JPS6241376B2 - - Google Patents

Info

Publication number
JPS6241376B2
JPS6241376B2 JP55143890A JP14389080A JPS6241376B2 JP S6241376 B2 JPS6241376 B2 JP S6241376B2 JP 55143890 A JP55143890 A JP 55143890A JP 14389080 A JP14389080 A JP 14389080A JP S6241376 B2 JPS6241376 B2 JP S6241376B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic pole
magnetomotive force
gap
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55143890A
Other languages
Japanese (ja)
Other versions
JPS5767272A (en
Inventor
Katsushige Tsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP14389080A priority Critical patent/JPS5767272A/en
Priority to DE19813139905 priority patent/DE3139905C2/en
Priority to GB8131187A priority patent/GB2087138B/en
Publication of JPS5767272A publication Critical patent/JPS5767272A/en
Publication of JPS6241376B2 publication Critical patent/JPS6241376B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 本発明は、歪収差及びS字歪収差を殆んど零に
でき、しかも焦点距離を著じるしく短かくできる
3磁極電子レンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a three-pole electron lens that can reduce distortion and S-shaped distortion to almost zero, and can significantly shorten the focal length.

3つの磁極により2つの磁極間隙を形成し、各
間隙に生ずる磁場の方向を逆転した3磁極電子レ
ンズにおいて、上側磁極間隙内と下側磁極間隙内
とに作られる磁界分布を対称にした場合、焦点距
離が最小となる条件において、歪収差が零にな
る。又、上側磁極間隙内の軸上磁場を下側磁極間
隙内の軸上磁場より弱くするように磁極形状を非
対称にすればある励磁条件においてS字歪収差を
零にすることができ、適当な形状と励磁条件の選
択によつて両歪収差を殆んど零にすることができ
る。第1図はこの様にして設計されたレンズの磁
極部の形状を示し、第2図は該レンズによる焦点
距離p、歪収差(△r/r)及びS字歪収差
(△S/r)の起磁力依存性を示す図である。第
1図において、1は第1磁極、2は第2磁極、3
は第3磁極で磁極1と2との間に第1磁極間隙
S1、磁極2と3との間に第2磁極間隙S2を形成す
る。d1,d2,d3は夫々、第1磁極、第2磁極、第
3磁極の穴径で、d2とd3を等しくし、且つ、d1
d2(d3)に対し、1.5〜5倍にすることにより歪収
差を小さくした状態でS字歪収差を零或いは負に
することが可能である。第2図は上記形状のレン
ズの特性を示し、pは焦点距離、△r/rは歪
収差、△S/rはS字歪収差を示し、横軸NIは
起磁力(AT)を示してある。この図から、第1
磁極間隙S1と第2磁極間隙S2に生ずる磁場の向き
を互いに逆にし、且つその起磁力を等しくして
2700AT付近に設定すると焦点距離pは極小値
(約5.3mm)を示し、起磁力がわずかにずれた
2800AT〜2900AT付近で歪収差△r/r及びS
字歪収差△S/rは零になる条件が存在する。
In a three-pole electron lens in which two magnetic pole gaps are formed by three magnetic poles and the direction of the magnetic field generated in each gap is reversed, if the magnetic field distributions created in the upper magnetic pole gap and the lower magnetic pole gap are made symmetrical, Distortion becomes zero under conditions where the focal length is minimum. Furthermore, if the magnetic pole shape is made asymmetrical so that the axial magnetic field in the upper magnetic pole gap is weaker than the axial magnetic field in the lower magnetic pole gap, the S-shaped distortion aberration can be reduced to zero under certain excitation conditions. Both distortion aberrations can be reduced to almost zero by selecting the shape and excitation conditions. Fig. 1 shows the shape of the magnetic pole part of the lens designed in this way, and Fig. 2 shows the focal length p, distortion aberration (△r/r), and S-shaped distortion aberration (△S/r) due to the lens. It is a figure showing magnetomotive force dependence of. In Figure 1, 1 is the first magnetic pole, 2 is the second magnetic pole, 3
is the third magnetic pole and the first magnetic pole gap between magnetic poles 1 and 2
S 1 , forming a second magnetic pole gap S 2 between magnetic poles 2 and 3; d 1 , d 2 , and d 3 are the hole diameters of the first magnetic pole, second magnetic pole, and third magnetic pole, respectively, and d 2 and d 3 are equal, and d 1 and
By increasing d 2 (d 3 ) by 1.5 to 5 times, it is possible to make the S-shaped distortion aberration zero or negative while reducing the distortion aberration. Figure 2 shows the characteristics of a lens with the above shape, where p is the focal length, △r/r is the distortion aberration, △S/r is the S-shaped distortion aberration, and the horizontal axis NI is the magnetomotive force (AT). be. From this figure, the first
The directions of the magnetic fields generated in the magnetic pole gap S1 and the second magnetic pole gap S2 are made opposite to each other, and their magnetomotive forces are made equal.
When set around 2700AT, the focal length p showed a minimum value (approximately 5.3 mm), and the magnetomotive force shifted slightly.
Distortion aberration △r/r and S around 2800AT~2900AT
There is a condition under which the character distortion aberration ΔS/r becomes zero.

