base material, so that the aggregate enlargement of the precipitate is prevented, and as a result, the steel A high-quality material that can be hot-rolled and has a modified metal structure can be obtained.
[0067]
Further, according to the present invention, the ferrite crystal grains in the base metal of the rolled material can be refined by rolling so that the cumulative reduction ratio in the final pass in the non-recrystallized austenite temperature region is 50% or more. it can.
[0068]
Further, according to the present invention, since recrystallization of ferrite and recrystallization of austenite are repeated, it is possible to refine the crystal grains of the metal structure, and accordingly, high-quality carbon steel is appropriately heated by the Steckel hot rolling equipment. It can be hot rolled.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a Steckel hot rolling facility according to an embodiment of the present invention.
[Explanation of symbols]
1 Rolled material
2 Twin mill
2a Work roll
2b Reinforcement roll
2h housing
3 Heating furnace
4 Mandrels
5 Heating device
6 Cooling device
7 Descaling device
8 Rolling oil equipment
9 Pinch roll
10 Deflector roll
11 Rolling material guide device
12 Temperature detector
13 Temperature controller
14 Lamina flow cooling device
15 Downcoiler
16 Furnace Coiler

Claims (4)

圧延機の入出側のそれぞれにファーネスコイラを設置し、炭素鋼からなる圧延材を圧延するステッケル熱間圧延設備において、
前記圧延機と前記入出側ファーネスコイラ間の少なくとも一方の側に設置され、圧延材を加熱する加熱手段と、
前記圧延機と前記ファーネスコイラ間に設置されるデスケーリング手段と、
前記圧延機と前記ファーネスコイラ間の少なくとも一方の側に前記デスケーリング手段とは別に設置され、圧延材を冷却する冷却手段とを備え
前記加熱手段と冷却手段は、前記圧延機と前記ファーネスコイラ間の同じ側で上下に向き合って配置されていることを特徴とするステッケル熱間圧延設備。
In the Steckel hot rolling facility that installs a furnace coiler on each of the entry and exit sides of the rolling mill and rolls the rolled material made of carbon steel ,
Installed on at least one side between the rolling mill and the entrance / exit furnace coiler, and heating means for heating the rolled material;
Descaling means installed between the rolling mill and the furnace coiler;
Installed separately from the descaling means on at least one side between the rolling mill and the furnace coiler, comprising cooling means for cooling the rolled material ,
The Steckel hot rolling facility characterized in that the heating means and the cooling means are arranged facing each other on the same side between the rolling mill and the furnace coiler.
請求項1記載のステッケル熱間圧延設備において、
前記圧延機による最終パスよりも前に、前記加熱手段により圧延材中の析出炭化物を再固溶させる温度である1000°C〜1200°Cに加熱し、前記最終パスにおいて、前記冷却手段により圧延材の温度を未再結晶オーステナイト温度領域に冷却するよう前記加熱手段及び冷却手段を制御する制御手段を更に備えることを特徴とするステッケル熱間圧延設備。
In the steel rolling hot rolling facility according to claim 1,
Prior to the final pass by the rolling mill, the heating means heats the precipitated carbide in the rolled material to 1000 ° C to 1200 ° C, which is a temperature at which the precipitated carbide is re-dissolved. In the final pass, the cooling means rolls. A Steckel hot rolling facility, further comprising a control means for controlling the heating means and the cooling means so as to cool the temperature of the material to a non-recrystallized austenite temperature region.
請求項1又は2記載のステッケル熱間圧延設備において、
前記圧延機に熱間圧延油塗布装置を設けたことを特徴とするステッケル熱間圧延設備。
In the Steckel hot rolling facility according to claim 1 or 2 ,
A stickel hot rolling facility characterized in that a hot rolling oil coating device is provided in the rolling mill.
請求項1〜3のいずれか1項項記載のステッケル熱間圧延設備において、
前記圧延機が1つのハウジングに2セットのロールを組み込んだツインミルであることを特徴とするステッケル熱間圧延設備。
In the Steckel hot rolling facility according to any one of claims 1 to 3 ,
The steel rolling hot rolling equipment, wherein the rolling mill is a twin mill in which two sets of rolls are incorporated in one housing.
JP32556299A 1999-11-16 1999-11-16 Steckel hot rolling equipment Expired - Fee Related JP3691996B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP32556299A JP3691996B2 (en) 1999-11-16 1999-11-16 Steckel hot rolling equipment
KR1020000067578A KR20010051685A (en) 1999-11-16 2000-11-15 Hot-rolling method and steckel hot-rolling equipment
CN00132945A CN1295893A (en) 1999-11-16 2000-11-16 Hot rolling method and Steger hot rolling machine
DE10056847A DE10056847A1 (en) 1999-11-16 2000-11-16 Hot rolling process uses a coiler tension rolling mill having a coiling machine installed on either the inlet or the outlet side of a rolling mill and a heater provided between the rolling mill and the coiling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32556299A JP3691996B2 (en) 1999-11-16 1999-11-16 Steckel hot rolling equipment

Publications (2)

