JPH01239109A - Polyphenylene sulfide fiber, its production and false-twisted yarn of said fiber - Google Patents

Polyphenylene sulfide fiber, its production and false-twisted yarn of said fiber

Info

Publication number
JPH01239109A
JPH01239109A JP5952988A JP5952988A JPH01239109A JP H01239109 A JPH01239109 A JP H01239109A JP 5952988 A JP5952988 A JP 5952988A JP 5952988 A JP5952988 A JP 5952988A JP H01239109 A JPH01239109 A JP H01239109A
Authority
JP
Japan
Prior art keywords
fiber
polyphenylene sulfide
melt viscosity
poise
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5952988A
Other languages
Japanese (ja)
Inventor
Toshimasa Kuroda
黒田 俊正
Masato Yoshimoto
正人 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP5952988A priority Critical patent/JPH01239109A/en
Publication of JPH01239109A publication Critical patent/JPH01239109A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
    • D01F6/765Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products from polyarylene sulfides

Abstract

PURPOSE:To obtain the subject fiber having excellent mechanical properties and dimensional stability without causing yarn breakage and fluffing in spinning and drawing, by spinning a specific linear polyphenylene sulfide under a definite condition and subjecting the spun fiber to drawing and heat-treatment. CONSTITUTION:The linear polyphenylene sulfide used as a raw material has a melt viscosity (MV1000) of 700-1,200 poise [measured at 320 deg.C under a shear rate (gamma) of 1,000/sec], a melt viscosity (MV3000) of >=600 poise [measured at 320 deg.C under a shear rate (gamma) of 3,000/sec] and the melt viscosity difference (MV1000-MV3000 of <=200. The polymer is spun at a spinneret temperature of 310-330 deg.C and a spinning speed of <=1,000m/min. The spun fiber is drawn at <150 deg.C and then heat-treated at 150 deg.C to obtain the objective polyphenylene sulfide fiber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐熱性・耐薬品性が要求される、各種フィル
ターに好適なポリフェニレンサルファイド繊維、その製
造方法更には該繊維の仮撚加工糸に関するもので、更に
詳しくは、高強度・低収縮率といった優れた特性を有す
るポリフェニレンサルファイド繊維、及び紡糸・延伸時
の糸切れ、毛羽発生が極めて少ないレベルで該繊維を工
業的製造を可能にした製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a polyphenylene sulfide fiber suitable for various filters that requires heat resistance and chemical resistance, a method for producing the same, and a false twisted yarn of the fiber. More specifically, it is a polyphenylene sulfide fiber that has excellent properties such as high strength and low shrinkage, and that enables industrial production of this fiber with extremely low occurrence of yarn breakage and fuzz during spinning and drawing. Regarding the manufacturing method.

[従来技術] ポリフェニレンサルファイドは耐熱性・耐薬品性に優れ
たポリマーであり、近年、電気、゛電子分野、自動車分
野、v1械分野等に使用され、生産量ら急激に増加し始
めている。一方、その繊維化についても、多くの提案が
なされている(例えば、特開昭52−30609号公報
、特開昭58−204047号公報。
[Prior Art] Polyphenylene sulfide is a polymer with excellent heat resistance and chemical resistance.In recent years, it has been used in the fields of electricity, electronics, automobiles, V1 machinery, etc., and its production volume has begun to increase rapidly. On the other hand, many proposals have been made regarding its fiberization (for example, JP-A-52-30609 and JP-A-58-204047).

特開昭57−143518号公報、特開昭61−758
12号公報)、しかしながら、従来の提案では、(a)
モノフィラメント如き、極めて線径が太いものを得るに
過ぎないfb) OI性面でも不十分なものしか得られ
ていない、更に(C)マルチフィラメントを高生産性と
高物性を以て得るような試みは、はとんどない。
JP-A-57-143518, JP-A-61-758
However, in the conventional proposal, (a)
(c) Attempts to obtain multifilaments with high productivity and high physical properties have resulted in only insufficient results in terms of OI properties. There's no way.

