JPS6244184B2 - - Google Patents

Info

Publication number
JPS6244184B2
JPS6244184B2 JP7746080A JP7746080A JPS6244184B2 JP S6244184 B2 JPS6244184 B2 JP S6244184B2 JP 7746080 A JP7746080 A JP 7746080A JP 7746080 A JP7746080 A JP 7746080A JP S6244184 B2 JPS6244184 B2 JP S6244184B2
Authority
JP
Japan
Prior art keywords
air
blowing
airflow
total pressure
guides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7746080A
Other languages
Japanese (ja)
Other versions
JPS572948A (en
Inventor
Toshio Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP7746080A priority Critical patent/JPS572948A/en
Publication of JPS572948A publication Critical patent/JPS572948A/en
Publication of JPS6244184B2 publication Critical patent/JPS6244184B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Duct Arrangements (AREA)
  • Air-Flow Control Members (AREA)

Description

【発明の詳細な説明】 本発明は、風向を自動的に変えると共に風速も
自動的に変えるようにした空気吹出装置に関する
もので、これを用いることにより新しい空調シス
テムを構成できるようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air blowing device that automatically changes the wind direction and wind speed, and by using this, a new air conditioning system can be constructed. be.

流体素子の原理を利用した方向可変吹出口が
種々提案されているが、これらは主として空気調
和機の吹出口として開発されたものが多く、これ
をダクト方式の吹出口に適用するにはそれぞれを
制御する電磁弁その他の動力源が必要となるの
で、その施工と保守に問題がある。また従来提案
された方向可変吹出口は風速までを自動的に変え
るようにしたものではなく、方向と風速を無動力
的に任意に変化させるような吹出口は実用化され
ていないのが実状である。
Various directionally variable air outlets have been proposed that utilize the principle of fluid elements, but most of these were developed primarily as air conditioner air outlets, and in order to apply them to duct-type air outlets, it is necessary to Since a control solenoid valve and other power sources are required, there are problems in construction and maintenance. Furthermore, the previously proposed variable direction air outlets are not designed to automatically change the wind speed, and the reality is that no air outlet that can arbitrarily change the direction and wind speed without power has been put into practical use. be.

ダクト方式による空調システムにおいて、ダク
ト系に設置された複数個の吹出口から調和空気を
吹出す場合に、空調負荷や調和空気の種類に応じ
て吹出方向と吹出風速を自動的に制御できると、
省エネルギー的に快適空間を形成できる。本発明
はこれを可能とする装置を提供するもので、例え
ば冷房時には風速を高めた噴流を方向を変えなが
ら吹出してドラフト感を高め、暖房時には風速を
弱めて非発振的な気流を形成して暖かさを出すよ
うな任意の気流制御を、ダクト吹出口の各々にお
いて無動力的に機能させるようにしたシステムお
よびそのための空気吹出装置を開発したものであ
る。
In a duct-based air conditioning system, when conditioned air is blown out from multiple outlets installed in the duct system, it would be possible to automatically control the blowing direction and speed according to the air conditioning load and type of conditioned air.
A comfortable space can be created while saving energy. The present invention provides a device that makes this possible. For example, during cooling, a jet stream with increased wind speed is blown out while changing the direction to enhance the draft feeling, and during heating, the wind speed is weakened to form a non-oscillating airflow. We have developed a system and an air blowing device for the system that allows arbitrary airflow control to generate warmth to be performed non-poweredly at each duct outlet.

図面の実施例に従つて具体的に説明すると、本
発明の空気吹出装置は、空気ダクトから導かれた
空気を吹出すためのノズル部1と、このノズル部
1から吹出された気流を先拡がりに案内する相互
に対称な2枚のガイド2,2′と、このガイド
2,2′の各々の背後に設けられた気流通路3,
3′と、各ガイド2,2′に沿つて流れる気流によ
つて気流通路3,3′内に空気を導くためのガイ
ド2,2′先端部に設けられた分流導入口4,
4′と、気流通路3,3′内の分流をノズル部1か
らの吹出主流近傍に合流させるための分流合流口
5,5′と、ノズル部1に設けられた吹出空気の
全圧変化によつて絞りが変化するオリフイス6
と、送風空気の送風全圧を周期的に変動させるた
めの送風全圧変動手段7と、からなる。これによ
り送風全圧を変えるとオリフイス口径の変化によ
つて吹出気流が首振りを始めるようになつたり、
また風速も変化する。さらにこの制御をダクト吹
出口各々において個別に調整できるようにしたの
が、前記の装置にさらに中空制御翼8を設けた装
置である。
To explain specifically according to the embodiments of the drawings, the air blowing device of the present invention includes a nozzle section 1 for blowing out air led from an air duct, and a device for spreading the airflow blown out from the nozzle section 1. two mutually symmetrical guides 2, 2', and an airflow passage 3 provided behind each of the guides 2, 2'.
3', and a branch flow introduction port 4 provided at the tip of the guides 2, 2' for guiding air into the airflow passages 3, 3' by the airflow flowing along each guide 2, 2'.
4', a branch flow merging port 5, 5' for merging the branch flow in the air flow passages 3, 3' into the vicinity of the main flow blown from the nozzle section 1, and a flow control section provided in the nozzle section 1 for changing the total pressure of the blown air. Orifice 6 whose aperture changes as it moves
and a blowing total pressure varying means 7 for periodically changing the blowing total pressure of the blowing air. As a result, when the total blowing pressure is changed, the outlet airflow starts to oscillate due to the change in the orifice diameter.
Wind speed also changes. Furthermore, this control can be adjusted individually at each outlet of the duct in a device in which a hollow control vane 8 is further provided in the above device.

本発明装置の細部構成並びに作動原理について
以下に説明する。ノズル部1に取付けたオリフイ
ス6は、ダクトからノズル部1に供給される全圧
(静圧)変化によつて絞りが変化するものであ
り、具体的には、第3〜6図に示したような構造
を有している。すなわちこのオリフイス6は分流
合流口5の上部に張り出して取付けられるが、ス
プリング10を介在させたヒンジ構造(第3
図)、例えばりん青銅からなる板バネ11やコイ
ルバネ12で支持した構造(第4〜5図)、ある
いはスプリング13によつて吊した構造(第6
図)を有し、送風全圧が高くなるとノズル部1が
絞られるかあるいは分流合流口5近傍のうず流が
強くなるようなものである。
The detailed configuration and operating principle of the device of the present invention will be explained below. The orifice 6 attached to the nozzle part 1 changes its orifice according to changes in the total pressure (static pressure) supplied from the duct to the nozzle part 1. Specifically, the orifice 6 shown in FIGS. It has a structure like this. That is, this orifice 6 is attached to the upper part of the diversion/merging port 5, but it has a hinge structure with a spring 10 interposed (the third
), for example, a structure supported by a plate spring 11 or a coil spring 12 made of phosphor bronze (Figs. 4 and 5), or a structure suspended by a spring 13 (Fig. 6).
), and when the total air pressure increases, the nozzle portion 1 is throttled or the eddy flow near the branch/merging port 5 becomes stronger.

送風全圧が高くてオリフイス6が絞られた状態
例えば第2図において実線で示した状態にあると
きは、このオリフイス6の直下にある分流合流口
5の近辺にうず流が強く生じるので、オリフイス
6で絞られて速度を増した噴流が第2図の実線で
示すようにその差込み現象に伴つてガイド2また
は2′のいづれか1方の壁面に強く付着した気流
が発生する(コアンダ効果)。いま、ガイド2,
2′のうち2の側に強く付着した気流が発生した
とすると、この噴流の1部はガイド2の先端部に
設けられ分流導入口4を経て気流通路3内に導か
れ、負圧になつていた分流合流口5の近傍がこの
気流通路3からの気流によつてその負圧が減少
し、その結果うず流の強さが弱くなる。このうず
流の強さが他方の分流合流口5′のうず流の強さ
に比較して弱くなると、分度はガイド2′の壁面
に付着した噴流が発生し、主流の方向が変更す
る。これを順次くり返すことになるから、主流の
向きは自己発信的に変わり、機械的な偏向翼より
も自然風に近いさわやかな風が得られる。
When the total air pressure is high and the orifice 6 is constricted, for example in the state shown by the solid line in FIG. As shown by the solid line in FIG. 2, the jet stream whose speed has been increased by being throttled by the guide 6 causes an airflow that strongly adheres to the wall surface of either the guide 2 or 2' as shown by the solid line in FIG. 2 (Coanda effect). Now guide 2,
If an airflow strongly adheres to side 2 of 2', a part of this jet is guided into the airflow passage 3 through the branch introduction port 4 provided at the tip of the guide 2, and becomes negative pressure. Due to the airflow from the airflow passage 3, the negative pressure in the vicinity of the branch flow confluence port 5 is reduced, and as a result, the strength of the eddy flow is weakened. When the strength of this eddy flow becomes weaker than the strength of the eddy flow at the other branch/merging port 5', a jet flow adhering to the wall surface of the guide 2' is generated, and the direction of the main flow is changed. Since this process is repeated one after another, the direction of the mainstream changes automatically, resulting in a refreshing breeze that is closer to natural wind than mechanical deflection blades.

次に送風全圧を低くして、オリフイス6のスプ
リング10,11,12または13の力の方が勝
つた状態、つまり、第2図の破線で示したように
オリフイス6が開きノズル口径が大きくなつた場
合(または第6図のように分流合流口5から離れ
た場合)には、うず流によるコアンダ効果が弱ま
るので、第2図の破線で示したように中央部を直
進する気流が支配的になる。この直進気流の場合
は先の噴流よりも吹出速度はゆるくなる。
Next, the total air blowing pressure is lowered, and the force of the spring 10, 11, 12 or 13 of the orifice 6 is stronger, that is, the orifice 6 opens and the nozzle diameter becomes larger, as shown by the broken line in Figure 2. When the airflow becomes warm (or when it moves away from the diversion/merging port 5 as shown in Figure 6), the Coanda effect due to the eddy flow weakens, so the airflow that goes straight through the center becomes dominant, as shown by the broken line in Figure 2. become a target. In the case of this straight air stream, the blowing speed is slower than that of the previous jet stream.

このようにして、ダクト系の送風全圧を変化さ
せることによつて吹出気流の方向変化と速度が制
御されることになるが、この送風全圧の調整はダ
ンパ制御によつて簡便に行ない得る。したがつて
例えば冷房シーズンには送風全圧を高くしてコア
ンダ効果によつてドラフト感の得られる冷風を吹
出し、暖房シーズンにはこのドラフト感の無い風
速のゆるい直進流を吹出すように、ダンパを調節
しておけばよい。このような使用の仕方のほかに
送風空気の送風全圧を周期的に変動させるための
送風全圧変動手段をダクトに介在させると、その
吹出方向と吹出速度を任意に可変とする装置に構
成できる。
In this way, the direction change and speed of the blown air flow are controlled by changing the total air blowing pressure of the duct system, but this adjustment of the air blowing total pressure can be easily performed by damper control. . Therefore, for example, in the cooling season, the total air pressure is increased to blow out cold air that gives a draft feeling due to the Coanda effect, and in the heating season, the damper is designed to blow out a slow straight flow without the draft feeling. All you have to do is adjust it. In addition to this method of use, if the duct is provided with a means for varying the total pressure of the blown air to periodically vary the total pressure of the blown air, the device can be configured to arbitrarily vary the blowing direction and speed. can.

第7〜9図は、この周期的な送風全圧変動手段
7を具体的に示したものであり、第7図はダクト
15内に回転可能に取付けたダンパ翼16をサー
ボモータ17で回転駆動するようにしたもの、第
8図は同じくダンパ翼18,18′をサーボモー
タ17でリンク機構によつて周期的に開閉するよ
うにしたもの、第9図は可変翼ピツチ軸流フアン
19のピツチをサーボモータ17でリンク機構に
よつてサイクリングするようにしたものである。
7 to 9 specifically show this periodic blowing total pressure variation means 7. FIG. FIG. 8 shows a structure in which the damper blades 18, 18' are periodically opened and closed by a link mechanism using a servo motor 17, and FIG. is cycled by a servo motor 17 using a link mechanism.

このような送風全圧変動手段7によつて、送風
系の必要静圧10数mmAgの間を任意の周波数で発
振させ、第10図に示したような全圧サイクルを
起させたときには、そのサイクルのa〜dのとこ
ろでは第11図のa〜dに示したような気流が得
られ、その吹出方向と吹出速度が微妙に変化する
気流が得られる。
When such a blowing total pressure variation means 7 is used to oscillate the required static pressure of the blowing system at an arbitrary frequency between 10 and several mmAg to cause a total pressure cycle as shown in FIG. At points a to d of the cycle, airflows as shown in a to d of FIG. 11 are obtained, and airflows whose blowing directions and blowing speeds slightly change are obtained.

また、本発明の吹出装置は、軸方向に移動可能
な先細りの中空制御翼8をノズル部1の中央に垂
直に配置することによつて、これを基準風量設定
時のダンパ機能として働かせることができる。こ
の翼8内には吹出気流が通過するようにしてその
翼の内部空間を制御流室に構成することができ
る。この制御翼8を手動にて上下方向に移動可能
としておき、風量調節を適宜行なえるようにして
おく。これによつて、ダクトの各所に取付けられ
る本発明の吹出装置をその設置場所に応じて調節
することが可能となる。
Further, in the blowing device of the present invention, by arranging the axially movable tapered hollow control vane 8 vertically in the center of the nozzle part 1, it is possible to use it as a damper function when setting the reference air volume. can. The internal space of the blade 8 can be configured as a controlled flow chamber by allowing the airflow to pass through the blade. The control blades 8 are made manually movable in the vertical direction so that the air volume can be adjusted as appropriate. This makes it possible to adjust the blowing device of the present invention, which is attached to various locations in the duct, depending on its installation location.

以上のようにして本発明は、機械的な方向可変
翼を用いることなくして吹出方向を変化させ、し
かもその吹出速度も可変とする空気吹出装置を提
供するものであり、ダクト系に設置される吹出口
として非常に有益である。本発明装置を使用する
と、ダクト式空調システムにおいて従来では達成
できなかつたような各吹出口での吹出気流の方向
と速度の制御が自動的に行なうことができ、省エ
ネルギー的に快適な空調ができる。
As described above, the present invention provides an air blowing device that can change the blowing direction without using mechanical direction-variable blades and can also change the blowing speed, and is installed in a duct system. Very useful as an air outlet. By using the device of the present invention, it is possible to automatically control the direction and speed of the airflow at each outlet, which could not be achieved with conventional duct type air conditioning systems, and to achieve energy-saving and comfortable air conditioning. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の空気吹出装置の全体斜
視図、第2図は第1図の装置の断面図、第3〜6
図はいづれもオリフイス部分の拡大断面図であ
り、第3図はヒンジ機構、第4図は板バネ機構、
第5図はコイルバネ機構、第6図は吊りバネ機構
を示している。第7〜9図はそれぞれ送風全圧変
動手段の実施例を示す断面図、第10図は送風系
全体のサイクル図、第11図は第10図のa〜d
に対応する気流分布図である。 1……ノズル部、2,2′……ガイド、3,
3′……気流通路、4,4′……分流導入口、5,
5′……分流合流口、6,6′……オリフイス、7
……送風全圧変動手段、8……中空制御翼。
FIG. 1 is an overall perspective view of an air blowing device according to an embodiment of the present invention, FIG. 2 is a sectional view of the device shown in FIG.
Each figure is an enlarged cross-sectional view of the orifice part, and Figure 3 is the hinge mechanism, Figure 4 is the leaf spring mechanism, and Figure 4 is the hinge mechanism.
FIG. 5 shows a coil spring mechanism, and FIG. 6 shows a suspension spring mechanism. Figures 7 to 9 are cross-sectional views showing examples of the blowing total pressure varying means, Figure 10 is a cycle diagram of the entire blasting system, and Figure 11 is a to d of Figure 10.
FIG. 1... Nozzle part, 2, 2'... Guide, 3,
3'... Airflow passage, 4, 4'... Diversion inlet, 5,
5'... Diversion junction, 6, 6'... Orifice, 7
...Blowing total pressure variation means, 8...Hollow control vane.

Claims (1)

【特許請求の範囲】 1 空気ダクトから導かれた空気を吹出すための
ノズル部1と、このノズル部1から吹出された気
流を先拡がりに案内する相互に対称な2枚のガイ
ド2,2′と、このガイド2,2′の各々の背後に
設けられた気流通路3,3′と、各ガイド2,
2′に沿つて流れる気流によつて気流通路3,
3′内に空気を導くためのガイド2,2′先端部に
設けられた分流導入口4,4′と、気流通路3,
3′内の分流をノズル部1からの吹出主流近傍に
合流させるための分流合流口5,5′と、ノズル
部1に設けられ吹出空気の全圧変化によつて絞り
が変化するオリフイス6と、送風空気の送風全圧
を周期的に変動させるための送風全圧変動手段7
と、からなる吹出方向と吹出風速を可変する空気
吹出装置。 2 空気ダクトから導かれた空気を吹出すための
ノズル部1と、このノズル部1から吹出された気
流を先拡がりに案内する相互に対称な2枚のガイ
ド2,2′と、このガイド2,2′の各々の背後に
設けられた気流通路3,3′と、各ガイド2,
2′に沿つて流れる気流によつて気流通路3,
3′内に空気を導くためのガイド2,2′先端部に
設けられた分流導入口4,4′と、気流通路3,
3′内の分流をノズル部1からの吹出主流近傍に
合流させるための分流合流口5,5′と、ノズル
部1に設けられ吹出空気の全圧変化によつて絞り
が変化するオリフイス6と、送風空気の送風全圧
を周期的に変動させるための送風全圧変動手段7
と、ノズル部1の中央に垂直に設けられ軸方向に
移動可能な先細りの中空制御翼8と、からなる吹
出方向と吹出風速を可変する空気吹出装置。
[Scope of Claims] 1. A nozzle section 1 for blowing out air led from an air duct, and two mutually symmetrical guides 2, 2 that guide the airflow blown out from this nozzle section 1 in a spreading direction. ', airflow passages 3, 3' provided behind each of the guides 2, 2', and each guide 2,
2', the airflow passage 3,
Divided flow introduction ports 4, 4' provided at the tips of the guides 2, 2' for guiding air into the airflow passages 3, 3';
3', and an orifice 6, which is provided in the nozzle part 1 and whose restriction changes depending on the change in the total pressure of the blown air. , a blowing total pressure varying means 7 for periodically changing the blowing total pressure of the blowing air;
An air blowing device that varies the blowing direction and blowing speed. 2. A nozzle part 1 for blowing out air guided from an air duct, two mutually symmetrical guides 2 and 2' that guide the airflow blown out from this nozzle part 1 in a spreading direction, and this guide 2. , 2', and air flow passages 3, 3' provided behind each of the guides 2, 2'.
2', the airflow passage 3,
Divided flow introduction ports 4, 4' provided at the tips of the guides 2, 2' for guiding air into the airflow passages 3, 3';
3', and an orifice 6, which is provided in the nozzle part 1 and whose restriction changes depending on the change in the total pressure of the blown air. , a blowing total pressure varying means 7 for periodically changing the blowing total pressure of the blowing air;
and a tapered hollow control blade 8 provided vertically at the center of the nozzle portion 1 and movable in the axial direction.
JP7746080A 1980-06-09 1980-06-09 Air blowing apparatus capable of changing its air blowing direction and velocity Granted JPS572948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7746080A JPS572948A (en) 1980-06-09 1980-06-09 Air blowing apparatus capable of changing its air blowing direction and velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7746080A JPS572948A (en) 1980-06-09 1980-06-09 Air blowing apparatus capable of changing its air blowing direction and velocity

Publications (2)

Publication Number Publication Date
JPS572948A JPS572948A (en) 1982-01-08
JPS6244184B2 true JPS6244184B2 (en) 1987-09-18

Family

ID=13634615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7746080A Granted JPS572948A (en) 1980-06-09 1980-06-09 Air blowing apparatus capable of changing its air blowing direction and velocity

Country Status (1)

Country Link
JP (1) JPS572948A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015016843A (en) * 2013-07-12 2015-01-29 トヨタ自動車株式会社 Air conditioner for vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709622A (en) * 1986-04-07 1987-12-01 Bowles Fluidics Corporation Fluidic oscillator
US5259815A (en) * 1990-08-03 1993-11-09 Bowles Fluidics Corporation Air outlet with aperiodic oscillation
US5812913A (en) * 1997-01-06 1998-09-22 Minnesota Mining And Manufacturing Company Method and apparatus to dry media during electrostatic printing
JP4549053B2 (en) * 2003-11-28 2010-09-22 シャープ株式会社 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015016843A (en) * 2013-07-12 2015-01-29 トヨタ自動車株式会社 Air conditioner for vehicle

Also Published As

Publication number Publication date
JPS572948A (en) 1982-01-08

Similar Documents

Publication Publication Date Title
US5197920A (en) Element for user in a heating and air conditioning ductwork system
KR840007949A (en) Secondary air conditioner
CA1119962A (en) Fluid deflecting assembly
US4090434A (en) Variable induction apparatus with a primary fluid flow controlled induction damper
US3981326A (en) Induction mixing nozzle
JPH0316583B2 (en)
US3593645A (en) Terminal outlet for air distribution system
US2813474A (en) High velocity air distribution apparatus
US3927827A (en) Method for controlling the ventilation of an air-conditioning system
US4944098A (en) High velocity running web dryer having hot air supply means
KR970015752A (en) Multi-directional after-airport of multi-stage combustion system
US2060289A (en) Conditioning apparatus
JPS6244184B2 (en)
GB951186A (en) Vertical take-off and landing aircraft
US4316407A (en) Jet pair weir gate
CA2021680C (en) Apparatus for the controlled ventilation of rooms
CN107489777B (en) Air quantity regulating valve for air duct, variable air quantity tail end and air conditioning system
US2433981A (en) Ventilating air distributor
KR870003888A (en) Air distribution system of automobile air conditioning system
CS207783B2 (en) Facility for driving the air in the room
US5553417A (en) Fluid distribution panel and method
FI90466C (en) Method and distribution device for introducing air into a room
JPH074311A (en) Area variable type tapered/divergent nozzle
JPH1054606A (en) Blowoff outlet device
JPS5918614B2 (en) fluid deflection device