JPS6242015B2 - - Google Patents

Info

Publication number
JPS6242015B2
JPS6242015B2 JP5431780A JP5431780A JPS6242015B2 JP S6242015 B2 JPS6242015 B2 JP S6242015B2 JP 5431780 A JP5431780 A JP 5431780A JP 5431780 A JP5431780 A JP 5431780A JP S6242015 B2 JPS6242015 B2 JP S6242015B2
Authority
JP
Japan
Prior art keywords
web
residual stress
inductor
flange
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5431780A
Other languages
Japanese (ja)
Other versions
JPS56152928A (en
Inventor
Akio Izumidate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5431780A priority Critical patent/JPS56152928A/en
Publication of JPS56152928A publication Critical patent/JPS56152928A/en
Publication of JPS6242015B2 publication Critical patent/JPS6242015B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 本発明はH形鋼のウエブ部を誘導加熱すること
により残留応力を除去するための装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for removing residual stress by induction heating a web portion of an H-section steel.

通常、H形鋼ウエブの残留応力は、大きさ如何
によつては、該形鋼の脆性破断、並びに該形鋼の
構造物の耐力と変形に影響する。従つて、害のな
いレベルまで軽減することが必要である。ウエブ
残留応力発生原因は、ウエブ部とフランジ部との
温度差が圧延、冷却段階において現われ、熱応力
乃至は熱歪が生ずることにあり、これが残留応力
になつて、蓄積されるものである。第1図にH形
鋼の断面図を示すが、H形鋼はその断面性能を向
上させる為に、ウエブ板厚はフランジ板厚に比べ
て小さいので、前述圧延、冷却の過程で熱容量及
び熱放散の度合が異なり、両部間に温度差が生じ
易い。第2図はH形鋼(H912×302×18/34)の
残留応力分布を示す。
Usually, the residual stress in an H-section steel web, depending on its magnitude, affects the brittle fracture of the section steel, as well as the yield strength and deformation of the structure of the section steel. Therefore, it is necessary to reduce it to a level that does not cause any harm. The cause of web residual stress is that a temperature difference between the web portion and the flange portion appears during the rolling and cooling stages, resulting in thermal stress or thermal strain, which becomes residual stress and accumulates. Figure 1 shows a cross-sectional view of H-beam steel. In order to improve the cross-sectional performance of H-beam steel, the web thickness is smaller than the flange thickness, so during the rolling and cooling processes mentioned above, the heat capacity and heat The degree of dissipation is different, and a temperature difference is likely to occur between the two parts. Figure 2 shows the residual stress distribution of H-beam steel (H912×302×18/34).

このようにして発生した残留応力を軽減する方
法としては、 (i) 低温フランジ水冷法(特許第778265号)圧延
后、ある程度冷却されたあとフランジを水冷
し、ウエブもしくはフランジに塑性変形を与え
る。
Methods for reducing residual stress generated in this way include: (i) Low-temperature flange water cooling method (Patent No. 778265) After rolling, the flange is cooled to some extent and then water cooled to give plastic deformation to the web or flange.

本法は適用サイズが限定され、大型H形鋼で
はウエブ部が波状の変形するいわゆるウエブ波
が生じ、H形鋼のサイズ如何では実用が困難で
ある。
This method is limited to applicable sizes, and in the case of large H-beams, so-called web waves, in which the web portion is deformed in a wavy manner, occur, making it difficult to put it into practice depending on the size of the H-beam.

(ii) ウエブ加熱法 第3図に示す如く常温のH形
鋼のウエブを多条列ガスバーナー15のガス炎
16で加熱して膨張させ、ウエブに圧縮の塑性
変形を与える。
(ii) Web heating method As shown in FIG. 3, a web of H-beam steel at room temperature is heated and expanded by the gas flame 16 of the multi-row gas burner 15, thereby imparting compressive plastic deformation to the web.

本法は、略全サイズに適用し、残留応力最大
値を1/2〜1/3に軽減できるが、ガス加熱である
為極めて、非能率的(時間当りの処理量)で、
且つ薄手ウエブでは不均一加熱に起因する前述
ウエブ波が生ずることが多い。
This method can be applied to almost all sizes and can reduce the maximum residual stress to 1/2 to 1/3, but because it uses gas heating, it is extremely inefficient (processing amount per hour).
Moreover, in thin webs, the aforementioned web waves are often generated due to non-uniform heating.