すなわち、その生産技術という観点から見てみると、従
来のポリマー例えば、ポリエチレンテレフタレート、ナ
イロンの足元にも及ばない、従って、本発明の如く強度
が充分に高く、寸法安定性ら優れた特性を有し、しかも
単糸デニールが1〜4dOといった細いフィラメントか
ら構成されるマルチフィラメントにさえも適用可能な工
業的技術に関してはその技術確立が強く要望されてはい
る。
That is, from the viewpoint of production technology, it is not even as good as conventional polymers such as polyethylene terephthalate and nylon.Therefore, the present invention has sufficiently high strength and excellent properties such as dimensional stability. However, there is a strong desire to establish an industrial technology that can be applied even to multifilaments composed of thin filaments with a single filament denier of 1 to 4 dO.

[発明の目的] 本発明の第1の目的は、機械的性質更には寸法安定性に
潰れたポリフェニレンサルファイド繊維、その製造方法
、更には該繊維の仮撚加工糸を提供する事にある0本発
明の第2の目的は、紡糸・延伸過程での断糸及び単糸切
れが少ない、該繊維の製造方法を提供する事にある。
[Object of the Invention] The first object of the present invention is to provide a polyphenylene sulfide fiber with improved mechanical properties and dimensional stability, a method for producing the same, and a false twisted yarn of the fiber. A second object of the invention is to provide a method for producing the fiber in which yarn breakage and single filament breakage during spinning and drawing processes are reduced.

本発明の第3の目的は、紡糸時のバックの圧力上昇が小
さくて、連続紡糸可能なポリフェニレンサルファイド繊
維及びその製造法を提供する事にある。
A third object of the present invention is to provide a polyphenylene sulfide fiber that can be continuously spun with a small increase in bag pressure during spinning, and a method for producing the same.

本発明の第4の目的は、毛羽発生が少なく、製織性良好
なポリフェニレンサルファイド繊維、更にはその仮撚加
工系を提供する事にある。
A fourth object of the present invention is to provide a polyphenylene sulfide fiber with less fluff and good weavability, and a false twisting system thereof.

(構成) 本発明者等は、前記目的を達成すべく検討を重ねたとこ
ろ、繊維物性と製糸性とを両立させるには、ポリフェニ
レンサルファイドの溶融粘度特性に極めて臨界性が存在
していることを見い出した。
(Structure) After repeated studies to achieve the above object, the present inventors found that the melt viscosity characteristics of polyphenylene sulfide are extremely critical in achieving both fiber properties and spinnability. I found it.

つまり、成る特定の重合度及び分子鎖について特定の直
線性とを有するポリフェニレンサルファイドを用いると
き、前述の目的が達成されることを見い出したのである
In other words, it has been found that the aforementioned object is achieved when using polyphenylene sulfide having a specific degree of polymerization and a specific linearity of the molecular chains.

かくして、本発明は、以下の構成からなる。Thus, the present invention consists of the following configuration.

(1)下記[1]〜[3]の条件を同時に満足する事を
特徴とするポリフェニレンサルファイド!!。
(1) Polyphenylene sulfide characterized by simultaneously satisfying the following conditions [1] to [3]! ! .

■ 該繊維は、温度320℃、剪断速度(?)1000
5f3C’での溶融粘度(MV   )が700〜12
00ポイズであり、温度320℃、剪断速度(テ) 3
000sec−1での溶融粘度(MV   )が600
ポイズ以上であり、かつ、該Fg融粘度差< M V 
   y V 3000 )が200ポイズ以下である
ような線状ポリフェニレンサルファイドからなること。
■ The fiber has a temperature of 320°C and a shear rate (?) of 1000
Melt viscosity (MV) at 5f3C' is 700-12
00 poise, temperature 320℃, shear rate (te) 3
Melt viscosity (MV) at 000 sec-1 is 600
poise or more, and the Fg melt viscosity difference < MV
y V 3000 ) is 200 poise or less.

■ 繊維強度(St)が4.0 g/da以上、シルク
ファクター(SF)が20以上であること。
■ Fiber strength (St) is 4.0 g/da or more and silk factor (SF) is 20 or more.

■ 温度180℃での乾熱収縮率(HS )が15%以
下であること。
■ Dry heat shrinkage (HS) at a temperature of 180°C is 15% or less.

