JPS6242765B2 - - Google Patents

Info

Publication number
JPS6242765B2
JPS6242765B2 JP53073279A JP7327978A JPS6242765B2 JP S6242765 B2 JPS6242765 B2 JP S6242765B2 JP 53073279 A JP53073279 A JP 53073279A JP 7327978 A JP7327978 A JP 7327978A JP S6242765 B2 JPS6242765 B2 JP S6242765B2
Authority
JP
Japan
Prior art keywords
strength
gypsum
extrusion
product
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53073279A
Other languages
Japanese (ja)
Other versions
JPS55236A (en
Inventor
Ryoichi Morya
Takao Tanigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI TETSUKU KK
Original Assignee
KANSAI TETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI TETSUKU KK filed Critical KANSAI TETSUKU KK
Priority to JP7327978A priority Critical patent/JPS55236A/en
Publication of JPS55236A publication Critical patent/JPS55236A/en
Publication of JPS6242765B2 publication Critical patent/JPS6242765B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、2水石こうの押出し成形に関する。 石こうを押出し機によつて押出し、棒、パイ
プ、ハニカム等に成形することは白黒以外ほとん
ど行なわれていない。それも通常は焼石こう
(CaSO4・1/2H2O)を主原料として、これに2水
化遅延剤を加えて、焼石こうの2水化による硬化
時間を遅らせ、硬化前に押出機を通過させて成形
してしまう方法によつている。 ところが、この方法ではニーダーによつて混練
する時間と混練した材料が押出機を通過してしま
うまでの時間の和以上の間、材料が可塑性を保つ
ていなければならない。そのためには、強力な2
水化遅延剤を多量に配合することを要するので、
これが製品の強度を低下し、あるいは製品の用途
によつては2水化遅延剤の化学的性質が悪影響を
The present invention relates to extrusion of dihydrate gypsum. Extruding gypsum using an extruder and forming it into rods, pipes, honeycombs, etc. is rarely done other than in black and white. Usually, calcined gypsum (CaSO 4 1/2H 2 O) is used as the main raw material, and a dihydration retardant is added to this to delay the curing time of calcined gypsum due to dihydration, and the extruder is started before curing. It depends on the method of passing it through and forming it. However, in this method, the material must remain plastic for a period longer than the sum of the kneading time in the kneader and the time until the kneaded material passes through the extruder. For that purpose, we need two powerful
Since it is necessary to incorporate a large amount of hydration retardant,
This may reduce the strength of the product or, depending on the product's use, the chemistry of the dihydration retarder may be adversely affected.

