JPS6241341A - High speed stretching of gel fiber - Google Patents

High speed stretching of gel fiber

Info

Publication number
JPS6241341A
JPS6241341A JP17548185A JP17548185A JPS6241341A JP S6241341 A JPS6241341 A JP S6241341A JP 17548185 A JP17548185 A JP 17548185A JP 17548185 A JP17548185 A JP 17548185A JP S6241341 A JPS6241341 A JP S6241341A
Authority
JP
Japan
Prior art keywords
stretching
gel
fibers
speed
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17548185A
Other languages
Japanese (ja)
Inventor
康雄 大田
川口 時夫
博茂 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP17548185A priority Critical patent/JPS6241341A/en
Publication of JPS6241341A publication Critical patent/JPS6241341A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超高分子量重合体を溶液紡糸して得られtゲ
ル繊維を高速で高倍率延伸することによって高強力繊維
を得る延伸方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a drawing method for obtaining high-strength fibers by drawing t-gel fibers obtained by solution spinning an ultra-high molecular weight polymer at high speed and at a high magnification. .

(従来の技術) ゲル伏繊維を延伸して高強力繊維を得る方法については
特開昭56−15408号公報に超高分子量ポリエチレ
ンの例が、特開昭58−5228号公報に超高分子量ポ
リエチレン、ポリプロピレンなト超高分子量ポリオレフ
ィンの例が示されておυ、更に特開昭59−13031
4号公報には超高分子量ポリビニルアルコ−μの例が示
されている。
(Prior art) Regarding the method of obtaining high-strength fibers by drawing gelatinous fibers, an example of ultra-high molecular weight polyethylene is described in JP-A-56-15408, and an example of ultra-high-molecular-weight polyethylene is described in JP-A-58-5228. , examples of ultra-high molecular weight polyolefins such as polypropylene have been shown, and furthermore, JP-A-59-13031
No. 4 discloses an example of ultra-high molecular weight polyvinyl alcohol-μ.

一般に超高分子量重合体の溶液を紡糸して得られるゲル
状繊維を延伸して高強力繊維を得るためには少なくとも
10倍以上の延伸倍率で延伸する必要があυ1例えば前
記特開昭56−15408号公報の実施例ではポリエチ
レンのゲル繊維カラ80GPsi以上の篭ジュラスを有
する繊維を得ようとすれば27倍の延伸倍率が必要とな
る。
In general, in order to obtain high-strength fibers by drawing gel-like fibers obtained by spinning a solution of an ultra-high molecular weight polymer, it is necessary to draw the fibers at a drawing ratio of at least 10 times or more. In the example disclosed in Japanese Patent No. 15408, if a polyethylene gel fiber fiber having a basket stiffness of 80 GPsi or more is to be obtained, a stretching ratio of 27 times is required.

一方、ゲル状繊維はその構造上空隙率が高く5ないし1
0倍程度の延伸倍率迄は容易に延伸ができるが、それ以
上になると空隙率が低くなり分子鎖が長いため高速延伸
が困難となる。例えば、一般に合成繊維の延伸に慣用さ
れている5m以下の長さの延伸ゾーンで25倍の延伸を
行なおうとする場合5m1分以下の延伸速度であれば断
糸なく延伸が可能であるが、延伸速度が10m/分を越
えると、頻繁に断糸が生じ工業的生産は不可能である。
On the other hand, gel-like fibers have a high porosity due to their structure, ranging from 5 to 1.
Stretching can be easily carried out up to a stretching ratio of about 0 times, but if the stretching ratio is higher than that, the porosity becomes low and the molecular chains become long, making high-speed stretching difficult. For example, when attempting to stretch 25 times in a stretching zone with a length of 5 m or less, which is generally used for drawing synthetic fibers, it is possible to stretch without yarn breakage at a stretching speed of 5 m/min or less. If the drawing speed exceeds 10 m/min, yarn breakage occurs frequently and industrial production is impossible.

ここで延伸速度とは最終の延伸ローラの速度を言う。ち
なみに前記特開昭58−5228号公報の実施例では延
伸速度0.9 WE /分という超低速で延伸する例が
述べられている。しかし、工業的生産を考える場合、こ
のような低速では生産性が低く、生産コストが高くなる
ことを免れなかっto(発明が解決しようとする問題点
) 前記に見られる如く、#:来技術では、ゲIv繊維を延
伸して高強力繊維を製造する際、極めて低速度で延伸し
なければならなかつ九。
The stretching speed here refers to the final speed of the stretching roller. Incidentally, in the embodiment of the above-mentioned Japanese Patent Application Laid-Open No. 58-5228, an example is described in which the film is stretched at a very low stretching speed of 0.9 WE/min. However, when considering industrial production, such low speeds inevitably lead to low productivity and high production costs. When drawing GeIv fibers to produce high-strength fibers, they must be drawn at extremely low speeds.

ま几、ゲル繊維を延伸して高強力繊維を製造する際、前
記の如〈従来技術では、延伸速度を10m/分以上にす
ると頻繁に断糸が生じ、延伸速度10m/分以上での安
定的な工業生産は極めて困難であつ九。
However, when producing high-strength fibers by drawing gel fibers, as mentioned above, in the conventional technology, yarn breakage occurs frequently when the drawing speed is 10 m/min or more, and stability at drawing speeds of 10 m/min or more is difficult. Industrial production is extremely difficult.

tft−1工業的生産を考える場合、延伸速度が低い場
合、当然のことながら生産性が低下し、生産コストが高
くなることを免れなかつ几。
When considering industrial production of TFT-1, if the drawing speed is low, it is inevitable that the productivity will decrease and the production cost will increase.