しかし乍ら、このレンズで問題になるのは、焦
点距離が極小値で5.3mmと長く、投影レンズとフ
イルムとの距離LをL=380mmの電子顕微鏡で
は該投影レンズの倍率Mpは約72倍にしかならな
い。従つて、総合倍率が50万倍〜100万倍といつ
た高倍観察を同一の装置で行うことができなくな
り、低倍と高倍とで投影レンズを組みかえなけれ
ばならないという不都合を生ずる。
However, the problem with this lens is that the focal length is as long as 5.3 mm at its minimum value, and in an electron microscope where the distance L between the projection lens and the film is 380 mm, the magnification Mp of the projection lens is approximately 72 times. It only becomes. Therefore, high-magnification observation with a total magnification of 500,000 times to 1,000,000 times cannot be performed using the same device, resulting in the inconvenience of having to change the projection lens for low magnification and high magnification.

本発明はこの様な歪収差及びS字歪収差の小さ
なレンズにおいて、更に、焦点距離を短かくする
ことを目的とするものである。
An object of the present invention is to further shorten the focal length of such a lens with small distortion aberration and S-shaped distortion aberration.

さて、3磁極レンズの焦点距離が何故通常の2
磁極レンズに比べて長くなるかについて考察して
みる。通常の2磁極レンズの焦点距離は、良く知
られたリープマン曲線によつて表わされる。これ
に対し、3磁極レンズではある起磁力の下で、極
小をとつて、それ以上の起磁力では焦点距離は増
加してしまう。これは、3磁極レンズでは、上側
磁極間隙(第1磁極間隙)S1に作られる磁界が縮
小レンズとして作用していることに起因する。そ
こで、本発明は、この上側磁極間隙による縮小を
可能な限り抑え、起磁力(下側磁極間隙内磁場の
み)の増大に拘りなしに上側磁極間隙内磁場の起
磁力をある値に固定することに特徴がある。第3
図は本発明を説明するための特性図で第1磁極間
隙内にかかる起磁力NI1を約2400AT(図中△印を
付した値)で固定し、第2磁極間隙内にかかる起
磁力NI2を増加させた場合の焦点距離、歪収差及
びS字歪収差を夫々点線′p,△r/r′,及び
△S/r′で示してある。この様な条件となせば
NI2の増加に伴つて焦点距離′pは減小し、又、
歪収差△r/r′も減小の傾向を示し、例えばNI1
=2400AT、NI2=3800ATで使用すれば′p=
3.6mm、△r/r′=0.3%、△S/r′=0.15%という
良好な結果が得られた。歪収差及びS字歪収差が
このように小さい場合、螢光板上で直線がゆがん
で見えることはなく、実用的に歪なしということ
ができる。前記条件における投影レンズの倍率
は、Lを前述と同一の380mmとして、約106倍と
なり、通常の2磁極投影レンズで設定されている
倍率と同程度である。前述の固定された第1磁極
間隙内磁場の起磁力NI1の値は、p(実線)が
極小をなす付近に選定される。即ち、両磁極間隙
内の起磁力を相等しくしたときの最小の焦点距離
が得られる付近にNI1を固定する。もし、pが
大きい位置でNI1を固定すると焦点距離の曲線
′pが図より上方に移動し、あまり小さくでき
ないからである。実際には本発明者の実験から、
pが極小を示すときのNI1の値より少し低い値
の方が良好であつた。装置に本発明を適用する場
合、比較的低い倍率、例えば数千倍〜数万倍で
は、第1及び第2磁極間隙内磁場共等しく約
2900ATに励磁し、比較的高い倍率、例えば数万
倍〜数十万倍では、第1磁極間隙内の磁場の起磁
力を約2400ATに、そして、第2磁極間隙内のそ
れを約3800ATに励磁すると、歪みのない像が、
倍率可変に支障なく得られる。
Now, why is the focal length of a 3-pole lens different from the normal 2?
Let's consider whether it is longer than a magnetic pole lens. The focal length of a typical two-pole lens is expressed by the well-known Liebmann curve. On the other hand, in a three-pole lens, the focal length reaches a minimum under a certain magnetomotive force, and increases when the magnetomotive force is exceeded. This is because in the three-pole lens, the magnetic field created in the upper magnetic pole gap (first magnetic pole gap) S1 acts as a reduction lens. Therefore, the present invention aims to suppress the reduction due to the upper magnetic pole gap as much as possible, and fix the magnetomotive force of the magnetic field within the upper magnetic pole gap to a certain value regardless of the increase in the magnetomotive force (only the magnetic field within the lower magnetic pole gap). There are characteristics. Third
The figure is a characteristic diagram for explaining the present invention. The magnetomotive force NI 1 applied in the first magnetic pole gap is fixed at approximately 2400AT (value marked with △ in the figure), and the magnetomotive force NI applied in the second magnetic pole gap is fixed. The focal length, distortion aberration, and S-shaped distortion aberration when increasing 2 are shown by dotted lines 'p, Δr/r', and ΔS/r', respectively. If such conditions are met