(2)上記■のポリマーを口金温度が310〜330°
C1紡糸速度1000m/分以下で紡糸し、延伸熱処理
する事を特徴とする上記ポリフェニレンサルファイド繊
維の製造法。
(2) Use the polymer described in ■ above at a base temperature of 310 to 330°.
C1 A method for producing the polyphenylene sulfide fiber described above, characterized in that the fiber is spun at a spinning speed of 1000 m/min or less and subjected to drawing heat treatment.

以下、本発明について、詳細に説明する。The present invention will be explained in detail below.

一般に、結晶性の熱可塑性ポリマーを紡糸する場合、紡
糸温度は(融点+30〜70)”Cの温度傾城を採用す
る事が多い、勿論、同一ポリマーでも、重合度・紡糸機
内でのポリマーの滞溜時間等により、微調整が必要であ
る事は言うまでもない、−般ボリフェニレンサルファイ
ドの融点は、DTAの測定値では、284℃近傍の値と
なり、紡糸温度は320℃〜350°C,ポリマー溶融
温度としては、310〜330°C程度が好ましい、そ
の際、ポリマーの粘度特性が繊維の物性及び紡糸延伸性
に極めて多きな影響を与え、両者を両立させる意味で特
に、ポリフェニレンサルファイドの場合は、適性範囲が
極めて狭い事が判明した。
Generally, when spinning crystalline thermoplastic polymers, a temperature gradient of (melting point +30 to 70) C is often adopted for the spinning temperature. Needless to say, fine adjustment is required depending on the distillation time, etc. - The melting point of general polyphenylene sulfide is around 284°C as measured by DTA, the spinning temperature is 320°C to 350°C, and the polymer melting temperature is 320°C to 350°C. The temperature is preferably about 310 to 330°C. In this case, the viscosity characteristics of the polymer have a very large influence on the physical properties and spinning drawability of the fiber, and in order to achieve both, especially in the case of polyphenylene sulfide, It turns out that the range of suitability is extremely narrow.

すなわち、生産性及び繊維特性が大きく改善され、かつ
両者を同時に満足するためにはミ温度り20℃、剪断速
度(−i−) 1000sec4での溶融粘度(MVl
oo。)が700〜1200ポイズであり、温度320
℃、剪断速度(−r) 3000sec−’での溶融粘
度(MV3oo。)が600ポイズ以上であり、カッ、
該溶融粘度差(MV    M V 3000 )が2
00ポイズ以下の線状ポリフェニレンサルファイドを用
いる事が必須である。すなわち、この2つの異なる剪断
速度1?)での溶融粘度(MV   、及びMV300
0 )の値は、高生産性と高物性とを兼ねそなえたポリ
フェニレンサルファイド繊維を得るための1つの指標と
なる。すなわち温度320℃、剪断速度1000 se
c″Nでの溶融粘度(MV1000)が700ポイズ未
満の時は、重合度が低過ぎるため、(1)物性、特に強
度の面で充分なものを得る事が出来ない、■延伸時の単
糸切れが多発する、(1)未延伸糸の経過変化が進みや
すいため、未延伸糸の保管に間頚か出やすい、更には、
(へ)延伸時の高温セットの際に、単糸切れ・毛羽が出
やすくなるため、好ましくない、一方、温度320°C
1剪断速度1000sec−1での溶融粘度が1200
ポイズを超える場合、重合度かあまりにも高過ぎるため
、(1)紡糸速度を高める事が出来ない(紡糸速度を高
くしていくと、未延伸糸の段階で毛羽・ループが多発し
、断糸しやすくなる)■)延伸倍率を高くする事が出来
ないので、高物性の繊維を得る事が出来ず、かつ、延伸
時の単糸切れも多く好ましくない。
In other words, productivity and fiber properties are greatly improved, and in order to satisfy both simultaneously, the melt viscosity (MVl) at a temperature of 20°C and a shear rate (-i-) of 1000 sec4 is required.
oo. ) is 700 to 1200 poise, and the temperature is 320
℃, the melt viscosity (MV3oo.) at a shear rate (-r) of 3000 sec-' is 600 poise or more,
The melt viscosity difference (MV MV 3000) is 2
It is essential to use linear polyphenylene sulfide of 00 poise or less. That is, these two different shear rates 1? ) at melt viscosity (MV, and MV300
0) is one indicator for obtaining polyphenylene sulfide fibers that have both high productivity and high physical properties. That is, the temperature is 320°C and the shear rate is 1000 se.
When the melt viscosity (MV1000) at c″N is less than 700 poise, the degree of polymerization is too low, resulting in (1) insufficient physical properties, especially strength; Frequent thread breakage occurs; (1) undrawn threads tend to change over time; therefore, undrawn threads are prone to cracking during storage;
(f) Unfavorable because single yarn breakage and fuzz are likely to occur during high-temperature setting during stretching; on the other hand, the temperature is 320°C.
1 The melt viscosity at a shear rate of 1000 sec-1 is 1200
If it exceeds poise, the degree of polymerization is too high, so (1) the spinning speed cannot be increased (if the spinning speed is increased, fuzz and loops will occur frequently in the undrawn yarn stage, and yarn breakage will occur). (1) Since the drawing ratio cannot be increased, fibers with high physical properties cannot be obtained, and single fiber breakage occurs frequently during drawing, which is undesirable.