【表】【table】

【表】 が最高に達する時間
第1表の結果から明らかなとおり、何れの2水
化遅延剤も触媒活性を10%以上低下せしめている
ことが判る。しかも表の配合率では、硬化時間が
短く、押出し成形のためには、十分な遅延時間を
与えているとは言えない。 例えばアミノ酸リターダの場合4%加え実際の
押出し成形は可能となつたが、このときの脱硝率
は45%と非常に悪い。ペプトンの場合でも実用的
には数%以上入れる必要があるので、活性率は非
常に低下する。 本発明は、この点を改良すべく種々検討した結
果、すでに2水化している石こう粉(CaSO4
2H2O)に着目し、これを水で混練して押出すな
らば、もはや硬化時間を心配することなく、必要
なだけの時間をかけて押出すことができ、その後
に乾燥して水(附着水)を除けば、焼石こうを用
いて押出し成形したものと同じ2水石こうの成形
品となる筈であると予測した。しかしながら、実
際に2水石こうに水を加えて押出し成形したとこ
ろつぎのような問題があつた。 (1) 押出し性(可塑性)が悪い。 混練時の水分が少ないと固くて押出し不能と
なり、また脱水してますます固くなつてしま
う。水分を多くすると押出されたものが軟かす
ぎて変形してしまうので、所要の形状のものが
得られない。結局、適当な押出し性を持たせる
水分の配合比の範囲はない。 (2) 強度が弱い。 焼石こうの場合は、加水により一旦スラリー
となり、これが2水石こうの結晶として成長し
つつ固体化する。このため、結晶のからみ合い
が密となつて強度が強くなるが、2水石こう粉
の場合は、押出し成形したものは単に粉の集合
体であるので強度が弱い。 本発明はかかる問題点をふまえてなされたもの
で、2水石こう粉を主原料とし、これに増粘、増
強剤を配合したものに水を加えて混練し、押出し
成形することを特徴とする2水石こうの押出し成
形法である。本発明はまた、2水石こう粉を主原
料とし、これに増粘、増強剤を配合したものに、
さらにチタニウム、バナジウム、鉄、ほう素を有
効成分とする化合物の一種以と水を加えて混練
し、押出し成形することを特徴とする脱硝用触媒
の押出し成形にも適応できる。これら本発明に用
いられる増粘、増強剤としては、メチルセルロー
ス、超微粉シリカ、粘土、ベントナイトの単独あ
るいは組合せたものが用いられる。 脱硝触媒として成形する場合は、チタニウム、
バナジウム、鉄、ほう素を有効成分とする化合物
としては、TiO2、VOSO4、FeSO4、H3BO3など
が主として用いられ、これらは触媒成分として有
効である。 押出し性の改良を目的とした増粘剤としては、
前述のとおり、少量の配合でも効果の強いものと
してメチルセルローズを超微粉シリカを選定し
た。第1図は2水石こう粉にメチルセルローズを
加えた場合の各配合割合別の押出しテスト結果を
示す。第2図は同じく超微粉シリカの場合を示
す。メチルセルローズの場合0.1%の配合では押
出し荷重が上昇し、遂に脱水し始めて押出し不能
となるが、0.2〜0.5%の配合によつて、ほぼ一定
の押出し荷重で連続的に押出すことが可能とな
る。超微粉シリカの場合は、2%ではまだ押出し
性はよくないが、4〜6%では連続押出し可能と
なつた。また、メチルセルローズ、超微粉シリカ
ともに押出し後の変形もない。両者を併用(メチ
ルセルローズ0.3%、超微粉シリカ2.0%)すると
第3図の如く、かなり固目の練り工合で、押出し
荷重が40Kgと高くなつてもそのままの荷重で押出
し可能となつた。固目の方が押出し後の変形が少
ないのは勿論である。 増粘剤としてさらに粘土系に着目してテストを
した。第4図はベントナイト10%、第5図は粘土
10%を加えたもののテスト結果であるが、固練り
で高荷重となつても押出し可能である。 このように押出し性充分な配合剤が得られたの
でこれによつて20φ×14φあるいは30φ×21φの
パイプその他ハニカム、異形断面品等を実用押出
機によつて実用生産規模で押出し生産して、押出
し性の実用性を確認した。また曲げ強度を測定し
て増粘剤の増強効果を調査し、さらにまた触媒用
のものはその脱硝率を測定した。これらの結果を
実施例によつて逐次説明する。 実施例 1 これはもつとも基本的なものとして、2水石こ
う粉に超微粉シリカのみを5%添加して混練後押
出し成型した。常温乾燥物の曲げ強度は0.5Kg/
mm2、380℃で3時間乾燥して結晶水を発散せしめ
て無水石こう化せしめたものの強度は略0.23Kg/
mm2である。 (注1) かかる製品の強度は製造時の条件、製造
後強度測定までの時間的、環境的影響を受けて
いる。 (注2) 380℃で乾燥するのは、本発明の主要な目
的に一つとして脱硝触媒の製造があり、かかる
触媒が380℃程度の被毒ガス中に装着された状
態での強度を比較し改良するためである。 実施例 2 これは粘土の効果をみるもので2水石こう粉に
木節粘土を10%添加して混練後押出し成型した。
常温曲げ強度は1.35Kg/mm2、380℃乾燥品曲げ強
度は0.83Kg/mm2と、著しく強くなつている。 なお、焼石こうに加水してスラリー化し、これ
を注型して2水化による硬化によつて成型した通
常の石こう成型品の常温乾燥品の曲げ強度は、α
焼石こうからの成型品で1.5Kg/mm2、β焼石こう
からの成型品は0.45Kg/mm2であるので本実施例で
はα焼石こうの注型品に匹敵する強度が得られて
いることが判つた。 実施例 3 これは脱硝用触媒として活性剤を添加したもの
の基本的な例である。 2水石こう粉80%とTiO220%との混合物に
FeSO4をFe分として0.25%、VOSO4をV分とし
て0.75%、メチルセルローズ0.3%、超微粉シリ
カ2.0%、H3BO32.5%を添加して混練後押出し成
型した。製品の380℃乾燥品の曲げ強度はほぼ
0.09〜0.12Kg/mm2であつた。 実施例 4 実施例3の配合に本節粘土を10%(外割)加え
て混練し、押出し成型した。380℃乾燥品の曲げ
強度は0.33〜0.41Kg/mm2と大巾に向上し、常温乾
燥品強度も1.54〜1.78Kg/mm2となつて、α焼石こ
う注型品の強度に匹敵するものである。 実施例 5 実施例3の配合にベントナイトを10%(外割)
加えて混練し、押出し成型した。常温乾燥品の曲
げ強度は1.89〜2.08Kg/mm2、380℃乾燥品の曲げ
強度は0.74〜0.78Kg/mm2であり、α焼石こう注型
品よりも30%程度も強度が高くなつた。 実施例 6 実施例3の配合に、木節粘土5%、ベントナイ
ト5%を加えて混練し、押出し成型した。常温乾
燥の曲げ強度は1.72〜1.89Kg/mm2、380℃乾燥品
の曲げ強度は0.63〜0.74Kg/mm2であり、実施例4
と実施例5との中間のものが得られた。 実施例 7 2水石こう粉42%、粘土28%、TiO230%の配
合にFeSO44.375%(Fe分として)、VOSO41.125
%(V分として)加えたものを混練後、34.5×
34.5mmの正方形の中に5×5mmの角孔を5列×5
行、合計25個設けたハニカム触媒を押出し成形し
た。380℃乾燥品の強度は0.19〜0.28Kg/mm2であ
つた。 以上のうち実施例3〜7の製品を触媒として用
い、その脱硝率を前述のリターダの場合と同じ条
件でテストした結果は、実施例3が82.5%、実施
例4が79.9%、実施例5が66.1%実施例6が74.2
%、実施例7が82.4%であつた。 以上説明したように、本発明による押出し成形