本発明はゲル状繊維を延伸して高強力繊維を製造する際
の前記従来技術の様に低速で延伸しなければならなかつ
次欠点を解消し、ゲル状繊維を従来技術では到底達成す
る事ができない高速で断糸することなく安定的に延伸し
、非常にコストパフォーマンスに浸れ比高強力繊維t−
提供せんとするものである。
The present invention eliminates the following disadvantages of drawing gel-like fibers to produce high-strength fibers, which require drawing at a low speed as in the prior art described above, and which cannot be achieved with the prior art. It is a high-strength fiber that can be drawn stably at high speeds without breaking, and is extremely cost-effective.
This is what we intend to provide.

(問題点を解決する几めの手段) 前記問題点を解決する九めの手段、即ち1本発明は、超
高分子量重合体を溶液紡糸して得られ几ゲル繊維を、該
ゲル繊維の溶断温度以下で加熱延伸するに際し、下記(
1)〜(3)の条件をいずれも満足するように延伸する
ことを特徴とするゲル繊維の高速延伸方法である。
(Measures for Solving the Problems) A ninth means for solving the above-mentioned problems, that is, 1 the present invention is to solve the problems by melting and cutting the gel fibers obtained by solution spinning an ultra-high molecular weight polymer. When heating and stretching below the temperature, the following (
This is a high-speed stretching method for gel fibers, which is characterized by stretching so as to satisfy all of the conditions 1) to (3).

■≧0.4L+10     ・・・・・・・・・・・
・・・・(1)V≦420klL −600・・・・・
・・・・・・・・・・(2)λ≧10       ・
・・・・・・・曲・・・(3)但し、v:最終延伸ロー
ラー速度〔m/分〕L:全延伸ゾーン長   (m〕 λ:全延伸倍率     〔倍〕 本発明に用いるゲル繊維は1選択された溶剤に。
■≧0.4L+10 ・・・・・・・・・・・・
...(1) V≦420klL -600...
・・・・・・・・・(2) λ≧10 ・
......Song...(3) However, v: Final stretching roller speed [m/min] L: Total stretching zone length (m) λ: Total stretching ratio [times] Gel fiber used in the present invention 1 to the selected solvent.

繊維に転化される合成重合体を溶解し次可紡性原料液を
紡糸することによって得られる。
It is obtained by dissolving a synthetic polymer to be converted into fibers and spinning a spinnable raw material solution.

溶剤の選択に当っては次の基本的要件を満尺すものを選
ぶ必要がある。即ち該溶剤は超高分子量ポリマーの加工
を助ける几めに単一の低分子量化合物ま几は低分子量化
合物の混合物が用いられ、この化合物は高温下でのみ超
高分子量ポリマーを溶解状暢にするものを選択せねばな
らない。しかしながらこの溶解温度は超高分子量ポリマ
ーの分解温度より低くなくてはならない。従って低温度
When selecting a solvent, it is necessary to choose one that satisfies the following basic requirements. That is, the solvent may be a single low molecular weight compound or a mixture of low molecular weight compounds to aid in the processing of the ultra high molecular weight polymer, and this compound will only dissolve the ultra high molecular weight polymer at elevated temperatures. You have to choose something. However, this melting temperature must be lower than the decomposition temperature of the ultra-high molecular weight polymer. Therefore low temperature.

例えば室温ではこの低分子量化合物ま尺はこれらの混合
物は超高分子量ポリマーに対して非溶剤であらねばなら
ない。
For example, at room temperature, the low molecular weight compound or the mixture must be a non-solvent for the ultra high molecular weight polymer.

かかる基本的要件を満九す溶剤であれば何でも良く特に
限定されるものではない。
Any solvent may be used as long as it satisfies these basic requirements and is not particularly limited.

ゲル繊維の製糸に際し、目的とする高強力繊維を得る几
めには繊維に転化される合成重合体としては、ポリオレ
フィン、ポリアミド、ポリエステル、ポリアクリロニト
リル、ポリ(フッ化ビニリデン)Sポリビニルアルコー
ルがあり、これラノ超高分子量重合体等が挙げられるが
もちろんこれらに限定されるものではない。
When spinning gel fibers, the synthetic polymers that are converted into fibers to obtain the desired high-strength fibers include polyolefin, polyamide, polyester, polyacrylonitrile, poly(vinylidene fluoride) S polyvinyl alcohol, These include, but are not limited to, lano ultra-high molecular weight polymers and the like.

前記する超高分子量重合体の中で、特に粘度平均分子量
がlX106以上、好ましくは&lX106以上の超高
分子量ポリエチレンを、繊維転化用の合成重合体として
使用し、本発明を実施することによって極めて高強力繊
維が得られることiE本発明者らによって判明している
Among the above-mentioned ultra-high molecular weight polymers, ultra-high molecular weight polyethylene having a viscosity average molecular weight of 1X106 or more, preferably &1X106 or more is used as a synthetic polymer for fiber conversion, and by carrying out the present invention, extremely high molecular weight polyethylene can be obtained. It has been found by the inventors that strong fibers can be obtained.

溶液紡糸法から得られるゲル繊維は一般的なスクリュー
型押出機を備え九溶融紡糸装置を用い几溶融紡糸法や公
知の乾式紡糸法で容易に製造することができる。
Gel fibers obtained by the solution spinning method can be easily produced by a melt spinning method or a known dry spinning method using a melt spinning apparatus equipped with a general screw extruder.