次に、剪断速度3000 sec’の溶融粘度(MV3
000 )との関係が重要である。一般に、高分子の溶
融粘度は、剪断速度に依存し、剪断速度を大きくすると
、溶融粘度は減少する。その際の剪断速度依存性は、高
分子鎖の形態にも依存する6例えば、架橋高分子・枝分
れ高分子等の非鎖状性(直線性の悪い)高分子鎖の場合
は、剪断速度が小さいと高い溶融粘度を示すが、剪断速
度を大きくし−ていくと、溶融粘度は急激に低下する挙
動を示すという、剪断速度依存性が大きい特徴を有する
Next, the melt viscosity (MV3
000) is important. Generally, the melt viscosity of a polymer depends on the shear rate, and as the shear rate increases, the melt viscosity decreases. The shear rate dependence at this time also depends on the morphology of the polymer chain6.For example, in the case of non-chain polymer chains (poor linearity) such as cross-linked polymers and branched polymers, shear rate dependence It exhibits a high melt viscosity when the shear rate is low, but as the shear rate increases, the melt viscosity shows a behavior that rapidly decreases, and is characterized by a large dependence on shear rate.

一方、直線性の良い高分子鎖は、剪断速度が小さい場合
、溶融粘度は非直線性高分子鎖の場合程、高くはないが
、剪断速度を大きくしても、溶融粘度の低下の程度はそ
れ程大きくならないという、剪断速度依存性が小さいと
いう特徴を有する。所で、ポリフェニレンサルファイド
ポリマーは、必ずしも直線性の良いポリマーだけではな
いため、そのm帷化の際は、上記特性が極めて重要にな
ってくる。この点、本発明者等は、ポリフェニレンサル
ファイドの場合、前記2つの粘度差(MV1000−M
V3000 )の値が、200ポイズ以下であるポリマ
ーが直線性の面で好ましい事を見い出した。
On the other hand, for polymer chains with good linearity, when the shear rate is small, the melt viscosity is not as high as for non-linear polymer chains, but even if the shear rate is increased, the degree of decrease in melt viscosity is It is characterized by a small shear rate dependence that does not increase that much. By the way, since polyphenylene sulfide polymers are not necessarily polymers with good linearity, the above characteristics become extremely important when making them into m-threads. In this regard, the present inventors found that in the case of polyphenylene sulfide, the above two viscosity differences (MV1000-M
It has been found that a polymer having a V3000 value of 200 poise or less is preferable in terms of linearity.