品は、一般用としても良好な押出し性と、α石こ
うに匹敵する強度をもつており、また脱硝用の成
形品にも充分実用に適するものである。
[Table] Time to reach maximum As is clear from the results in Table 1, it can be seen that all dihydration retarders reduce the catalyst activity by 10% or more. Moreover, the curing time is short with the compounding ratio shown in the table, and it cannot be said that sufficient delay time is provided for extrusion molding. For example, in the case of an amino acid retarder, it was possible to actually extrude it by adding 4%, but the denitrification rate at this time was very poor at 45%. Even in the case of peptone, it is practically necessary to add several percent or more, so the activity rate is extremely low. As a result of various studies to improve this point, the present invention was developed using gypsum powder (CaSO 4 /
2H 2 O), and if you knead it with water and extrude it, you can extrude it for as long as you need without worrying about curing time, and then dry it and mix it with water ( It was predicted that the molded product would be made of dihydrate gypsum, which is the same as that extruded using calcined gypsum, except for the water adhesion. However, when water was actually added to dihydrate gypsum and extrusion molded, the following problems occurred. (1) Poor extrudability (plasticity). If the water content during kneading is low, it will become hard and cannot be extruded, and will become even harder due to dehydration. If the water content is increased, the extruded product becomes too soft and deformed, making it impossible to obtain the desired shape. In the end, there is no range of water content that will provide adequate extrudability. (2) Weak strength. In the case of calcined gypsum, the addition of water temporarily turns it into a slurry, which solidifies while growing as dihydrate gypsum crystals. Therefore, the intertwining of the crystals becomes dense and the strength becomes strong, but in the case of dihydrate gypsum powder, the extruded product is simply an aggregate of powder and therefore has low strength. The present invention has been developed in view of these problems, and is characterized by using dihydrate gypsum powder as the main raw material, adding a thickening agent and a reinforcing agent to this, adding water, kneading, and extrusion molding. This is an extrusion molding method for dihydrate gypsum. The present invention also uses dihydrate gypsum powder as the main raw material, which contains a thickening agent and a reinforcing agent.
Furthermore, it can also be applied to extrusion molding of a denitrification catalyst, which is characterized in that one or more compounds containing titanium, vanadium, iron, or boron as active ingredients are added to water, kneaded, and then extruded. As the thickening and reinforcing agents used in the present invention, methylcellulose, ultrafine silica, clay, and bentonite may be used alone or in combination. When molded as a denitrification catalyst, titanium,
As compounds containing vanadium, iron, and boron as active ingredients, TiO 2 , VOSO 4 , FeSO 4 , H 3 BO 3 and the like are mainly used, and these are effective as catalyst components. As a thickener for the purpose of improving extrudability,