本発明に用いるゲル繊維は1例えば紡糸工程で短かい延
伸ゾーン長で2〜10倍程度程度しt“ゲル半延伸糸1
も含まれるものである。
The gel fibers used in the present invention are 1, for example, 2 to 10 times the length of a short stretching zone in the spinning process.
is also included.

本発明は、前記のゲル繊維を出発原料として延伸するに
際し1次の(1)〜(3)の条件をいずれも満足するこ
とが重要である。
In the present invention, it is important to satisfy all of the primary conditions (1) to (3) when drawing the gel fiber as a starting material.

■≧0.4 L + 10     ・・・・・・・・
・・・・・・・(1)V≦420−L−600   ・
・・・・・・・・・・・・・・(2)λ≧10    
   ・・・・・・・・・・・・・・・(3)但し、v
:最終延伸ローラー〔m/分〕L:全延伸ゾーン長 (
m〕 λ:全延伸倍率   〔倍〕 本発明で言う延伸速度とは%最終延伸ローラー速度を意
味し、tt全延伸ゾーン長とは、ゲル繊維を延伸ゾーン
の供給ローラーに供して、最終延伸物を得る迄に必要と
する延伸ゾーンの長さの合計を言うものである。
■≧0.4 L + 10・・・・・・・・・
...... (1) V≦420-L-600 ・
・・・・・・・・・・・・・・・(2) λ≧10
・・・・・・・・・・・・・・・(3) However, v
: Final stretching roller [m/min] L: Total stretching zone length (
m] λ: Total stretching ratio [times] The stretching speed in the present invention means the final stretching roller speed in %, and the tt total stretching zone length refers to the final stretched product when the gel fiber is supplied to the supply roller of the stretching zone. This refers to the total length of the stretching zone required to obtain .

延伸ゾーンは、供給ローラーと延伸ローラーとの間に、
加熱帯が配設されており、ここで加熱帯は、加熱の手段
が、特に限定されるものではなく。
The stretching zone is located between the supply roller and the stretching roller.
A heating zone is provided, and the means for heating the heating zone is not particularly limited.

空気加熱炉による加熱帯であってもよいし、加熱水浴あ
るいは加熱プレートであってもよく、取扱うゲル繊維を
形成する高分子量重合体の種類に応じて適宜選択するこ
とができる。
It may be a heating zone using an air heating furnace, a heating water bath, or a heating plate, which can be selected as appropriate depending on the type of high molecular weight polymer forming the gel fiber to be handled.

本発明の4伸方法の実施に際し、延伸段、延伸ゾーンの
温度等について特に限定するものではなくゲル繊維の紡
糸巻取シと連続的に或いは不連続に1段階で延伸する方
法、を九は延伸ゾーンを数段階に分けて連続的に或いは
不連続に多段で延伸する方法、さらには1つの延伸ゾー
ンに数段の温度勾配を設けて、各温度勾配ゾーンを通し
て延伸する方法等適宜選択することができる。
When carrying out the fourth drawing method of the present invention, there are no particular limitations on the temperature of the drawing stage or the drawing zone, and the ninth point is a method of drawing the gel fiber in one step, either continuously or discontinuously with respect to the spinning winding of the gel fiber. A method of dividing the stretching zone into several stages and stretching continuously or discontinuously in multiple stages, or a method of providing several stages of temperature gradient in one stretching zone and stretching through each temperature gradient zone, etc. may be selected as appropriate. I can do it.

本発明者らは前記記載の様な延伸速度の低さを改善する
友め鋭意検討を行なつtところ1延伸ゾーン長を長くす
ればする程、延伸速度が上げられる事を見出し友。後に
実施例として詳しく記述するが、例えば100mの延伸
ゾーン長の場合、延伸速度は175771/mという様
な従来法では到底達成不可能であり比速度で延伸が可能
となり九◎この理由は詳しくはわからないが、延伸ゾー
ン長が長くなつ九亭で見かけの変形速度が低下しt事が
考えられる。その几め、延伸ゾーンを長くすればかえっ
て低速で延伸し几場合、糸の張力が低下し、同じ延伸倍
率でも低い強力しか得られない事が判明し友。以上の点
を考慮に入れ、検討しt所前記(1)ないしく3)式f
滴定す時もつとも延伸速度が効率よく上げられ、しかも
高い強度の繊維が得られる事を見出し本発明に到達し九
The inventors of the present invention conducted intensive studies to improve the low drawing speed as described above, and discovered that the longer the length of one drawing zone, the higher the drawing speed. As will be described in detail later as an example, for example, in the case of a stretching zone length of 100 m, the stretching speed is 175,771/m, which is completely impossible to achieve with conventional methods, but it is possible to stretch at a specific speed. Although it is not clear, it is possible that the apparent deformation speed decreases in the 9th place where the stretching zone length becomes longer. To solve this problem, it was found that if the stretching zone is made longer, the tension of the yarn decreases, and even if the stretching ratio is the same, only a lower strength can be obtained. Taking the above points into consideration and considering the formula (1) or 3) above,
The present invention was achieved by discovering that the drawing speed can be efficiently increased during titration and that fibers with high strength can be obtained.

以下(1)〜(3)式の説明を行なう。一般に超高分子
量重合体の溶液を紡糸して得られるゲル繊維を延伸して
高強力繊維を得るtめには(3)式の様に少なくとも1
0倍以上、好ましくは20倍以上、さらに好ましくは2
5倍以上延伸する必要がある。
Expressions (1) to (3) will be explained below. In general, in order to obtain high-strength fibers by drawing gel fibers obtained by spinning a solution of an ultra-high molecular weight polymer, at least one
0 times or more, preferably 20 times or more, more preferably 2
It is necessary to stretch it 5 times or more.