すなわち、この溶融粘度差(MV1000  MV30
00 ’の値が、200ポイズを越える場合は、目標と
する高生産・高物性を有するポリフェニレンサルファイ
ド繊維を得る事は出来ない、何故なら、この場合、高分
子鎖の直線性が良くないため、(1)紡糸時のパック圧
の上昇が大きく、長期的な連続運転が出来ない、0)紡
糸速度を高める事が出来ない、(1)物性面で充分なも
のを得る事が出来ない、(へ)延伸性が不良であり、単
糸切れ・断糸が多発する等の不利益が生じる。
That is, this melt viscosity difference (MV1000 MV30
If the value of 00' exceeds 200 poise, it is not possible to obtain polyphenylene sulfide fibers with the target high production and high physical properties, because in this case, the linearity of the polymer chain is not good. (1) The increase in pack pressure during spinning is large and long-term continuous operation is not possible; 0) It is not possible to increase the spinning speed; (1) It is not possible to obtain sufficient physical properties; f) Stretchability is poor, resulting in disadvantages such as frequent single yarn breakage and yarn breakage.

尚、MV3oooの値は、重合度・直線性の関係で、6
00ポイズ以上は必要である。すなわちM■3o0゜が
600ポイズ未満の時は、重合度が著しく低いかあるい
は直線性が極めて悪いなめ、目標とする、高生産性及び
高特性を兼備したポリフェニレンサルファイド繊維を得
る事ができない。
In addition, the value of MV3ooo is 6 due to the relationship between the degree of polymerization and linearity.
00 poise or more is required. That is, when M3o0° is less than 600 poise, the degree of polymerization is extremely low or the linearity is extremely poor, making it impossible to obtain polyphenylene sulfide fibers that have both high productivity and high properties as desired.

本発明で用いるポリフェニレンサルファイドは、公知の
合成法、例えば極性有機溶剤中で無水硫化ナトリウムと
多ハロ置換の環状化合物とを反応させることによって得
ることができるが、その際本発明の粘度要件を満足させ
るためには、後記の実施例に示すように重合温度と重合
時間とを適宜調整することが肝要である。尚、本発明で
いうポリフェニレンサルファイドとは、ポリマーの繰り
返し単位の90%以上が+バ層Xs+で構成されたポリ
マーである。勿論、他に10%未満のメタフェニ性と製
糸性とを確保するためには、紡糸の際、紡糸口金面温度
を310〜330℃に設定する事が肝要である0口金温
度が310℃未満の時は、口金面温度が低過ぎるなめ、
目的とする高生産性・高物性のポリフェニレンサルファ
イドを得る事は出来ない、一方、口金面温度が330’
Cを越える場合は、温度が高過ぎ、繊維の着色化が進み
、紡糸性の低下、更には、延伸性も低下し好ましくない
The polyphenylene sulfide used in the present invention can be obtained by a known synthesis method, for example, by reacting anhydrous sodium sulfide with a polyhalo-substituted cyclic compound in a polar organic solvent, and in this case, it satisfies the viscosity requirements of the present invention. In order to achieve this, it is important to appropriately adjust the polymerization temperature and polymerization time as shown in Examples below. In addition, polyphenylene sulfide as used in the present invention is a polymer in which 90% or more of the repeating units of the polymer are constituted by a layer Xs+. Of course, in order to ensure less than 10% metaphenylicity and spinning properties, it is important to set the spinneret surface temperature to 310 to 330°C during spinning. When the mouthpiece surface temperature is too low,
It is not possible to obtain the desired polyphenylene sulfide with high productivity and high physical properties.On the other hand, when the die surface temperature is 330'
If it exceeds C, the temperature is too high, the coloring of the fibers progresses, the spinnability decreases, and the drawability also decreases, which is not preferable.

一方、紡糸速度としてはjooom /分未満、好まし
くは、300〜800m/分が採用される。紡糸速度が
1000m /分を越える場合は、(1)得られる延伸
糸の強度が充分でない、C)延伸工程での単糸切れが多
発する、(n)毛羽も出やすい、といった欠点がある。
On the other hand, the spinning speed is less than jooom/min, preferably 300 to 800 m/min. When the spinning speed exceeds 1000 m/min, there are disadvantages such as (1) insufficient strength of the drawn yarn obtained, C) frequent breakage of single filaments during the drawing process, and (n) fuzzing.

尚、紡糸速度が300m/分未満の場合は、生産性が低
くなる。
Note that if the spinning speed is less than 300 m/min, productivity will be low.