As NI 2 increases, the focal length ′p decreases, and
Distortion aberration △r/r′ also shows a decreasing tendency, for example, NI 1
= 2400AT, NI 2 = 3800AT, then ′p=
Good results were obtained: 3.6 mm, Δr/r'=0.3%, and ΔS/r'=0.15%. When the distortion aberration and S-shaped distortion aberration are small in this way, a straight line does not appear distorted on the fluorescent plate, and it can be said that there is no distortion in practical terms. The magnification of the projection lens under the above conditions is approximately 106 times, assuming L is 380 mm, which is the same as described above, which is comparable to the magnification set for a normal two-pole projection lens. The value of the magnetomotive force NI 1 of the above-mentioned fixed magnetic field in the first magnetic pole gap is selected near where p (solid line) is minimum. That is, NI 1 is fixed in the vicinity where the minimum focal length is obtained when the magnetomotive forces in the gap between the two magnetic poles are made equal. This is because if NI 1 is fixed at a position where p is large, the focal length curve 'p will move upwards in the figure and cannot be made much smaller. Actually, from the inventor's experiments,
A value slightly lower than the value of NI 1 when p shows a minimum value was better. When the present invention is applied to an apparatus, at relatively low magnifications, for example, several thousand times to tens of thousands of times, the magnetic fields within the first and second magnetic pole gaps are approximately equal.
At a relatively high magnification, e.g. tens of thousands to hundreds of thousands of times, the magnetomotive force of the magnetic field in the first magnetic pole gap is excited to about 2400 AT, and that in the second magnetic pole gap is excited to about 3800 AT. Then, the undistorted image becomes
Variable magnification can be obtained without any problem.

所で、斯るレンズにおいて、上側磁極間隙内の
磁場の励磁を停止し、下側磁極間隙内のみに磁界
を形成してみたところ、第3図に二点鎖線で示す
ような結果が得られた。3500AT以上において、
歪収差△r/r″及びS字歪収差△S/r″は、前述
の場合より大きくなつているが焦点距離″pは
著じるしく短かくなつている。起磁力4000AT付
近を使用すると、両収差は共に1%程度であり、
焦点距離は2.1mmにまで短かくなつている。この
ときの拡大率Mpは約180倍である。この値は通常
用いられている2極レンズの特性より優れてお
り、S字収差が全く問題にならない高倍(10万倍
以上)領域での観察には充分に使用できる条件で
ある。
By the way, in such a lens, when we stopped the excitation of the magnetic field in the upper magnetic pole gap and created a magnetic field only in the lower magnetic pole gap, we obtained the results shown by the two-dot chain line in Figure 3. Ta. For 3500AT or more,
The distortion aberration △r/r'' and the S-shaped distortion aberration △S/r'' are larger than in the previous case, but the focal length ``p'' is significantly shorter. When using a magnetomotive force of around 4000 AT, , both aberrations are about 1%,
The focal length has been shortened to 2.1mm. The magnification ratio Mp at this time is approximately 180 times. This value is superior to the characteristics of commonly used bipolar lenses, and is sufficient for observation at high magnifications (100,000 times or more) where S-shaped aberrations are not a problem at all.