Publication Number Publication Date
JP2001137907A JP2001137907A (en) 2001-05-22
JP3691996B2 true JP3691996B2 (en) 2005-09-07

Family

ID=18178289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32556299A Expired - Fee Related JP3691996B2 (en) 1999-11-16 1999-11-16 Steckel hot rolling equipment

Country Status (4)

Country Link
JP (1) JP3691996B2 (en)
KR (1) KR20010051685A (en)
CN (1) CN1295893A (en)
DE (1) DE10056847A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464457A (en) * 2013-08-19 2013-12-25 中国重型机械研究院有限公司 Hybrid rolling reversing cold-rolling mill unit

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10141646C1 (en) * 2001-08-24 2003-03-27 Elotherm Gmbh Device for inductively heating metallic workpieces used in rolling installations comprises a heating device, and a conveying roller having sections made from a ceramic material
DE10203711A1 (en) * 2002-01-31 2003-08-14 Sms Demag Ag Process and plant for the production of hot strip from austenitic stainless steels
JP4946516B2 (en) * 2007-03-02 2012-06-06 Jfeスチール株式会社 Hot rolling equipment and hot rolling method using the same
JP5264140B2 (en) * 2007-10-16 2013-08-14 Ihiメタルテック株式会社 Magnesium alloy hot rolling equipment
IT1397452B1 (en) * 2009-12-30 2013-01-10 Danieli E C Ohg S P A DEVICE AND PROCEDURE FOR WINDING / CARRYING OUT A METAL PRODUCT IN A ROLLING LINE
CN102199697A (en) * 2011-06-08 2011-09-28 河北省首钢迁安钢铁有限责任公司 Method for improving low-temperature impact toughness of high-strength steel hot rolled plate coil for engineering machines
US10471487B2 (en) * 2015-03-09 2019-11-12 Toshiba Mitsubishi-Electric Industrial Systems Corporation Rolling equipment
DE102015210863A1 (en) * 2015-04-15 2016-10-20 Sms Group Gmbh Casting-rolling plant and method for its operation
CN110340161B (en) * 2019-07-25 2020-08-28 燕山大学 Heating device, rolling device and rolling method for on-line rolling of thick steel plate
CN111167858A (en) * 2020-01-03 2020-05-19 北京科技大学 Method for headless rolling of ferrite area of ultrathin strip steel
CN112808770A (en) * 2020-12-29 2021-05-18 山西太钢不锈钢股份有限公司 Rapid switching method for steel and titanium rolling
CN113172089B (en) * 2021-03-31 2023-04-07 甘肃酒钢集团宏兴钢铁股份有限公司 Production method of high-carbon martensitic stainless steel steckel mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464457A (en) * 2013-08-19 2013-12-25 中国重型机械研究院有限公司 Hybrid rolling reversing cold-rolling mill unit

Also Published As

Publication number Publication date
JP2001137907A (en) 2001-05-22
KR20010051685A (en) 2001-06-25
DE10056847A1 (en) 2001-05-31
CN1295893A (en) 2001-05-23

Similar Documents

Publication Publication Date Title
BG60451B1 (en) Method and an installation for producing steel strip reels
AU2007264101C1 (en) A method and a system for producing hot-rolled strip silicon steel based on thin slabs
JP4931323B2 (en) Manufacturing method for making thin flat products
JP3691996B2 (en) Steckel hot rolling equipment
JP2001525253A (en) Method and apparatus for producing high strength steel strip
EP1159091A1 (en) Method for manufacturing of strips and rolling mill line
CN113857242B (en) Continuous casting and rolling production line and ferrite rolling low-carbon steel production method thereof
JP2000271603A (en) Hot-rolling method of extra-thin strip and rolling apparatus
US6309482B1 (en) Steckel mill/on-line controlled cooling combination
JP2003320402A (en) Method and apparatus for manufacturing hot rolled steel strip
KR19990077215A (en) Process suitable for hot rolling of steel bands
CA1217076A (en) Method and apparatus for thermomechanically rolling hot strip product to a controlled microstructure
KR19980032838A (en) Method of manufacturing stainless steel strip
JPH06320203A (en) Continuous casting/hot rolling equipment
JPH091209A (en) Equipment for continuously casting and hot-rolling stainless steel strip and manufacture of stainless steel strip excellent in surface quality
JP3695242B2 (en) Hot rolling equipment and rolling method
JP2005169454A (en) Steel strip manufacturing equipment and method
JP2002066605A (en) Hot rolling method and apparatus
JP3698088B2 (en) Manufacturing method of hot-rolled steel strip
JP2004167523A (en) Hot rolling method and hot rolling line
RU2279937C1 (en) Strip hot rolling method
RU2267368C1 (en) Strip hot rolling process
JP2004130375A (en) Method and equipment for manufacturing hot-rolled steel strip
CN114985461A (en) Preparation method for large-size bar material by controlled rolling and controlled cooling
JPH07268460A (en) Production of cr-ni stainless steel sheet excellent in surface quality and workability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050617

R150 Certificate of patent or registration of utility model

Ref document number: 3691996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees