JPS624325B2 - - Google Patents

Info

Publication number
JPS624325B2
JPS624325B2 JP58110947A JP11094783A JPS624325B2 JP S624325 B2 JPS624325 B2 JP S624325B2 JP 58110947 A JP58110947 A JP 58110947A JP 11094783 A JP11094783 A JP 11094783A JP S624325 B2 JPS624325 B2 JP S624325B2
Authority
JP
Japan
Prior art keywords
reaction
cahpo
hap
ratio
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58110947A
Other languages
Japanese (ja)
Other versions
JPS605009A (en
Inventor
Yasuji Nakaso
Hiromi Nakahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP11094783A priority Critical patent/JPS605009A/en
Publication of JPS605009A publication Critical patent/JPS605009A/en
Publication of JPS624325B2 publication Critical patent/JPS624325B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dental Preparations (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はヒドロキシアパタイト(以下HApと
記す)の新規な製造法に関する。 近年、生体材料としてリン酸化合物、特に
HApが注目され、入工骨、人工歯などに用いら
れるようになつてきた。これは、HApが生体内
に埋入された場合、安全かつ化学的に安定であり
しかもそれが生体内で拒否反応を起こすことなく
自然骨と結合し治癒しやすいからである。 しかし、このように生体内で人工骨などが安全
でかつ安定なためには、これらを構成するHAp
が高純度でなければならない。例えば鉄、亜鉛、
鉛などがある程度似上含まれていれば、これらの
イオンが生体内で溶出するおそれがあることから
不安定かつ有毒である。 一般に、HApの合成法としては、大気圧下で
の水溶液反応及び水熱反応による湿式法と高温下
の固相反応による乾式法の二つがあるが高温下で
の固相反応は1000℃以上の高温で長時間の焼成が
必要であり、装置も高価となり工業的なものでは
ない。また水溶液反応による方法としては、リン
酸の中和による方法があるが、反応速度が大き
く、得られる沈殿物がコロイド状となるため取扱
いや操作が不便であり、また、前記したごとく
HApは不純物の極めて少ないものが要求される
ため、粗リン酸を原料とする場合には、不純物除
去が極めてやつかいなものである。 一方、湿式法のうち、水熱反応による方法とし
て、CaHPO4またはCaHPO4・2H2OとCa(OH)2
の反応によるHApの製造法が提案されており、
(特開昭53−111000号)、この方法はそれぞれの原
料を固体混合し、この混合物をオートクレーブを
用いて、100〜500℃、1〜500気圧の熱水条件下
で水熱反応させることにより結晶性HApを製造
するものである。 しかし、この方法は、反応条件が過酷なため反
応装置が高価となり、エネルギーコストも高くな
いという欠点を有する。 本発明者らは、これら従来法の欠点を解消すべ
く鋭意検討をおこない、水溶液反応の工業的有利
さに着目し、CaHPO4またはCaHPO4・2H2Oと
Ca(OH)2の水溶液反応によりHApは得る全く新
規な方法に到達したものである。 すなわち、本発明は、CaHPO4または
CaHPO4・2H2Oと水のスラリー溶液に反応温度
5〜100℃でCa/pモル比1.6まではPHを10以下
に保ちながらCa(OH)2を添加し、反応をおこな
わせること特徴とするHAp製造法で、従来法に
比較し温和な反応条件で短時間で容易に製造でき
ることから、高価な反応装置等を必要としない極
めて経済的に有利な方法である。 本発明をさらに詳しく説明すると、CaHPO4
たはCaHPO4・2H2OとCa(OH)2の基本反応式は
下記のように示される。 6CaHPO4+4Ca(OH)2 →Ca10(PO46(OH)2↓+6H2O ……… 6CaHPO42H2O+4Ca(OH)2 →Ca10(PO46(OH)2↓+18H2O ……… この場合、CaHPO4またはCaHPO4・2H2Oと水
のスラリー溶液に反応温度100℃以下で当量のCa
(OH)2を一挙に投入しても反応は極めて遅く
HApは生成し難い。しかしながら本発明者等の
研究の結果CaHPO4スラリー溶液に各反応速度を
超えない範囲でCa(OH)2を連続的または断続的
に供給する場合、具体的には反応液のPH値が特定
の値以上にならないよう調節しながらCa(OH)2
溶液を供給すれば、反応は容易に進行し、完結す
ることが明らかとなつた。本反応はPHの制御が大
きな要素で、例えば、出発原料CaHPO4反応温度
85℃に於ては反応液仕込みCa/P比(モル比)
が約1.6まではPH10以下、好ましくはPH8.0以下の
領域で反応させる。その後反応液仕込みCa/P
比1.60から1.67まではPH7〜11.0で反応を行ない
理論Ca/P比1.67のHApを合成する。 本反応は、反応時のPHが極めて重要な因子であ
り、反応を完結させるためにはPH制御に十分留意
する必要があり、特にCa/Pモル比1.6まではPH
を10以下に保たない場合には未反応のCaHPO4
たはCaHPO4・2H2Oが残存し、HApが得られな
いものである。 反応温度は、通常5〜100℃であるが、反応を
速く進行させるためには、CaHPO4原料において
は70〜100℃、CaHPO4・2H2O原料においては30
〜100℃が好ましい。5℃以下においては、反応
の進行が遅くなり、好ましくなく、また100℃以
上では反応が短時間で容易に進行するが、オート
クレーブ等を必要とすることからHApを大量に
製造するには好ましくない。 また、生成物HApのCa/P比はCa(OH)2供給
量(仕込みCa/P比)を変えることにより、
CaHPO4原料でCa/P比1.56〜1.67、CaHPO4
2H2O原料でCa/P比1.48〜1.67のHApを要易に
得ることができる。 さらに本発明において、使用するCa(OH)2
粉末、スラリーどちらで供給しても構わない。ま
た生成物HApへのCO2− イオンの混入をできるだ
け低く押えるためには、不活性ガス(例えばN2
など)雰囲気下で反応させることが望ましい。 本発明で得られるHApは第1表に示す如く、
微粒子針状粉末であり、そのままもしくはその他
のセルロース、コラーゲン等の有機物と共に成
型、焼結、または他の有機、無機マトリツクスと
の復合体として、生成材料として使用できる外、
クロマトグラフイー充填剤系としての用途にも十
分使用できる。
The present invention relates to a novel method for producing hydroxyapatite (hereinafter referred to as HAp). In recent years, phosphoric acid compounds, especially
HAp has attracted attention and has come to be used in artificial bones, artificial teeth, etc. This is because when HAp is implanted in a living body, it is safe and chemically stable, and moreover, it fuses with natural bone without causing any rejection reaction in the living body and is easily healed. However, in order for artificial bones to be safe and stable in vivo, it is necessary to
must be of high purity. For example, iron, zinc,
If it contains a certain amount of lead, etc., it is unstable and toxic because these ions may be eluted in the living body. In general, there are two methods for synthesizing HAp: a wet method using an aqueous solution reaction and a hydrothermal reaction under atmospheric pressure, and a dry method using a solid phase reaction at high temperatures. It requires firing at a high temperature for a long time, and the equipment is expensive and not suitable for industrial use. In addition, as a method using an aqueous solution reaction, there is a method using phosphoric acid neutralization, but the reaction rate is high and the resulting precipitate is colloidal, making it inconvenient to handle and operate.
Since HAp is required to have extremely few impurities, it is extremely difficult to remove impurities when crude phosphoric acid is used as a raw material. On the other hand, among the wet methods, a method based on a hydrothermal reaction uses CaHPO 4 or CaHPO 4 2H 2 O and Ca(OH) 2
A method for producing HAp by the reaction of
(Japanese Unexamined Patent Publication No. 53-111000), this method involves mixing each raw material in solid form and subjecting this mixture to a hydrothermal reaction using an autoclave under hydrothermal conditions of 100 to 500°C and 1 to 500 atm. This is to produce crystalline HAp. However, this method has the disadvantage that the reaction conditions are harsh, the reaction equipment is expensive, and the energy cost is not high. The present inventors conducted intensive studies to eliminate the drawbacks of these conventional methods, and focused on the industrial advantages of aqueous reaction, and developed a method for reacting with CaHPO 4 or CaHPO 4.2H 2 O.
We have achieved a completely new method of obtaining HAp by reacting Ca(OH) 2 in an aqueous solution. That is, the present invention provides CaHPO4 or
A characteristic feature of the reaction is to add Ca(OH) 2 to a slurry solution of CaHPO 4 2H 2 O and water at a reaction temperature of 5 to 100°C and maintain the pH below 10 until the Ca/p molar ratio is 1.6. This is an extremely economically advantageous method that does not require expensive reaction equipment, as it can be easily produced in a short time under milder reaction conditions than conventional methods. To explain the present invention in more detail, the basic reaction formula between CaHPO 4 or CaHPO 4 .2H 2 O and Ca(OH) 2 is shown below. 6CaHPO 4 +4Ca(OH) 2 →Ca 10 (PO 4 ) 6 (OH) 2 ↓+6H 2 O ……… 6CaHPO 4 2H 2 O+4Ca(OH) 2 →Ca 10 (PO 4 ) 6 (OH) 2 ↓+18H 2 O ...... In this case, an equivalent amount of Ca is added to a slurry solution of CaHPO 4 or CaHPO 4 2H 2 O and water at a reaction temperature of 100°C or less.
Even if (OH) 2 is added all at once, the reaction is extremely slow.
HAp is difficult to generate. However, as a result of the research conducted by the present inventors, when Ca(OH) 2 is continuously or intermittently supplied to the CaHPO 4 slurry solution within a range that does not exceed each reaction rate, it is found that the PH value of the reaction solution reaches a certain level. Ca(OH) 2 while adjusting so as not to exceed the value.
It has become clear that if a solution is supplied, the reaction proceeds easily and is completed. Control of pH is a major factor in this reaction, for example, the starting material CaHPO 4 reaction temperature
At 85℃, Ca/P ratio (molar ratio) charged in the reaction solution
is about 1.6, the reaction is carried out at a pH of 10 or lower, preferably PH8.0 or lower. After that, prepare the reaction solution Ca/P
When the ratio is from 1.60 to 1.67, the reaction is carried out at pH 7 to 11.0 to synthesize HAp with a theoretical Ca/P ratio of 1.67. In this reaction, the PH during the reaction is an extremely important factor, and in order to complete the reaction, it is necessary to pay sufficient attention to PH control, especially when the Ca/P molar ratio is 1.6.
If it is not kept below 10, unreacted CaHPO 4 or CaHPO 4.2H 2 O remains and HAp cannot be obtained. The reaction temperature is usually 5 to 100°C, but in order to make the reaction proceed quickly, it is 70 to 100°C for CaHPO4 raw material and 30°C for CaHPO42H2O raw material.
~100°C is preferred. At temperatures below 5°C, the reaction progresses slowly, which is undesirable. At temperatures above 100°C, the reaction progresses easily in a short time, but requires an autoclave, etc., which is not desirable for mass production of HAp. . In addition, the Ca/P ratio of the product HAp can be adjusted by changing the amount of Ca(OH) 2 supplied (the charged Ca/P ratio).
CaHPO4 raw material, Ca/P ratio 1.56-1.67, CaHPO4
HAp with a Ca/P ratio of 1.48 to 1.67 can be easily obtained using 2H 2 O raw material. Furthermore, in the present invention, the Ca(OH) 2 used may be supplied in the form of powder or slurry. In addition, in order to suppress the contamination of CO 2-3 ions into the product HAp as low as possible, inert gas (e.g. N 2
etc.) It is desirable to conduct the reaction in an atmosphere. As shown in Table 1, HAp obtained by the present invention is as follows:
It is a fine needle-shaped powder, and can be used as a production material as it is or with other organic materials such as cellulose and collagen, molded or sintered, or as a composite with other organic or inorganic matrices.
It can also be used satisfactorily as a chromatographic packing system.

【表】 以下本発明の実施例をあげて詳述する。 実施例 1〜9 第1図に示される反応装置を用いてHApの製
造を行なつた。 即ち、温水ジヤケツト2を施したSUS304製60
反応装置に撹拌機3、PH計4、温度計5、蓋と
しての天抜7、還流冷却器6を配置し、内部に
CaHPO4またはCaHPO4・2H2Oを水と共に第2表
に示される組成に仕込んだのち加温する。反応温
度が所定の値(第2表)になつたら別に配置され
た撹拌機10付きの石灰乳タンク8から温水ジヤ
ケツト9により予熱された10%石灰孔をポンプ1
1より反応装置1に供給する。(実施例5、9は
粉末で投入)サンプリングによりCa/Pモル比
が1.56〜1.60まではPH10以下となるように石灰乳
を供給し、その後PH7〜12でCa/Pモル比を所
定量になるよう石灰乳を供給し反応を行なわせ
る。反応終了後生成物を瀘過、水洗、乾燥した結
果を第2表に示す。各反応時間におけるCa/P
モル比およびPHの関係を第4〜第12図に示す。
(図中実線はCa/Pモル比を点線はPHを示す。 また、実施例1、6のX線回折パターンを第2
図A,Bに、実施例1、6の電子顕微鏡写真を第
3図A,Bに示す。
[Table] The present invention will be described in detail below with reference to Examples. Examples 1 to 9 HAp was produced using the reaction apparatus shown in FIG. That is, SUS304 made with hot water jacket 260
A stirrer 3, a PH meter 4, a thermometer 5, a ceiling 7 as a lid, and a reflux condenser 6 are placed in the reactor.
CaHPO 4 or CaHPO 4.2H 2 O is charged with water to the composition shown in Table 2, and then heated. When the reaction temperature reaches a predetermined value (Table 2), pump 1 pumps the 10% lime hole preheated by hot water jacket 9 from lime milk tank 8 with stirrer 10 located separately.
1 to the reactor 1. (Examples 5 and 9 were added as powder) Milk of lime was supplied so that the Ca/P molar ratio was 1.56 to 1.60 by sampling so that the pH was 10 or less, and then the Ca/P molar ratio was adjusted to a predetermined amount at PH7 to 12. Supply milk of lime so that the reaction takes place. After the reaction was completed, the product was filtered, washed with water, and dried. The results are shown in Table 2. Ca/P at each reaction time
The relationship between molar ratio and PH is shown in FIGS. 4 to 12.
(The solid line in the figure shows the Ca/P molar ratio, and the dotted line shows the PH. In addition, the X-ray diffraction patterns of Examples 1 and 6 are
Figures A and B show electron micrographs of Examples 1 and 6, and Figures 3 A and B show electron micrographs of Examples 1 and 6.

【表】 比較例 1 CaHPO4 3.0Kg、H2O 35Kgを反応槽に仕込み温
度85℃でCa(OH)2スラリーを一挙に供給し、仕
込みCa/P比を1.67にした。反応液PH10.8反応時
間120Hrで生成物を取り出し、瀘過、乾燥した。
これをX線回折装置で分析した結果、HApは全
く認められなかつた。X線回折パターンを第2図
Cに示す。 比較例 2 CaHPO42H2O 3.8Kg、H2O 35Kgを反応槽に仕
込み温度50℃で、Ca(OH)2スラリーを一挙に供
給し、仕込みCa/P比を1.67にした。反応液PH
11.4、反応時間72Hrで生成物を取り出し、瀘
過、乾燥した。これをX線回折装置で分析した結
果、HApは、ごく僅か認められた。X線回折パ
ターンを第2図Dに示す。 比較例 3 CaHPO4 3Kg、H2O 38Kgを反応槽に仕込み温
度85℃で、Ca(OH)2スラリーの一部をPH10.5ま
で一挙に供給、その後、Ca(OH)2スラリーをPH
10.2〜10.8の領域になるように徐徐に供給し、仕
込みCa/P比を1.67にした。反応時間50Hrで生
成物を取り出し瀘過、水洗、乾燥した。これをX
線回折装置で分析した結果、HApは、ごく僅か
認められた。各反応時間におけるCa/Pモル比
およびPHの関係を第13図に示す。(図中、実線
はCa/Pモル比を、破線はPHを示す。) 比較例 4 CaHPO4 3Kg、H2O 35Kgを反応槽に仕込み温
度85℃でCa(OH)2スラリーの一部をPH10.2まで
一挙に供給、その後、PH8.5まで下がつた時点か
ら再びCa(OH)2スラリーを仕込みCa/P比1.58
までPH10以下になるように供給し、仕込みCa/
P比を1.60にした。反応時間48Hrで生成物を取
り出し瀘過、水洗、乾燥した。これをX線回折装
置で分析した結果、HApと未反応のCaHPO4が少
量残つた。各反応時間におけるCa/Pモル比お
よびPHの関係を第14図に示す。(図中、実線は
Ca/Pモル比を、破線はPHを示す。)
[Table] Comparative Example 1 3.0 kg of CaHPO 4 and 35 kg of H 2 O were charged into a reaction tank, and Ca(OH) 2 slurry was supplied all at once at a temperature of 85°C, so that the charged Ca/P ratio was 1.67. The reaction solution had a pH of 10.8, and the reaction time was 120 hours, and the product was taken out, filtered, and dried.
When this was analyzed using an X-ray diffraction device, no HAp was detected. The X-ray diffraction pattern is shown in Figure 2C. Comparative Example 2 3.8 kg of CaHPO 4 2H 2 O and 35 kg of H 2 O were charged into a reaction tank, and at a temperature of 50° C., Ca(OH) 2 slurry was supplied all at once, and the charged Ca/P ratio was set to 1.67. Reaction solution PH
11.4. After a reaction time of 72 hours, the product was taken out, filtered, and dried. As a result of analyzing this with an X-ray diffraction device, very little HAp was observed. The X-ray diffraction pattern is shown in Figure 2D. Comparative Example 3 3Kg of CaHPO 4 and 38Kg of H 2 O were charged into a reaction tank at a temperature of 85°C, and a portion of the Ca(OH) 2 slurry was supplied all at once to a pH of 10.5, and then the Ca(OH) 2 slurry was heated to a pH of 10.5.
The Ca/P ratio was adjusted to 1.67 by gradually feeding the Ca/P ratio in the range of 10.2 to 10.8. After a reaction time of 50 hours, the product was taken out, filtered, washed with water, and dried. This is X
As a result of analysis using a line diffraction device, very little HAp was observed. FIG. 13 shows the relationship between Ca/P molar ratio and PH at each reaction time. (In the figure, the solid line indicates the Ca/P molar ratio, and the broken line indicates the PH.) Comparative Example 4 3 kg of CaHPO 4 and 35 kg of H 2 O were charged into a reaction tank, and a portion of the Ca(OH) 2 slurry was added at a temperature of 85°C. Supply the Ca(OH) 2 slurry all at once until the pH reaches 10.2, then once the pH drops to 8.5, the Ca/P ratio becomes 1.58.
Supplied so that the pH is below 10, and the
The P ratio was set to 1.60. After a reaction time of 48 hours, the product was taken out, filtered, washed with water, and dried. Analysis of this with an X-ray diffraction device revealed that a small amount of CaHPO 4 remained unreacted with HAp. FIG. 14 shows the relationship between Ca/P molar ratio and PH at each reaction time. (In the figure, the solid line is
The broken line shows the Ca/P molar ratio and the PH. )

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するために用いる装置の
1例であり、第2図は実施例1、6、比較例1、
2により得られた生成物のX線回折パターンであ
る。第3図は実施例1、6により得られた生成物
の顕微鏡写真である。第4図〜第14図は実施例
1〜9、比較例3、4における各反応時間での
PH、Ca/Pモル比の関係を示すグラフである。
Fig. 1 shows an example of the apparatus used to carry out the present invention, and Fig. 2 shows Examples 1 and 6, Comparative Example 1,
2 is an X-ray diffraction pattern of the product obtained by 2. FIG. 3 is a micrograph of the products obtained in Examples 1 and 6. Figures 4 to 14 show the results at each reaction time in Examples 1 to 9 and Comparative Examples 3 and 4.
It is a graph showing the relationship between PH and Ca/P molar ratio.

Claims (1)

【特許請求の範囲】[Claims] 1 CaHPO4またはCaHPO4・2H2Oと水のスラリ
ー溶液に反応温度5〜100℃でCa/pモル比1.6
まではPHを10以下に保ちながらCa(OH)2を添加
し反応をおこなわせることを特徴とするヒドロキ
シアパタイトの製造方法。
1 CaHPO 4 or CaHPO 4 2H 2 O and water slurry solution at a reaction temperature of 5 to 100°C and a Ca/p molar ratio of 1.6.
The method for producing hydroxyapatite is characterized by adding Ca(OH) 2 and carrying out the reaction while keeping the pH below 10.
JP11094783A 1983-06-22 1983-06-22 Preparation of hydroxy apatite Granted JPS605009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11094783A JPS605009A (en) 1983-06-22 1983-06-22 Preparation of hydroxy apatite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11094783A JPS605009A (en) 1983-06-22 1983-06-22 Preparation of hydroxy apatite

Publications (2)

Publication Number Publication Date
JPS605009A JPS605009A (en) 1985-01-11
JPS624325B2 true JPS624325B2 (en) 1987-01-29

Family

ID=14548577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11094783A Granted JPS605009A (en) 1983-06-22 1983-06-22 Preparation of hydroxy apatite

Country Status (1)

Country Link
JP (1) JPS605009A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246908A (en) * 1985-08-23 1987-02-28 Natl Inst For Res In Inorg Mater Production of hydroxyapatite

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111000A (en) * 1977-03-11 1978-09-28 Tokyo Ika Shika Daigakuchiyou Method of making caoop205 base apatite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111000A (en) * 1977-03-11 1978-09-28 Tokyo Ika Shika Daigakuchiyou Method of making caoop205 base apatite

Also Published As

Publication number Publication date
JPS605009A (en) 1985-01-11

Similar Documents

Publication Publication Date Title
CA1297656C (en) Process of preparing hydroxylapatite
US4216190A (en) Method for making β-form aluminum trimetaphosphate
JPH0369844B2 (en)
US4333914A (en) Method for making aluminum trimetaphosphates from powder reactants
JPS624325B2 (en)
JPH0415166B2 (en)
JPS5951485B2 (en) Production method of CaO-P↓2O↓5-based apatite
JPS63159207A (en) Production of hydroxyapatite
JPS6246908A (en) Production of hydroxyapatite
JPS61151011A (en) Production of carbonic acid-containing hydroxy apatite
JPH07106887B2 (en) Method for producing strontium hydroxyapatite powder
JPH0324405B2 (en)
JPH0578109A (en) Production of hydroxyapatite
JP3262233B2 (en) Method for producing calcium phosphate
JP2775644B2 (en) Wet production of α-type tricalcium phosphate cement
JPH0324404B2 (en)
JPH0297409A (en) Production of natural hydroxyapatite
JPH0940407A (en) Production of tetracalcium phosphate
JPH05170413A (en) Production of hydroxyapatite
JPS6344683B2 (en)
JPS62252307A (en) Wet synthesis of hydroxy apatite
JPS58161911A (en) Manufacture of beta-form calcium tertiary phosphate
JP2989260B2 (en) Method for producing hydroxyapatite
WO2000068144A1 (en) Method for the preparation of carbonated hydroxyapatite compositions
JPH0193408A (en) Production of hydroxyapatite or tricalcium phosphate using rice bran as raw material