第4図は上記レンズを組み込んだ倍率可変レン
ズ系の具体例を示すもので、4は中間レンズで、
その励磁コイル5は電源6に接続されている。7
は3磁極1,2及び3を有する投影レンズで、励
磁コイル8と9を有し、夫々電源10に接続さ
れ、コイル8により第1磁極間隙S1内に磁場を形
成し、コイル9により第2磁極間隙S2内に磁場を
形成する。各電源6,10及び11は倍率制御回
路12によりコントロールされており、所望の倍
率が得られるような電流が各コイルに供給され
る。投影レンズ7において、数千倍〜数万倍の比
較的低い倍率領域ではコイル8と9に間隙S1とS2
に同一起磁力で且つ向き(極性)が逆になるよう
な磁界を発生する電流が供給され歪収差及びS字
歪収差を略零にした状態で使用される。次に倍率
が数万倍〜数十万倍の高倍率領域になつたとき
は、コイル8への供給電流をpが極小になる付
近の電流に設定し、コイル9により多い電流を供
給する。これによつて、焦点距離を短かくする。
更に、高倍(数十万倍以上の超高倍)になると、
コイル8への電流供給が停止され、コイル9のみ
に大電流が供給され、焦点距離は更に短かくされ
る。尚、超高倍領域でコイル8をOFFにした
が、コイル9をOFFにし、コイル8に大電流を
供給しても良い。
Figure 4 shows a specific example of a variable magnification lens system incorporating the above lens, where 4 is an intermediate lens;
The excitation coil 5 is connected to a power source 6. 7
is a projection lens having three magnetic poles 1, 2 and 3, and has excitation coils 8 and 9, respectively connected to a power source 10, with coil 8 forming a magnetic field in the first magnetic pole gap S1 and coil 9 forming a magnetic field in the first magnetic pole gap S1 . A magnetic field is created within the gap S 2 between the two magnetic poles. Each power source 6, 10, and 11 is controlled by a magnification control circuit 12, and a current is supplied to each coil to obtain a desired magnification. In the projection lens 7, there are gaps S1 and S2 between the coils 8 and 9 in a relatively low magnification range of several thousand times to tens of thousands of times.
A current is supplied to generate a magnetic field with the same magnetomotive force and opposite direction (polarity), and is used with distortion aberration and S-shaped distortion aberration reduced to approximately zero. Next, when the magnification reaches a high magnification region of tens of thousands to hundreds of thousands of times, the current supplied to the coil 8 is set to a current near where p becomes minimum, and a larger current is supplied to the coil 9. This shortens the focal length.
Furthermore, when the magnification is high (extremely high magnification of hundreds of thousands of times or more),
The current supply to the coil 8 is stopped, a large current is supplied only to the coil 9, and the focal length is further shortened. Although the coil 8 is turned off in the ultra-high magnification region, the coil 9 may also be turned off and a large current is supplied to the coil 8.

以上の様なレンズとなせば、歪収差及びS字歪
収差を殆んど零にした3磁極レンズにおいて、焦
点距離を飛躍的に短かくでき、低倍から高倍まで
利用でき極めて実用的なものとなる。
If the above-mentioned lens is made, the focal length can be dramatically shortened in a three-magnetic pole lens with almost zero distortion aberration and S-shaped distortion aberration, and it can be used from low to high magnification, making it extremely practical. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は3磁極レンズの形状を示す図、第2図
はその特性図、第3図は本発明の特徴を示す特性
図、第4図は本発明レンズを電子顕微鏡の投影レ
ンズに組み込んだ具体例を示す図である。 1,2及び3:磁極、4:中間レンズ、7:投
影レンズ、5,8及び9:励磁コイル、6,10
及び11:電源、12:制御回路。
Figure 1 shows the shape of the three-pole lens, Figure 2 shows its characteristics, Figure 3 shows the characteristics of the present invention, and Figure 4 shows the lens of the present invention incorporated into the projection lens of an electron microscope. It is a figure showing a concrete example. 1, 2 and 3: magnetic pole, 4: intermediate lens, 7: projection lens, 5, 8 and 9: excitation coil, 6, 10
and 11: power supply, 12: control circuit.

Claims (1)

【特許請求の範囲】 1 光軸に沿つて順に配置された第1、第2、第
3の磁極を有し、隣接する3つの磁極によつて2
つの磁極間隙を形成し、各磁極間隙内に生ずる磁
場の極性を互いに逆にした3磁極レンズにおい
て、前記第1、第2、第3の磁極の穴径を各々
d1,d2,d3とするとき、d2とd3を略等しくし且つ
d1>d2にすると共に、上側磁極間隙内の磁場の起
磁力を、両磁極間隙内の起磁力を等しくして最小
の焦点距離が得られるときの該起磁力近傍に固定
した状態で、下側磁極間隙内の磁場の起磁力を上
記上側磁極間隙内磁場の起磁力より高い値に設定
することを特徴とする電子レンズ。 2 光軸に沿つて順に配置された第1、第2、第
3の磁極を有し、隣接する3つの磁極によつて2
つの磁極間隙を形成し、各磁極間隙内に生ずる磁
場の極性を互いに逆にし、該両磁場を独立に励磁
可能となした3磁極レンズにおいて、前記第1、
第2、第3の磁極の穴径を各々d1,d2,d3とする
とき、d2とd3を略等しくし且つd1>d2にすると共
に、比較的低い拡大率の場合には、両磁極間隙内
の磁場の起磁力を等しくして使用し、比較的高い
拡大率の場合には、上側磁極間隙内の磁場の起磁
力を両磁極間隙内の磁場の起磁力を等しくして最
小の焦点距離が得られるときの該起磁力近傍に固
定した状態で、下側磁極間隙内の起磁力を上記上
側磁極間隙内のそれより高い値に設定することを
特徴とする電子レンズ。 3 光軸に沿つて順に配置された第1、第2、第
3の磁極を有し、隣接する3つの磁極によつて2
つの磁極間隙を形成し、各磁極間隙内に生ずる磁
場の極性を互いに逆にし、該両磁場を独立に励磁
可能となした3磁極レンズにおいて、前記第1、
第2、第3の磁極の穴径を各々d1,d2,d3とする
とき、d2とd3を略等しくし且つd1>d2にすると共
に、比較的低い拡大率の場合には、両磁極間隙内
の磁場の起磁力を等しくして使用し、比較的高い
拡大率の場合には、上側磁極間隙内の磁場の起磁
力を両磁極間隙内の磁場の起磁力を等しくして最
小の焦点距離が得られるときの該起磁力近傍に固
定した状態で、下側磁極間隙内の起磁力を上側磁
極間隙内のそれより高い値に設定し、更に高い拡
大率の場合には、いずれか一方の磁極間隙内のみ
に強い磁場を発生せしめることを特徴とする電子
レンズ。
[Scope of Claims] 1. Has first, second, and third magnetic poles arranged in order along the optical axis, and has two magnetic poles arranged by three adjacent magnetic poles.
In a three-pole lens in which two magnetic pole gaps are formed and the polarities of the magnetic fields generated in each magnetic pole gap are opposite to each other, the hole diameters of the first, second, and third magnetic poles are
When d 1 , d 2 , d 3 , make d 2 and d 3 approximately equal and
While setting d 1 > d 2 and fixing the magnetomotive force of the magnetic field in the upper magnetic pole gap to the vicinity of the magnetomotive force when the minimum focal length is obtained by equalizing the magnetomotive force in both magnetic pole gaps, An electron lens characterized in that the magnetomotive force of the magnetic field within the lower magnetic pole gap is set to a higher value than the magnetomotive force of the magnetic field within the upper magnetic pole gap. 2 has first, second, and third magnetic poles arranged in order along the optical axis, and the two adjacent magnetic poles
In the three-pole lens, the first magnetic pole lens has two magnetic pole gaps, the polarities of the magnetic fields generated in each magnetic pole gap are opposite to each other, and the two magnetic fields can be excited independently.
When the hole diameters of the second and third magnetic poles are respectively d 1 , d 2 , and d 3 , d 2 and d 3 are approximately equal, d 1 > d 2 , and the magnification is relatively low. For this purpose, the magnetomotive force of the magnetic field in both magnetic pole gaps is made equal, and in the case of relatively high magnification, the magnetomotive force of the magnetic field in the upper magnetic pole gap is used as The electron lens is characterized in that the magnetomotive force in the lower magnetic pole gap is set to a higher value than that in the upper magnetic pole gap while the magnetomotive force is fixed near the magnetomotive force when the minimum focal length is obtained. . 3 has first, second, and third magnetic poles arranged in order along the optical axis, and has two magnetic poles arranged by three adjacent magnetic poles.
In the three-pole lens, the first magnetic pole lens has two magnetic pole gaps, the polarities of the magnetic fields generated in each magnetic pole gap are opposite to each other, and the two magnetic fields can be excited independently.
When the hole diameters of the second and third magnetic poles are respectively d 1 , d 2 , and d 3 , d 2 and d 3 are approximately equal, d 1 > d 2 , and the magnification is relatively low. For this purpose, the magnetomotive force of the magnetic field in both magnetic pole gaps is made equal, and in the case of relatively high magnification, the magnetomotive force of the magnetic field in the upper magnetic pole gap is used as The magnetomotive force in the lower magnetic pole gap is set to a higher value than that in the upper magnetic pole gap, and the magnetomotive force in the lower magnetic pole gap is set to a value higher than that in the upper magnetic pole gap. is an electron lens characterized by generating a strong magnetic field only within the gap between one of the magnetic poles.
JP14389080A 1980-10-15 1980-10-15 Electron lens Granted JPS5767272A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14389080A JPS5767272A (en) 1980-10-15 1980-10-15 Electron lens
DE19813139905 DE3139905C2 (en) 1980-10-15 1981-10-07 Method of operating an electron lens with three magnetic pole pieces
GB8131187A GB2087138B (en) 1980-10-15 1981-10-15 Electron lens equipped with three magnetic pole pieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14389080A JPS5767272A (en) 1980-10-15 1980-10-15 Electron lens