この延伸倍率の延伸糸を物性を低下させる事なく経済的
でしかも安定に得る几めに(1)及び(2)式を眞足す
る必要があるOすなわち(1)式をはずれると生産性が
悪くしかも糸の張力が低下し、同じ延伸倍率でも望む様
な高強力の繊維を得る事ができない口この理由は詳しく
はわからないが、糸の変形速度が非常に低下し分子の配
向緩和が起っているのではないかと考えられる。すなわ
ち(1)式は安定延伸の几めの下限速Kt−示している
。を九(23式を越えると延伸中に断糸が発生し、安定
な延伸が行なえない。すなわち(2)式は、安定延伸の
上限速度を示し友ものである。実際さらに好ましくは、
下記(4)式 %式%(4) の範囲の時にさらに艮好な延伸性を得ることができる。
In order to economically and stably obtain a drawn yarn with this draw ratio without deteriorating its physical properties, it is necessary to add equations (1) and (2). In other words, if equation (1) is excluded, productivity will increase. Worse, the tension of the yarn decreases, making it impossible to obtain the desired high-strength fibers even with the same draw ratio.The reason for this is not known in detail, but the deformation speed of the yarn is extremely reduced and molecular orientation relaxation occurs. It is thought that this may be the case. That is, the formula (1) shows the lower limit speed Kt for stable stretching. If it exceeds 9 (Equation 23), yarn breakage will occur during stretching and stable stretching cannot be performed. In other words, Equation (2) indicates the upper limit speed for stable stretching. In fact, it is more preferable to
Even better stretchability can be obtained when the amount is within the range of formula (4) below.

本発明では上記記載の方法に加え、紡出され九ゲル繊維
に吸蔵している溶剤以外の溶剤で、該ゲル繊維に吸蔵し
ている溶剤と親和性があり且つ沸点が低い溶剤中にゲル
繊維を連続的に浸漬し溶剤置換した後、延伸ゾーンへ供
給する手段、あるいは紡出して得られ几ゲル繊維を延伸
ゾーンへ供給するに際し、供給ローブを40℃ないしゲ
ル繊維の融点以下に加熱し、実賞的に該ゲル繊維を上記
供給ローブ温度に加熱後、延伸ゾーンへ供給すると、さ
らに優れt延伸性が得られる事も判明している。
In addition to the above-described method, the present invention uses a solvent other than the solvent occluded in the spun gel fibers, which has an affinity for the solvent occluded in the gel fibers and has a low boiling point, for the gel fibers. After continuously immersing and replacing the solvent, the feeding lobe is heated to 40° C. or below the melting point of the gel fiber when feeding the gel fiber obtained by spinning or spinning to the drawing zone. It has also been found that even better t-stretchability can be obtained by heating the gel fiber to the above-mentioned supply lobe temperature and then supplying it to the stretching zone.

この理由として詳しくはわからないが、前述のごとくゲ
ル繊維中に残留し几溶諜がより効率よく積極的に他の溶
剤に置換され九tめ繊維の空隙率が有効に高められ7を
九めと考えられるし、あるいは延伸ゾーンでの加熱効率
が向上し7j7tめとも考えられる。
The reason for this is not known in detail, but as mentioned above, the solvent remaining in the gel fibers is more efficiently and actively replaced by other solvents, effectively increasing the porosity of the 9th fiber. It is possible, or it is also possible that the heating efficiency in the stretching zone is improved and it becomes 7j7t.

ここに言う、ゲル繊維に吸蔵している溶剤以外の溶剤で
、該ゲル繊維に吸蔵している溶剤と親和性があり、該ゲ
ル状繊維に吸蔵している溶剤より低沸点のものを言う。
A solvent other than the solvent occluded in gel fibers that has an affinity with the solvent occluded in the gel fibers and has a lower boiling point than the solvent occluded in the gel fibers.

かかる低沸点の溶剤とは、取扱う高分子量重合体の種類
によって適宜選択されるものであるが例えば、ゲル繊維
がポリエチレンよりなる場合で溶媒がデカヒドロナフタ
レンの場合、置換溶媒としてエタノール、溶媒がテトラ
ヒドロナフタレンの場合、置換溶Wとしてアセトン及び
トルエン、溶媒がパラフィンの場合、置換溶媒としてヘ
キサン及びトリクロロトリフルオロエタン等の例が挙げ
られる。
Such a low boiling point solvent is appropriately selected depending on the type of high molecular weight polymer to be handled. For example, when the gel fiber is made of polyethylene and the solvent is decahydronaphthalene, ethanol is used as the replacement solvent, and tetrahydrocarbon is used as the replacement solvent. In the case of naphthalene, examples of the substitution solvent W include acetone and toluene, and when the solvent is paraffin, examples of the substitution solvent include hexane and trichlorotrifluoroethane.

マ九、ゲ/I’!維がポリビニルアルコール!!l’e
る場合で溶媒がエチレングリコールの場合、 @換溶媒
としてメタノール等の例が挙げられる。
Maku, ge/I'! The fiber is polyvinyl alcohol! ! l'e
When the solvent is ethylene glycol, methanol is an example of the solvent.

ゲル繊維の加熱効率は単糸の繊度により左右される事が
考えられるが1本発明では最終延伸後の単糸の繊度は、
0.5ないし20デニール、好ましくは0.7ないし1
0デニールの時、もつとも優れ次効果が確認されている
It is thought that the heating efficiency of gel fibers is influenced by the fineness of the single yarn, but in the present invention, the fineness of the single yarn after final drawing is
0.5 to 20 denier, preferably 0.7 to 1
When the denier was 0, the following effects were confirmed to be excellent.