As mentioned above, ultrafine silica was selected from methyl cellulose because it is highly effective even when mixed in small amounts. Figure 1 shows the results of an extrusion test for each blending ratio when methylcellulose was added to dihydrate gypsum powder. FIG. 2 also shows the case of ultrafine silica powder. In the case of methyl cellulose, when the mixture is 0.1%, the extrusion load increases and it finally begins to dehydrate and becomes impossible to extrude, but when the mixture is 0.2 to 0.5%, it is possible to extrude continuously with a nearly constant extrusion load. Become. In the case of ultrafine silica powder, extrudability was still poor at 2%, but continuous extrusion became possible at 4 to 6%. Furthermore, neither methyl cellulose nor ultrafine silica undergoes deformation after extrusion. When both were used in combination (0.3% methylcellulose and 2.0% ultrafine silica), as shown in Figure 3, the kneading process was quite stiff, and even when the extrusion load was as high as 40 kg, extrusion was possible with the same load. Of course, the harder the material is, the less deformation occurs after extrusion. We also focused on clay-based thickeners and tested them. Figure 4 is 10% bentonite, Figure 5 is clay
The test results show that with 10% added, it is possible to extrude even if it is hardened and under a high load. Since a compound with sufficient extrudability was thus obtained, it was used to extrude and produce 20φ x 14φ or 30φ x 21φ pipes, honeycombs, irregular cross-section products, etc. on a practical production scale using a practical extruder. The practicality of extrudability was confirmed. In addition, the flexural strength was measured to investigate the reinforcing effect of the thickener, and in the case of catalysts, the denitrification rate was also measured. These results will be explained one by one using examples. Example 1 As a very basic example, only 5% of ultrafine powdered silica was added to dihydrate gypsum powder, kneaded, and then extruded. Bending strength of dry product at room temperature is 0.5Kg/
mm 2 , the strength of the anhydrous gypsum obtained by drying at 380°C for 3 hours to release crystallization water is approximately 0.23 kg/
mm2 . (Note 1) The strength of such products is influenced by the conditions at the time of manufacturing, the time taken until strength measurement after manufacturing, and the environment. (Note 2) The reason for drying at 380°C is that one of the main purposes of the present invention is to produce a denitrification catalyst, and the strength of such a catalyst installed in poisonous gas at about 380°C was compared. This is for the purpose of improvement. Example 2 This was to examine the effect of clay, and 10% Kibushi clay was added to dihydrate gypsum powder, kneaded, and then extruded.
The bending strength at room temperature is 1.35Kg/mm 2 and the bending strength when dried at 380°C is 0.83Kg/mm 2 , which is significantly higher. In addition, the bending strength of a normal gypsum molded product made by adding water to calcined gypsum to form a slurry, casting it, and hardening it by dihydration, when dried at room temperature, is α