(iii) 焼鈍法 H形鋼全体を加熱し除冷する。全サ
イズに適用可能である。焼鈍炉が必要で、且つ
焼鈍に長時間要し、全体を加熱するので、大量
のエネルギーを消費する。
(iii) Annealing method The entire H-beam is heated and slowly cooled. Applicable to all sizes. An annealing furnace is required, and annealing takes a long time and the entire body is heated, consuming a large amount of energy.

(iv) 機械的矯正法 橋正機により曲げ加工を与
え、局部的に塑性変形を与える。全サイズに適
用可能であるが、大形サイズの処理では装置が
相当大規模となり、設備費もかなり高く実用的
ではない。
(iv) Mechanical straightening method A bending process is applied using a bridge straightening machine to give local plastic deformation. Although it is applicable to all sizes, processing of large sizes requires a considerably large scale equipment, and the equipment cost is also quite high, making it impractical.

以上述べたのは、残留応力が発生した後の処理
方法である。しかしながら残留応力を発生せしめ
ないことが、より本質的問題解決となる。
What has been described above is a treatment method after residual stress is generated. However, preventing residual stress from occurring is a more fundamental solution to the problem.

即ち第4図はフランジとウエブの温度差と残留
応力の関係を示し、圧延直后のH形鋼冷却過程
で、フランジとウエブの温度差がAr1変態点で、
所定温度差内であれば残留応力は小さいことがわ
かる。これを、実現する為にウエブに対し相対的
に温度の高いフランジに対して強制水冷し、温度
差を少くする方法が一部実用されている。しかし
この方法では、高温でのフランジの水冷による、
該部の材質の変化を伴い、汎用することは困難で
ある。
In other words, Figure 4 shows the relationship between the temperature difference between the flange and the web and the residual stress.
It can be seen that the residual stress is small if the temperature difference is within a predetermined temperature difference. To achieve this, some methods have been put into practice in which the flange, which has a relatively high temperature relative to the web, is forcedly cooled with water to reduce the temperature difference. However, this method uses water cooling of the flange at high temperature.
Due to changes in the material of the part, it is difficult to use it for general purposes.

本発明は従来のかゝる欠点に鑑みこれを解決す
るためになされたものである。
The present invention has been made in view of these drawbacks of the conventional art.

即ち、本発明装置は、H形鋼の圧延終了后の放
熱中または冷却終了后に、該形鋼のウエブの上面
及び下面に各々インダクターを近接して、且つ該
インダクターポール数の増加方向と該ウエブ巾方
向とが略直交するように配置して、該ウエブの移
動中にトランスバースフラツクスヒーテイングし
て、該ウエブでの残留応力成生の抑制または発生
した残留応力の除去を行うものである。
That is, the apparatus of the present invention places an inductor in close proximity to the upper and lower surfaces of the web of the H-shaped steel during heat dissipation after rolling or after cooling, and in the direction of increase in the number of inductor poles. A device that is arranged so that the web width direction is substantially perpendicular to the web width direction and performs transverse flux heating while the web is moving to suppress the generation of residual stress in the web or remove the generated residual stress. It is.

次に本発明装置について図面を示して説明す
る。第5図に、本装置の構成例を示す。1:H形
鋼ウエブ、2:H形鋼フランジでこのH形鋼のウ
エブ1の上面及び下面に夫々上インダクター3、
下インダクター3′が配置されている。
Next, the apparatus of the present invention will be explained with reference to the drawings. FIG. 5 shows an example of the configuration of this device. 1: H-shaped steel web, 2: H-shaped steel flange, and an upper inductor 3 on the upper and lower surfaces of the H-shaped steel web 1, respectively.
A lower inductor 3' is arranged.