ここで、紡糸設備としては、紡糸温度340〜350”
C程度の高温紡糸可能な設備であれば、ポリエステルに
採用している既存の設備をそのまま使用できる。罐、本
発明においては、紡糸口金温度の適性化が、高生産性・
高特性を満足する上で重要であるので、紡糸口金面に温
度検出端を挿入し、紡糸温度・[i全面周りの温度調整
により、口金面温度をコントロールする事が必要である
6次に、延伸・熱処理操作であるが、本発明においては
、延伸熱処理を一度で行なうのではなく、−度、150
°C未満の温度での延伸で配向結晶化させてから、15
0℃以上の温度で熱処理する方法が好ましい、又延伸速
度も必ずしも制限されるものではなく、通常の延伸速度
、例えば、100〜800m/分程度を採用すればよい
Here, the spinning equipment has a spinning temperature of 340 to 350"
Existing equipment used for polyester can be used as is, as long as it is capable of spinning at a high temperature of about C. In the present invention, optimization of the spinneret temperature leads to high productivity and
Since it is important to satisfy high properties, it is necessary to control the spinneret surface temperature by inserting a temperature detection end into the spinning nozzle surface and adjusting the temperature around the entire surface of the spinning nozzle.6 Next, Although the stretching and heat treatment operations are performed, in the present invention, the stretching heat treatment is not performed at once, but at 150 degrees
Oriented crystallization by stretching at temperatures below 15 °C
A method of heat treatment at a temperature of 0° C. or higher is preferable, and the stretching speed is not necessarily limited, and a normal stretching speed, for example, about 100 to 800 m/min may be adopted.

このようにして得られる本発明のポリフェニレンサルフ
ァイド繊維は強度が4.Of/de以上でシルクファク
ター(強度×FW雇)が20以上と、力学的性質が従来
のポリフェニレンサルファイド繊維では見られなかった
卓越したらのとなる。力学的性質、例えば強度は、m編
物の引き裂き強力に影響を及ぼず重要な因子である。す
なわち、高強度な繊維程、織編物の軽量化という面で有
利な事は言うまでもない、一方、シルクファクターが小
さい繊維の場合は、高強度繊維を得るためには、伸度を
かなり小さくしなければならず、毛羽等の品位面で問題
が発生し、しかも、延伸工程では、断糸、単糸切れが多
発し、工業的生産は困難である。この点、本発明で得ら
れるポリフェニレンサルファイド繊維は、シルクファク
ターが20以上と極めて大きいため、伸度を例えば、2
0〜30%と比較的残すような伸度倍率でも強度が4−
0g/de以上の繊維を得る事がu1来るなめ、工業的
生産が可能となるわけである。
The polyphenylene sulfide fiber of the present invention thus obtained has a strength of 4. With a Silk Factor (Strength x FW) of 20 or more at Of/de or higher, the mechanical properties are outstanding, which has not been seen in conventional polyphenylene sulfide fibers. Mechanical properties, such as strength, are important factors that do not affect the tearing strength of m-knitted fabrics. In other words, it goes without saying that the higher the strength of the fiber, the more advantageous it is in terms of reducing the weight of woven or knitted products.On the other hand, in the case of fibers with a small silk factor, in order to obtain high strength fibers, the elongation must be considerably reduced. Not only that, problems arise in terms of quality such as fluff, and moreover, yarn breakage and single yarn breakage occur frequently in the drawing process, making industrial production difficult. In this regard, since the polyphenylene sulfide fiber obtained by the present invention has an extremely large silk factor of 20 or more, the elongation can be reduced to 2, for example.
Even at a relatively low elongation ratio of 0 to 30%, the strength is 4-4.
Since it is possible to obtain fibers of 0 g/de or more, industrial production becomes possible.

更に、本発明の繊維の優れた特性としては、180℃で
の乾熱収縮率(無荷重下)が15%以下で、寸法安定性
に極めて優れている事である。ポリフェニレンサルファ
イド1illIl維は、その耐熱性・耐薬品性を生かし
、工業用フィルター等に使用される。
Further, the excellent properties of the fiber of the present invention include that the dry heat shrinkage rate (under no load) at 180° C. is 15% or less, and it has extremely excellent dimensional stability. Polyphenylene sulfide fibers are used in industrial filters and the like because of their heat resistance and chemical resistance.