The strength of the molded product made from baked gypsum is 1.5Kg/mm 2 , and the strength of the molded product made from β-fired gypsum is 0.45Kg/mm 2 , so in this example, the strength is comparable to that of the casted product made from α-fired gypsum. I found out. Example 3 This is a basic example in which an activator was added as a denitrification catalyst. In a mixture of 80% dihydrate gypsum powder and 20% TiO2
0.25% FeSO 4 as Fe content, 0.75% VOSO 4 as V content, 0.3% methyl cellulose, 2.0% ultrafine silica, and 2.5% H 3 BO 3 were added, and after kneading, extrusion molding was performed. The bending strength of the product dried at 380℃ is approximately
It was 0.09-0.12Kg/ mm2 . Example 4 10% (outer portion) of this clay was added to the formulation of Example 3, kneaded, and extruded. The bending strength of the product dried at 380℃ has been greatly improved to 0.33 to 0.41Kg/ mm2 , and the strength of the product dried at room temperature is 1.54 to 1.78Kg/ mm2 , which is comparable to the strength of the α-fired gypsum cast product. It is. Example 5 Added 10% bentonite to the formulation of Example 3 (outer portion)
The mixture was added, kneaded, and extruded. The bending strength of the product dried at room temperature was 1.89 to 2.08 Kg/mm 2 , and the bending strength of the product dried at 380°C was 0.74 to 0.78 Kg/mm 2 , which was about 30% higher than that of the α-fired gypsum cast product. . Example 6 5% Kibushi clay and 5% bentonite were added to the formulation of Example 3, kneaded, and extruded. The bending strength of the product dried at room temperature is 1.72 to 1.89 Kg/mm 2 , and the bending strength of the product dried at 380°C is 0.63 to 0.74 Kg/mm 2 .
A product intermediate between that of Example 5 and Example 5 was obtained. Example 7 FeSO 4 4.375% (as Fe content) and VOSO 4 1.125 in a mixture of 42% dihydrate gypsum powder, 28% clay, and 30% TiO 2
% (as V content) after kneading, 34.5×
5 rows of 5 x 5 mm square holes in a 34.5 mm square
A total of 25 honeycomb catalysts were extruded. The strength of the product dried at 380°C was 0.19 to 0.28 Kg/mm 2 . Among the above products, the products of Examples 3 to 7 were used as catalysts, and the results of testing the denitrification rates under the same conditions as for the retarder described above were 82.5% for Example 3, 79.9% for Example 4, and 79.9% for Example 5. is 66.1%, Example 6 is 74.2
%, and Example 7 was 82.4%. As explained above, the extrusion molded product of the present invention has good extrudability for general use and strength comparable to alpha gypsum, and is also fully suitable for practical use as a molded product for denitrification. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はメチルセルローズの押出し成形性のテ
スト結果、第2図は超微粉シリカの押出し成形性
のテスト結果、第3図はメチルセルローズと超微
粉シリカとを併用した場合の押出し成形性のテス
ト結果、第4図はベントナイトの押出し成形性の
テスト結果、第5図は粘土の押出成形性のテスト
結果をそれぞれ示す。
Figure 1 is the extrusion moldability test result of methyl cellulose, Figure 2 is the extrusion moldability test result of ultrafine silica powder, and Figure 3 is the extrusion moldability test result when methyl cellulose and ultrafine powder silica are used together. As a result, FIG. 4 shows the test results for the extrusion moldability of bentonite, and FIG. 5 shows the test results for the extrusion moldability of clay.