4,4′は上、下インダクターの各々のターミ
ナル、5,5′は上、下インダクターの給電ケー
ブル、この図ではインダクターの支持機構、電源
等は省略である。又本例でのインダクターの構造
は3ポール、1巻線式で、上、下一対と為すイン
ダクターであるが、ポール数及び巻線数は、これ
に限定しない。
4 and 4' are terminals of the upper and lower inductors, 5 and 5' are power supply cables for the upper and lower inductors, and the inductor support mechanism, power supply, etc. are omitted in this figure. Further, the structure of the inductor in this example is a three-pole, one-winding type inductor with an upper and a lower pair, but the number of poles and the number of windings are not limited to this.

第6図に本装置によるウエブの加熱原理を示
す。1はH形鋼ウエブで、3,3′は各々上、下
インダクター、6,6′は各インダクターコイ
ル、7は磁束で矢印はその方向を示す。8は誘導
電流である。本図で凸部がポールで上、下インダ
クター各々3ポール有している。磁束7はウエブ
1を介して互にむかいあう。上、下インダクター
3,3′のポールの面の間を、走る時に、該ウエ
ブ1内で、誘起起電力を発生し、該ウエブを加熱
する。該ウエブ1中の、・○は誘導電流の方向を
示す。
FIG. 6 shows the principle of heating the web by this apparatus. 1 is an H-shaped steel web, 3 and 3' are upper and lower inductors, 6 and 6' are each inductor coil, and 7 is a magnetic flux, and the arrow indicates its direction. 8 is an induced current. In this figure, the convex portions are poles, and the upper and lower inductors each have three poles. The magnetic fluxes 7 face each other via the web 1. When running between the surfaces of the poles of the upper and lower inductors 3 and 3', an induced electromotive force is generated within the web 1 and heats the web. In the web 1, .largecircle. indicates the direction of induced current.

第7図は、上記関係を、ウエブの上面からみた
ものである。符号は第6図と同一である。但し矢
印は電流の方向、、・○は磁束の方向になつてい
る。ウエブ内での発熱は、誘導電流8の流れに沿
つて発生するので、ウエブが静止していると、ウ
エブ長さ方向に均一に加熱されない。ウエブ移動
中加熱すると均一に加熱される。インダクターポ
ール増加方向と、ウエブ巾方向との関係を、規定
したのも同一理由からである。尚、誘導加熱の効
率を重視しない場合は、上、下のいずれかのイン
ダクターで加熱が可能である。
FIG. 7 shows the above relationship as seen from the top of the web. The symbols are the same as in FIG. However, the arrow indicates the direction of the current, and the ○ indicates the direction of the magnetic flux. Heat generation within the web occurs along the flow of the induced current 8, so if the web is stationary, the web will not be heated uniformly in the longitudinal direction. If the web is heated while it is moving, it will be heated evenly. It is for the same reason that the relationship between the inductor pole increasing direction and the web width direction is defined. Note that if the efficiency of induction heating is not important, heating can be performed using either the upper or lower inductor.

本発明装置を実際に使用する場合には、加熱制
御を行うので、第8図にこの関係機器の構成例を
示す。1はH形鋼ウエブ、2は同フランジ、3,
3′は各々上、下インダクター、5,5′は各イン
ダクター給電ケーブル、9はインダクターの電源
装置、10は制御装置、11,11′はインダク
ター前、后ウエブ測温計、12,12′はインダ
クター前、后フランジ測温計、13はローラー、
14は速度センサーである。
When the apparatus of the present invention is actually used, heating control is performed, and FIG. 8 shows an example of the configuration of this related equipment. 1 is the H-shaped steel web, 2 is the same flange, 3,
3' are the upper and lower inductors, 5 and 5' are the inductor power supply cables, 9 is the inductor power supply device, 10 is the control device, 11 and 11' are the web thermometers before and after the inductor, and 12 and 12' are the web thermometers. Before the inductor, after the flange temperature meter, 13 is the roller,
14 is a speed sensor.