Publications (2)

Publication Number Publication Date
JPS5767272A JPS5767272A (en) 1982-04-23
JPS6241376B2 true JPS6241376B2 (en) 1987-09-02

Family

ID=15349410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14389080A Granted JPS5767272A (en) 1980-10-15 1980-10-15 Electron lens

Country Status (3)

Country Link
JP (1) JPS5767272A (en)
DE (1) DE3139905C2 (en)
GB (1) GB2087138B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585942A (en) * 1983-03-17 1986-04-29 Jeol Ltd. Transmission electron microscope

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526073A (en) * 1975-07-04 1977-01-18 Hitachi Ltd Magnetic field type electronic lens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945171B2 (en) * 1979-12-28 1984-11-05 日本電子株式会社 electronic lens
JPS5723454A (en) * 1980-07-16 1982-02-06 Jeol Ltd Electron lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526073A (en) * 1975-07-04 1977-01-18 Hitachi Ltd Magnetic field type electronic lens

Also Published As

Publication number Publication date
GB2087138B (en) 1984-11-21
DE3139905C2 (en) 1984-02-16
GB2087138A (en) 1982-05-19
JPS5767272A (en) 1982-04-23
DE3139905A1 (en) 1982-06-09

Similar Documents

Publication Publication Date Title
US7420179B2 (en) Electron microscope
JPS6290839A (en) Ion microbeam device
US6861651B2 (en) Electron-optical corrector for eliminating third-order aberations
US3851172A (en) Compound electron lens for electron microscope and the like
US3952198A (en) Electron lens
US4469948A (en) Composite concentric-gap magnetic lens
EP0596529B1 (en) Electron lens
US4384208A (en) Electron lens equipped with three magnetic pole pieces
JPS6241376B2 (en)
US2323328A (en) Projection lens for electron microscopes
US4450357A (en) Electron lens equipped with three magnetic pole pieces
US4520264A (en) Electron microscope
JPS6245662B2 (en)
US2418432A (en) Magnetic electron lens system
JPH05160012A (en) Electron beam reduced transfer device
JP3237013B2 (en) Electron beam reduction transfer device
JPS59112556A (en) Electron beam deflection unit for scanning electron microscope
US4412132A (en) Electron lens equipped with three magnetic pole pieces
JPH0136230B2 (en)
JPH05128986A (en) Magnetic field type lens
JPS5851661B2 (en) electronic lens
JPH05161148A (en) Focus circuit
JPS58119146A (en) Electron microscope
EP0113113B1 (en) Cathode ray tube
JPS5837939B2 (en) electronic lens