(作 用〕 本発明者等はゲル状繊維の延伸を高速で行なう方法につ
いて検討し九結果、延伸ゾーン長が長ければ長い程、延
伸速度が上げられる事を見出し友。
(Function) The present inventors investigated a method for drawing gel-like fibers at high speed and found that the longer the drawing zone length, the higher the drawing speed.

この理由は延伸ゾーン長が大きくなる事により見かけの
変形速度が低下する事の他に、具体的には良くわからな
いが、加熱時間が長くなつt亭で繊維中残留してい友溶
媒が適度に、かつ逐時蒸発あるいは析出し、繊維の空隙
率を高める九めではないかと考えられる。
The reason for this is that the apparent deformation rate decreases as the stretching zone length increases, and although the specific details are not clear, the longer heating time causes the remaining solvent in the fibers to be moderately reduced. Moreover, it is thought that successive evaporation or precipitation increases the porosity of the fibers.

(実施例) 以下、実施例により本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

〈実施例1〉 実験ム1〜19 粘度平均分子量190万のポリエチレンを10重量係と
溶剤としてデカヒドロナフタレンを90重量−の割合で
調製し次混合物t−130℃で溶解後、同温度で孔径が
0.5111の紡糸口金を用い室温空気中に溶液紡糸し
次。紡出糸条は、5m/分ないし10m/分の速度で引
きとる引き取りローラに到るまでに室温空気により冷却
されゲル状繊維を形成し巻き取つ九。この様にして一几
ん巻き取られ九ゲル繊維t−砥伸ゾーン供給ローラーへ
供給し、160℃の空気加熱炉を用いて1段階で第1表
に示した延伸倍率で延伸し最終延伸物を得九。
<Example 1> Experiments 1 to 19 Polyethylene with a viscosity average molecular weight of 1.9 million was prepared in a proportion of 10% by weight and decahydronaphthalene as a solvent in a ratio of 90% by weight.Then, the mixture was dissolved at t-130°C, and the pore size was adjusted at the same temperature. Next, solution spinning was performed in air at room temperature using a spinneret with a diameter of 0.5111. The spun yarn is cooled by room temperature air before reaching a take-up roller, which takes it off at a speed of 5 m/min to 10 m/min, and forms a gel-like fiber, which is then wound up. The nine gel fibers were wound up in this way and fed to the T-grinding zone supply roller, and then stretched in one step using an air heating furnace at 160°C at the stretching ratio shown in Table 1 to form the final stretched product. Got nine.

この時の全延伸ゾーン長(L)、全延伸倍率(り及び得
られた延伸糸の糸強度、延伸性を第1表に示す。ここで
延伸性とは連続延伸時の断糸状況を表わすものであり、
具体的には完成し次延伸糸100.000mあ友りの断
糸回数1回未満を艮姥■。
The total drawing zone length (L), total drawing ratio (R), yarn strength and drawability of the obtained drawn yarn at this time are shown in Table 1.Here, drawability refers to the state of yarn breakage during continuous drawing. It is a thing,
Specifically, the yarn should be broken less than once after 100,000 m of completed yarn is drawn.

同じく1回以上5回未満をやや良好(Δ)さらに5回以
上を不良(×)で示し次。
Similarly, 1 or more times but less than 5 times is shown as somewhat good (Δ), and 5 times or more is shown as poor (×).

第   1    表 第1表における実験A4〜13が本発明例である。場合
によっては若干断糸が発現するものもあるが延伸性はお
おむね良好であり満足すべき物性を存している。尚比較
例である実験AIおよび2では、必要とする延伸倍率を
亮速で得る事がで自ず、実験颯3および14〜17では
頻繁に断糸が発生し、安定し几延伸を行なう事はできな
かつ友口ま九実験煮18および19では必要とする延伸
倍率は得られるものの延伸され几繊維の強度は低く満足
する物性には到らなかつ友。・ 実験黒20〜24 実験属1〜19と同一のポリマーを用い、実験&1〜1
9と同一紡糸条件で溶液紡糸して、ゲル繊維を得t0 得られ危ゲル繊維を1度巻き取ってから(断続的に)第
2表に示す延伸条件および延伸ゾーンの供給ローラーに
供給する前にエタノールに浸漬し溶剤置換処理を行なっ
た以外は、実験煮1〜工9と同一延伸条件で延伸し友。
Table 1 Experiments A4 to A13 in Table 1 are examples of the present invention. Although some yarn breakage may occur in some cases, the stretchability is generally good and the physical properties are satisfactory. In Experiments AI and 2, which are comparative examples, it was not possible to obtain the required stretching ratio at a high speed, and in Experiments 3 and 14 to 17, yarn breakage occurred frequently and it was difficult to draw stably and efficiently. However, although the required stretching ratio was obtained in Experiments 18 and 19, the strength of the stretched fibers was low, and satisfactory physical properties were not achieved.・ Experimental Black 20-24 Using the same polymer as Experimental Genus 1-19, Experiment & 1-1
Solution spinning was carried out under the same spinning conditions as in 9 to obtain gel fibers. After the obtained gel fibers were wound once (intermittently) under the stretching conditions shown in Table 2 and before being fed to the supply roller of the stretching zone. The specimens were stretched under the same stretching conditions as in Experiments 1 to 9, except that they were immersed in ethanol and subjected to solvent replacement treatment.

得られた延伸系の糸強度、延伸性を第2表に示す。Table 2 shows the yarn strength and drawability of the drawn system obtained.

第2表 第2表から明らかなように本例で得られた延伸糸は前記
実験ム4〜13の本発明例で得られ友延伸糸に比べて、
実験&20〜21にあっては同一延伸条件であっても延
伸性が優れ且り引張強度が向上していることが判る。
Table 2 As is clear from Table 2, the drawn yarn obtained in this example has a lower temperature than the drawn yarn obtained in the inventive examples of Experiments 4 to 13 above.
In Experiments &20 and 21, it can be seen that even under the same stretching conditions, the stretchability was excellent and the tensile strength was improved.

ま九実験&22〜24にあっては、延伸ゾーン長、延伸
速度が同一の場合であっても延伸性良好にして延伸倍率
が向上し、且つ、引張強度が向上していることが判る。
In Experiments &22 to 24, it can be seen that even when the stretching zone length and stretching speed are the same, stretchability is improved, the stretching ratio is improved, and the tensile strength is improved.

実験黒25〜29 実験魔1〜19と同一のポリマーを用い、実験五1〜1
9と同一紡糸条件で溶液紡糸して、ゲル繊維を得友。
Experiment Black 25-29 Using the same polymer as Experiment Demon 1-19, Experiment 51-1
Solution spinning was performed under the same spinning conditions as in 9 to obtain gel fibers.

得られtゲル繊維を第3表に示す延伸条件および供給す
るゲル繊維を延伸ゾーンの加熱供給ローラー上で約80
℃に加熱した以外は、実験厘1〜19と同一延伸条件で
延伸しt0得られt延伸糸の糸強度、延伸!l:を第3
表に示す。
The obtained t-gel fibers were stretched under the conditions shown in Table 3 and the supplied gel fibers were heated to about 80% on the heated supply roller in the stretching zone.
Stretching was carried out under the same stretching conditions as in Experiments 1 to 19, except that the yarn was heated to ℃. l: the third
Shown in the table.

第    3    表 第3表から明らかなように本例で得られた延伸系は面記
実験惠4〜13の本発明例で得られた延伸糸に比べて、
実験ム25〜26にあっては、同一延伸条件であっても
引張強度が向上していることが判る。
Table 3 As is clear from Table 3, the drawn yarns obtained in this example had a higher level of tension than the drawn yarns obtained in the invention examples of Menki Experiments 4 to 13.
In Experiments 25 and 26, it can be seen that the tensile strength is improved even under the same stretching conditions.

ま九、実験黒27〜29にあっては延伸ゾーン長、延伸
速度が同一の場合であっても、延伸性良好にして延伸倍
率が同等乃至は向上し、且り引張強度が向上しているこ
とが判る。
Ninth, in Experimental Black 27 to 29, even when the stretching zone length and stretching speed are the same, the stretching property is good, the stretching ratio is the same or improved, and the tensile strength is improved. I understand that.

〈実施例2〉 重量平均分子量が約210万のアイソタクテイツクボリ
プロビレンを10重its、オルトジクロルベンゼンを
90重量%の混合物を140℃で溶解し、同温度で溶液
紡糸を行ない、ゲル繊維を得次。引き取りスピードは8
m1分であり友。続いて連続的に該ゲ/L’*維を17
0℃の加熱空気炉にて、1段目が延伸倍率8倍で−tん
巻きとり、続いて175℃の温度にて3.5倍の合計2
8倍にローラー間延伸し九。尚この時の延伸ゾーン長は
250m%最終の延伸スピードは220m/分でちゃ、
結果として、延伸はきわめて良好であり得られ友延伸繊
維の強度も平均して19f/dという値が得られ窺。
<Example 2> A mixture of 10 weight percent of isotactic polypropylene with a weight average molecular weight of about 2.1 million and 90 weight percent of orthodichlorobenzene was dissolved at 140°C, and solution spinning was performed at the same temperature to form a gel. Get the fiber next. Pick up speed is 8
m1 minute and friend. Subsequently, 17 of the ge/L'*fibers were continuously applied.
In a heated air oven at 0°C, the first stage was rolled at a stretching ratio of 8 times -t, followed by 3.5 times at a temperature of 175°C for a total of 2
Stretched between rollers 8 times. In addition, the stretching zone length at this time is 250 m%, and the final stretching speed is 220 m/min.
As a result, the drawing was very good and the average strength of the drawn fibers was 19 f/d.

〈実施例3〉 重量平均分子量が約130万のポリビニルアルコールを
8重量%、溶剤として92重量%ノエチレングリコー〃
の混合物を170℃で溶解、同温度で5917分の巻き
取り速度で溶液紡出後−tん巻きと9.ひきつづいてメ
タノールを用いて溶剤を置換し、その後200℃の加熱
空気炉で1段で25倍にローラー間延伸し友。尚この際
の延伸ゾーン長は150m、延伸のスピードは125F
!/分であり、きわめて良好に延伸が行なえ九。ま几得
られ几繊維の強度も平均して18f/dと優れ几もので
6つ几。
<Example 3> 8% by weight polyvinyl alcohol with a weight average molecular weight of approximately 1.3 million, 92% by weight noethylene glycol as a solvent
The mixture was dissolved at 170°C, and the solution was spun at the same temperature at a winding speed of 5917 minutes, followed by -t winding and 9. Subsequently, the solvent was replaced with methanol, and then the film was stretched 25 times between rollers in one stage in a heated air oven at 200°C. The stretching zone length at this time was 150 m, and the stretching speed was 125F.
! /min, and the stretching was carried out very well.9. The strength of the obtained fibers is also excellent, with an average of 18 f/d.

〈実施例4〉 アクリロニドすA/を水中懸濁重合して得られ次重量平
均分子量が約130万のポリアクリロニトリ/I/8重
量%とN、N−ジメチルホルムアミド76重l1lts
トペンジルアルコー/I/16重量俤の混合物′に12
8℃で溶解し次。同温度で溶液紡糸後、5m/分の引き
とりローラに到達するまでに冷却してゲル繊維を得九。
<Example 4> Polyacrylonitrile/I/8% by weight having a weight average molecular weight of about 1.3 million obtained by suspension polymerization of acrylonide A/ in water and 76 weight 1lts of N,N-dimethylformamide
12 to a mixture of topendyl alcohol/I/16 by weight
Dissolve at 8°C. After solution spinning at the same temperature, the gel fibers were cooled before reaching a take-up roller at 5 m/min to obtain gel fibers.

得られたゲル繊維を50mのゾーン長を持つ100℃の
製水中で8倍に連続的にローラー間延伸しt後、ひき続
いて100mのゾーン長を持つ170℃の加熱空気炉で
3.5倍にローラー間延伸して、延伸糸を得t0すなわ
ち合計の延伸ゾーン長150 ” h最終の延伸速度1
40m/分で、断糸なく良好に延伸を行なう事ができた
。ま几、得られた繊維の強度も平均して129/dとい
う値が得られ次。
The resulting gel fibers were continuously stretched 8 times between rollers in water at 100°C with a zone length of 50 m, and then stretched for 3.5 times in a heated air oven at 170°C with a zone length of 100 m. Stretched between rollers to obtain a drawn yarn t0, i.e., total stretching zone length 150'' h Final stretching speed 1
Stretching was successfully carried out at 40 m/min without yarn breakage. Furthermore, the average strength of the obtained fibers was 129/d.

(発明の効果) 前記実施例から明らかなように1本発明は、超高分子量
重合体を溶液紡糸して得られるゲル繊維を延伸して高強
力繊維を得るに際し、従来技術では到達することができ
なかった羅速度で且つ、断糸することなく安定的に延伸
が可能な延伸方法を提供する。
(Effects of the Invention) As is clear from the examples described above, the present invention achieves a high strength fiber obtained by drawing a gel fiber obtained by solution spinning an ultra-high molecular weight polymer, which is difficult to achieve with conventional technology. To provide a stretching method capable of stably stretching at a speed that has not been previously possible without yarn breakage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例で得九結果をグラフ化して示す図である
。尚、グラフ中の数字は実施例の実験ムを示し、斜線部
は本発明の範囲を示す。
FIG. 1 is a graph showing the results obtained in Examples. Note that the numbers in the graph indicate experimental results of Examples, and the shaded area indicates the scope of the present invention.

Claims (4)

【特許請求の範囲】[Claims] (1)超高分子量重合体を溶液紡糸して得られたゲル繊
維を、該ゲル繊維の溶断温度以下で加熱延伸するに際し
、下記(1)〜(3)の条件をいずれも満足するように
延伸することを特徴とするゲル繊維の高速延伸方法。 V≧0.4L+10・・・・・・・・・・(1)V≦4
20logL−600・・・・・・(2)λ≧10・・
・・・・・・・・・・・・・(3)但し、V:最終延伸
ローラー速度〔m/分〕L:全延伸ゾーン長〔m〕 λ:全延伸倍率〔倍〕
(1) When heating and stretching the gel fiber obtained by solution spinning an ultra-high molecular weight polymer at a temperature below the melting temperature of the gel fiber, make sure that all of the following conditions (1) to (3) are satisfied. A method for high-speed stretching of gel fibers. V≧0.4L+10・・・・・・・・・(1)V≦4
20logL-600...(2)λ≧10...
・・・・・・・・・・・・・・・(3) However, V: Final stretching roller speed [m/min] L: Total stretching zone length [m] λ: Total stretching ratio [times]
(2)延伸に供するゲル繊維が、該ゲル繊維に吸蔵され
る溶剤以外の低沸点溶剤を用いて溶剤置換されてなる特
許請求の範囲第1項記載のゲル繊維の高速延伸方法。
(2) The method for high-speed stretching of gel fibers according to claim 1, wherein the gel fibers to be stretched are subjected to solvent substitution using a low boiling point solvent other than the solvent occluded in the gel fibers.
(3)延伸に用いる供給ローラーが、40℃以上、ゲル
繊維の融点以下に加熱されてなる特許請求の範囲第1項
又は第2項記載のゲル繊維の高速延伸方法。
(3) The method for high-speed stretching of gel fibers according to claim 1 or 2, wherein the supply roller used for stretching is heated to 40° C. or higher and lower than the melting point of the gel fibers.
(4)超高分子量重合体が超高分子量ポリエチレンであ
る特許請求の範囲第1項ないし第3項のいずれかに記載
のゲル繊維の高速延伸方法。
(4) The method for high-speed stretching of gel fibers according to any one of claims 1 to 3, wherein the ultra-high molecular weight polymer is ultra-high molecular weight polyethylene.
JP17548185A 1985-08-08 1985-08-08 High speed stretching of gel fiber Pending JPS6241341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17548185A JPS6241341A (en) 1985-08-08 1985-08-08 High speed stretching of gel fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17548185A JPS6241341A (en) 1985-08-08 1985-08-08 High speed stretching of gel fiber

Publications (1)