その際、織物の仕上げ過稈で、高温処理するなめ、繊維
自体の収縮率を小さくしないと、布帛にシボあるいはス
ジが入り性能・品位共に低下する。−方、ポリフェニレ
ンサルファイド繊維の延伸工程での熱処理は、充分に配
向した繊維でないと単糸切れ・毛羽が多発し、工業的生
産には供し得ない。
At this time, if the woven fabric is overfinished, treated at high temperature, and the shrinkage rate of the fiber itself is not reduced, the fabric will develop grains or streaks, reducing both performance and quality. - On the other hand, heat treatment during the drawing process of polyphenylene sulfide fibers causes frequent breakage and fuzzing of single filaments unless the fibers are sufficiently oriented, making it unsuitable for industrial production.

この点、本発明の繊維においては、延伸工程での配向が
同等トラブルなく行われたるめ、引き続いて行なわれる
熱処理操作がスムーズに行なわれるわけである6以上の
ように、本発明のポリフェニレンサルファイド繊維は、
優れた生産性を有するだけでなく、物性面でも従来のポ
リフェニレンサルファイド繊維にない優れたものとなる
In this regard, in the fibers of the present invention, the orientation during the drawing process is performed without any trouble, so the subsequent heat treatment operation is carried out smoothly.6 As mentioned above, the polyphenylene sulfide fibers of the present invention teeth,
Not only does it have excellent productivity, but it also has superior physical properties that are not found in conventional polyphenylene sulfide fibers.

更に、本発明の他の態様によれば、上述のポリフェニレ
ンサルファイド繊維を仮撚加工することにより、下記■
〜■の条件を同時に満足するポリフェニレンサルファイ
ド仮撚加工系。
Furthermore, according to another aspect of the present invention, by false-twisting the polyphenylene sulfide fibers described above, the following
A polyphenylene sulfide false-twisting system that simultaneously satisfies the conditions of ~■.

■ 該仮撚加工糸は、温度320℃、剪断速度(■) 
1000sec−’での溶融粘度(M■1ooo)が7
00〜1200ポイズであり、温度320°C1剪断速
度3000sec−1での′/8融粘度(MV3000
)が600ポイズ以上であり、かつ、該溶融粘度差(M
 V    M V 3oo□ )が200ポイズ以下
であるような線状ポリフェニレンサルファイドからなる
こと。
■ The false twisted yarn has a temperature of 320°C and a shear rate (■).
Melt viscosity (M 1ooo) at 1000sec-' is 7
00 to 1200 poise, and the melt viscosity (MV3000
) is 600 poise or more, and the melt viscosity difference (M
It is made of linear polyphenylene sulfide having a V M V 3oo□ of 200 poise or less.

■ 捲縮率(’rC)力着0%以上、収縮率(Fs)が
10%以下9強度(St)が2.0 g/de以上。
■ Crimp ratio ('rC): 0% or more, shrinkage ratio (Fs): 10% or less; 9 Strength (St): 2.0 g/de or more.

シルクファクター(SF)が10以上であること。Silk factor (SF) must be 10 or more.

この点について述べると、従来、ポリフェニレンサルフ
ァイド繊維について強伸度と製糸性を両立させるような
提案がなかつたことは、前述の通りであり、ましてやこ
の繊維の仮撚加工糸について皆無である。
Regarding this point, as mentioned above, there has been no proposal to achieve both strength and elongation and spinnability for polyphenylene sulfide fibers, and even less for false twisted yarns of this fiber.