圧延終了后の放熱中にウエブ1を加熱し、フラ
ンジ2との温度差を小さくしてウエブ1の残留応
力を低減する場合測温計11,12により得られ
た値とH形鋼のサイズと同移送速度とから要入熱
量が決定され、インダクター電源9の電圧が決ま
り、インダクター3,3′よりウエブ1に入熱さ
れる。11′,12′測温計は、この入熱結果のフ
イードバツク用のセンサーである。
When web 1 is heated during heat dissipation after rolling to reduce the temperature difference with flange 2 to reduce residual stress in web 1, the values obtained by thermometers 11 and 12 and the size of H-beam steel The required amount of heat input is determined from the same transfer speed, the voltage of the inductor power supply 9 is determined, and heat is applied to the web 1 from the inductors 3 and 3'. Temperature meters 11' and 12' are sensors for feedback of the heat input results.

他方H形鋼冷却終了后、ウエブ1の残留応力を
除去する為に、該ウエブを、数百度(℃)加熱す
る場合は、前述フランジの測温及び11,11′
は不要である。第9図はH形鋼の断面図とインダ
クターの配置関係を示す説明図である。
On the other hand, when the web 1 is heated to several hundred degrees (°C) after cooling the H-shaped steel to remove the residual stress in the web 1, the above-mentioned flange temperature measurement and 11, 11'
is not necessary. FIG. 9 is an explanatory diagram showing a cross-sectional view of the H-section steel and the arrangement relationship of the inductor.

第10図に本装置により、冷却終了后のH形鋼
(H912×302×18/34)ウエブを加熱した結果、
減少した残留応力の分布の例を示す。
Figure 10 shows the result of heating the H-beam steel (H912 x 302 x 18/34) web after cooling with this device.
An example of a reduced residual stress distribution is shown.

以上説明したように本発明装置によるときはH
形鋼の残留応力を除去減少を極めて効果的に行う
ことが出来る。
As explained above, when using the device of the present invention, H
It is possible to remove and reduce residual stress in shaped steel extremely effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はH形鋼の断面図、第2図は残留応力除
去しない場合のH形鋼の残留応力分布説明図、第
3図はウエブ加熱法による残留応力軽減の説明
図、第4図はH形鋼のフランジとウエブの温度差
と残留応力の関係図表、第5図は本発明になるH
形鋼の残留応力除去装置の配置説明図、第6図は
残留応力除去装置によるウエブ加熱原理説明図、
第7図は残留応力除去装置によるウエブの上面か
ら見たウエブ加熱原理説明図、第8図は本残留応
力除去装置の加熱制御システム説明図、第9図は
H形鋼の断面図とインダクターの配置関係説明
図、第10図は本残留応力除去装置を使用した場
合のH形鋼の減少した残留応力の分布説明図であ
る。 1…H形鋼のウエブ、2…H形鋼のフランジ、
3,3′…上、下インダクター、4,4′…上、下
インダクターのターミナル、5,5′…給電ケー
ブル、6,6′…インダクターコイル、7…磁
束、8…誘導電流、9…インダクター電源装置、
10…制御装置、11,11′…インダクター前
後のウエブ測温計、12,12′…インダクター
前後のフランジ測温計、13…ローラー、14…
速度センサー、15…多孔ガスバーナー、16…
ガス炎。
Figure 1 is a cross-sectional view of H-beam steel, Figure 2 is an explanatory diagram of residual stress distribution in H-beam steel without residual stress removal, Figure 3 is an illustration of residual stress reduction by web heating method, and Figure 4 is an illustration of residual stress reduction by web heating method. Figure 5 is a diagram showing the relationship between the temperature difference between the flange and web of H-section steel and residual stress.
An explanatory diagram of the arrangement of the residual stress removing device for shaped steel, Figure 6 is an explanatory diagram of the principle of web heating by the residual stress eliminating device,
Fig. 7 is an explanatory diagram of the web heating principle seen from the top surface of the web by the residual stress eliminator, Fig. 8 is an explanatory diagram of the heating control system of this residual stress eliminator, and Fig. 9 is a cross-sectional view of the H-beam steel and the inductor. FIG. 10 is an explanatory diagram of the distribution of reduced residual stress in the H-shaped steel when the present residual stress removing device is used. 1... Web of H-shaped steel, 2... Flange of H-shaped steel,
3, 3'... Upper and lower inductors, 4, 4'... Terminals of upper and lower inductors, 5, 5'... Power supply cable, 6, 6'... Inductor coil, 7... Magnetic flux, 8... Induced current, 9... inductor power supply,
10... Control device, 11, 11'... Web thermometer before and after the inductor, 12, 12'... Flange thermometer before and after the inductor, 13... Roller, 14...
Speed sensor, 15...Porous gas burner, 16...
gas flame.