Claims (1)

【特許請求の範囲】 1 2水石こう粉を主原料とし、これを増粘、増
強剤を配合したものに水を加えて混練し、押出し
成形することを特徴とする2水石こうの押出し成
形法。 2 増粘、増強剤としてメチルセルローズ、超微
粉シリカ、粘土、ベントナイトの単独あるいは組
合せたものを用いてなる特許請求の範囲第1項記
載の2水石こうの押出し成形法。
[Claims] 1. An extrusion molding method for dihydrate gypsum, which is characterized by using dihydrate gypsum powder as the main raw material, mixing it with a thickening agent and a reinforcing agent, adding water, kneading, and extrusion molding. . 2. A method for extrusion molding dihydrite gypsum according to claim 1, which uses methyl cellulose, ultrafine silica, clay, and bentonite alone or in combination as a thickening and reinforcing agent.
JP7327978A 1978-06-19 1978-06-19 Extruding molding method of dihydric gypsum Granted JPS55236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7327978A JPS55236A (en) 1978-06-19 1978-06-19 Extruding molding method of dihydric gypsum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7327978A JPS55236A (en) 1978-06-19 1978-06-19 Extruding molding method of dihydric gypsum

Publications (2)

Publication Number Publication Date
JPS55236A JPS55236A (en) 1980-01-05
JPS6242765B2 true JPS6242765B2 (en) 1987-09-10

Family

ID=13513537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7327978A Granted JPS55236A (en) 1978-06-19 1978-06-19 Extruding molding method of dihydric gypsum

Country Status (1)

Country Link
JP (1) JPS55236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108341644A (en) * 2018-05-21 2018-07-31 中国建筑材料科学研究总院有限公司 The curing of heavy metal in a kind of dead catalyst

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171261A (en) * 1984-02-14 1985-09-04 太平洋セメント株式会社 Manufacture of incombustible gypsum board
JPS60260454A (en) * 1984-06-01 1985-12-23 塩津 静也 Chalk and manufacture
CN106966666A (en) * 2017-04-27 2017-07-21 华能国际电力股份有限公司 Method for preparing concrete by compounding waste denitration catalyst and fly ash and concrete

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969734A (en) * 1972-10-25 1974-07-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969734A (en) * 1972-10-25 1974-07-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108341644A (en) * 2018-05-21 2018-07-31 中国建筑材料科学研究总院有限公司 The curing of heavy metal in a kind of dead catalyst

Also Published As

Publication number Publication date
JPS55236A (en) 1980-01-05

Similar Documents

Publication Publication Date Title
JP3040144B2 (en) Fiber reinforced lightweight cement composition
CA1098135A (en) Cementitious compositions
JP2888629B2 (en) Fiber reinforced cement composition
JPS6242765B2 (en)
JPH0143701B2 (en)
JPS6124358B2 (en)
JPH0218301B2 (en)
JPS6228108B2 (en)
JPH03208871A (en) Production of inorganic extrusion molded body
JPS58140355A (en) Manufacture of cementitious formed body
JPH01320244A (en) Cement composition and production of cement molded product using the same composition
JPH0489341A (en) Cement composition to be extrusion-molded
JP3727504B2 (en) Manufacturing method of inorganic board
JP2001047427A (en) Manufacture of extrusion-molded hydraulic composition
JPH09235152A (en) Production of extrusion molded block having water retention
JPS6293037A (en) Press die
JP3055389B2 (en) Lightweight cement building materials
JPH01270553A (en) Production of set material of coal ash
JP2000044320A (en) Inorganic hardened body and its production
JPH06116060A (en) Lightweight cement building material
JPH0274546A (en) Extrusion molding of inorganic product
JPH1017348A (en) Cement extrusion molding aid and cement extrusion molding material
JPH04295035A (en) Cement building material product
JPH01141858A (en) Cement composition
JPH03285855A (en) Reinforced cement composition for extrusion molding