Publication Number Publication Date
JPS6241341A true JPS6241341A (en) 1987-02-23

Family

ID=15996792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17548185A Pending JPS6241341A (en) 1985-08-08 1985-08-08 High speed stretching of gel fiber

Country Status (1)

Country Link
JP (1) JPS6241341A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275708A (en) * 1987-05-06 1988-11-14 Mitsui Petrochem Ind Ltd Molecularly oriented molded product of ultrahigh-molecular weight ethylene-propylene copolymer
JPS63275710A (en) * 1987-05-07 1988-11-14 Mitsui Petrochem Ind Ltd Molecularly oriented molded product of ultrahigh-molecular weight ethylene-alpha-olefin copolymer
JPS63275709A (en) * 1987-05-06 1988-11-14 Mitsui Petrochem Ind Ltd Molecularly oriented molded product of ultrahigh-molecular weight ethylene-butene-1 copolymer
JPH01148807A (en) * 1987-12-03 1989-06-12 Mitsui Petrochem Ind Ltd Polyolefin fiber having improved initial elongation and production thereof
JP2008512573A (en) * 2004-09-03 2008-04-24 ハネウェル・インターナショナル・インコーポレーテッド Stretched gel spun polyethylene yarn and method for stretching
JP2009520133A (en) * 2005-12-20 2009-05-21 ハネウェル・インターナショナル・インコーポレーテッド Heating apparatus and method for drawing polyolefin fibers
JP2013177728A (en) * 2006-04-07 2013-09-09 Toyobo Co Ltd High-strength polyethylene fiber and method for producing the same
WO2023074268A1 (en) * 2021-10-28 2023-05-04 東洋紡株式会社 High-strength, high-elongation polypropylene fiber and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167918A (en) * 1984-02-06 1985-08-31 Kuraray Co Ltd Method for drawing high-tenacity polyethylene fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167918A (en) * 1984-02-06 1985-08-31 Kuraray Co Ltd Method for drawing high-tenacity polyethylene fiber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275708A (en) * 1987-05-06 1988-11-14 Mitsui Petrochem Ind Ltd Molecularly oriented molded product of ultrahigh-molecular weight ethylene-propylene copolymer
JPS63275709A (en) * 1987-05-06 1988-11-14 Mitsui Petrochem Ind Ltd Molecularly oriented molded product of ultrahigh-molecular weight ethylene-butene-1 copolymer
JPS63275710A (en) * 1987-05-07 1988-11-14 Mitsui Petrochem Ind Ltd Molecularly oriented molded product of ultrahigh-molecular weight ethylene-alpha-olefin copolymer
JPH01148807A (en) * 1987-12-03 1989-06-12 Mitsui Petrochem Ind Ltd Polyolefin fiber having improved initial elongation and production thereof
JP2008512573A (en) * 2004-09-03 2008-04-24 ハネウェル・インターナショナル・インコーポレーテッド Stretched gel spun polyethylene yarn and method for stretching
JP2009520133A (en) * 2005-12-20 2009-05-21 ハネウェル・インターナショナル・インコーポレーテッド Heating apparatus and method for drawing polyolefin fibers
JP4886790B2 (en) * 2005-12-20 2012-02-29 ハネウェル・インターナショナル・インコーポレーテッド Heating apparatus and method for drawing polyolefin fibers
JP2013177728A (en) * 2006-04-07 2013-09-09 Toyobo Co Ltd High-strength polyethylene fiber and method for producing the same
WO2023074268A1 (en) * 2021-10-28 2023-05-04 東洋紡株式会社 High-strength, high-elongation polypropylene fiber and production method thereof

Similar Documents

Publication Publication Date Title
US5032338A (en) Method to prepare high strength ultrahigh molecular weight polyolefin articles by dissolving particles and shaping the solution
EP0205960B1 (en) Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber
US4422993A (en) Process for the preparation of filaments of high tensile strength and modulus
WO1986004936A1 (en) Polyethylene multifilament yarn
US11773514B2 (en) Method for making high strength and high modulus carbon fibers
PT2142689E (en) Process for the preparation of polymer yarns from ultra high molecular weight homopolymers or copolymers, polymer yarns, molded polymer parts, and the use of polymer yarns
JPH07102413A (en) Polytetrafluoroethylene filament
US3494121A (en) Hollow reinforced composite fiber and process for producing same
JPS6241341A (en) High speed stretching of gel fiber
US4816335A (en) High-quality polyarylene-thioether fibers and method for production thereof
SI9520144B (en) Process for manufacturing continuous polyester filament yarn
JPS59100710A (en) Production of yarn having high toughness
JP2000178829A (en) Polyphenylene sulfide fiber and its production
US2842532A (en) Process of reducing the viscosity of polymers
JP7176850B2 (en) Sea-island composite fiber bundle
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPH01239109A (en) Polyphenylene sulfide fiber, its production and false-twisted yarn of said fiber
JPH07238416A (en) Production of high-strength polyethylene fiber
CA2098692A1 (en) Process for producing polyarylene sulfide fiber and thereby obtainable polyarylene sulfide multifilament yarn
EP0212133B1 (en) Method to prepare high strength ultrahigh molecular weight polyolefin articles by dissolving particles and shaping the solution
JPH0670283B2 (en) Method for producing high-strength, high-modulus polyvinyl alcohol fiber
JPS62184112A (en) Production of high-tenacity high-modulus polyethylene fiber
JPH04108108A (en) Drawn propylene polymer and production thereof
JPS6052647A (en) Gel fiber and gel film stretching method
JPH1181036A (en) High strength polypropylene fiber and its production