Claims (1)

【特許請求の範囲】[Claims] 1 H形鋼の走行通路に、該H形鋼ウエブ部両面
にトランスバースフラツクスヒーテイング型イン
ダクターを近接配置したことを特徴とするH形鋼
の残留応力除去装置。
1. A residual stress relief device for an H-section steel, characterized in that transverse flux heating type inductors are disposed close to both sides of a web portion of the H-section steel in a running path of the H-section steel.
JP5431780A 1980-04-25 1980-04-25 Residual stress relieving device of h-beam Granted JPS56152928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5431780A JPS56152928A (en) 1980-04-25 1980-04-25 Residual stress relieving device of h-beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5431780A JPS56152928A (en) 1980-04-25 1980-04-25 Residual stress relieving device of h-beam

Publications (2)

Publication Number Publication Date
JPS56152928A JPS56152928A (en) 1981-11-26
JPS6242015B2 true JPS6242015B2 (en) 1987-09-05

Family

ID=12967201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5431780A Granted JPS56152928A (en) 1980-04-25 1980-04-25 Residual stress relieving device of h-beam

Country Status (1)

Country Link
JP (1) JPS56152928A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228002A (en) * 1985-07-29 1987-02-06 Kawasaki Steel Corp Method and apparatus for heating web in rolling of wide flange beam
JPS63176429A (en) * 1987-01-16 1988-07-20 Kawasaki Steel Corp Method for reducing residual stress of h-beam
DE19828785C2 (en) * 1998-06-27 2000-08-03 Sms Demag Ag Process for straightening rolled section steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160110A (en) * 1974-06-19 1975-12-25
JPS526327A (en) * 1975-07-05 1977-01-18 Nippon Steel Corp Production process of h-beam steel having small residual stress
JPS5483142A (en) * 1977-12-15 1979-07-03 Mitsubishi Electric Corp Induction heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160110A (en) * 1974-06-19 1975-12-25
JPS526327A (en) * 1975-07-05 1977-01-18 Nippon Steel Corp Production process of h-beam steel having small residual stress
JPS5483142A (en) * 1977-12-15 1979-07-03 Mitsubishi Electric Corp Induction heater

Also Published As

Publication number Publication date
JPS56152928A (en) 1981-11-26

Similar Documents

Publication Publication Date Title
JPS6242015B2 (en)
JP2716258B2 (en) Method for thermal smoothing grain oriented silicon steel
JPH0742515B2 (en) Induction heating control method for ERW pipe welds
JPH11290946A (en) Method for straightening thick steel plate
SU652230A1 (en) Method of thermal treatment of electrical engineering steel
CN2714577Y (en) Electromagnetic suspension continuous heat treatment furnace for steel strip
JPH0417622A (en) Manufacture of h-beam with thin web
JPS5852428A (en) Heat treatment for improving stress of shaft
JPH0938712A (en) Method for induction-heating metallic plate
JP2002235112A (en) Heat treatment method for steel material and heat treatment apparatus
JP4734805B2 (en) Heat treatment method for clad steel
JPS6228002A (en) Method and apparatus for heating web in rolling of wide flange beam
JPS5576025A (en) Structure improving heat treatment method of welding heat affected zone of low alloy steel
JPH03111517A (en) Method for uniformly heating slab
JPS6323913Y2 (en)
JPH02200317A (en) Hot bending method for steel tube
JPS63202008A (en) Manufacture of wound core
JPS6281217A (en) Straightening method for hot steel plate
JPS63274712A (en) High frequency induction surface quenching method
JPS61153226A (en) Method for improving residual stress in steel plate, or the like
JPH0672268B2 (en) Annealing method for iron cores for electrical equipment
JPS6349880B2 (en)
JPS5485116A (en) Heat treating method for large-sized steel pipe
JP2003226914A (en) Heat treatment method and apparatus for thick steel plate
Schmitt The Accelerated Cooling of Light Sections and Wire Following Hot Rolling