ポリフェニレンサルファイドのmu化に関しては、ポリ
マー面及び製糸技術面の両面において、まだまだ未熟で
あり、従って、工業的に生産可能な仮撚加工技術となる
と、従来の技術では、実質的不可能なためである。つま
り、従来の技術の組み合せても(1)仮撚加工にはなり
得るが、毛羽・断糸が多く生産技術として採用できない
、(11)物性面(例えば、捲縮性能・力学的性能)で
も不充分であり、実用上必要な高物性と高生産性の両立
が不可能であったためである。そのなめ、ポリフェニレ
ンサルファイド繊維の嵩高糸の工業的製品の形態として
は、ステープルファイバーがあるのみであった。しかし
、ステープルファイバーの場合は、そのままでは、使用
する事が出来ず、事後に必ず紡績が必要であり、工程的
にも長くなる欠点があった。又、嵩高性の面でもより高
いものが必要であった。それゆえ、通常の汎用ポリマー
(例えば、ポリエチレンテレフタレート、ポリブチレン
テレフタレート、ナイロン−6等)の長繊維の形で採用
されているのが現状である。従って、長繊維をそのまま
仮撚加工して嵩高糸を得る、工業的技術の確立が強く要
望されていたわけである。
With regard to making polyphenylene sulfide into mu, it is still in its infancy in terms of both the polymer and the spinning technology.Therefore, it is virtually impossible to create a false twisting technology that can be produced industrially using conventional technology. be. In other words, even if the conventional techniques are combined, (1) false twisting can be achieved, but there are too many fluffs and yarn breaks that make it impossible to use as a production technique, and (11) physical properties (for example, crimp performance and mechanical performance) are also poor. This is because it was insufficient and it was impossible to achieve both the high physical properties and high productivity required for practical use. For this reason, staple fibers have been the only industrial product form of bulky yarns made of polyphenylene sulfide fibers. However, in the case of staple fibers, they cannot be used as they are, and must be spun afterward, which has the drawback of lengthening the process. In addition, there was a need for something with higher bulkiness. Therefore, it is currently employed in the form of long fibers of ordinary general-purpose polymers (eg, polyethylene terephthalate, polybutylene terephthalate, nylon-6, etc.). Therefore, there has been a strong demand for the establishment of an industrial technique for obtaining bulky yarns by false twisting long fibers as they are.

本発明で得られるポリフェニレンサルファイド仮撚加工
糸は捲縮率(’r’c)が10%以上、収縮率(Fs)
が10%以下という1憂れた特性を有する。
The polyphenylene sulfide false twisted yarn obtained by the present invention has a crimp rate ('r'c) of 10% or more and a shrinkage rate (Fs)
It has one worrying characteristic of being less than 10%.

捲縮率(’I” c )は、嵩高性の目安であり、本発
明の仮撚加工糸は、10%以上、好ましくは15〜35
%の高い値を安定して保有するものである。
The crimp ratio ('I"c) is a measure of bulkiness, and the false twisted yarn of the present invention has a crimp ratio of 10% or more, preferably 15 to 35%.
It is a stable holding of a high value of %.

捲縮率(Tc)が10%未満の場合は、嵩高性が低く、
好ましくない、又、本発明の仮撚加工糸は収縮率(Fs
)が10%以下、好ましくは7%以下と、寸法安定性が
極めて優れている。
When the crimp ratio (Tc) is less than 10%, the bulkiness is low;
The shrinkage rate (Fs
) is 10% or less, preferably 7% or less, and the dimensional stability is extremely excellent.

一方、本発明の仮撚加工糸の機械的特性は、強度2.0
g/de以上シルクファクターが10以上である。
On the other hand, the mechanical properties of the false twisted yarn of the present invention have a strength of 2.0
g/de or more and the silk factor is 10 or more.

力学的性質、例えば強度は、織編物の引き裂き強力に影
響を及ぼす重要な因子である。すなわち、高強度な繊維
程、織編物の軽量化という面で有利な事は言うまでもな
い、一方、シルクファクターが小さい繊維の場合は、高
強度繊維を得るためには、伸度をかなり小さくしなけれ
ばならず、毛羽等が発生し品位の面で問題が発生し、し
かも、生産工程では、断糸が多発し、工業的生産は困難
である。これに対して、本発明で得られるポリフェニレ
ンサルファイド仮撚加工糸はシルクファクターが10以
上と大きいため、伸度を例えば、20〜30%と比較的
残す設定でも強度が2.0g/de以上の加工糸を得る
事が出来るため、工業的生産が可能となるわけである。
Mechanical properties, such as strength, are important factors that affect the tear strength of woven or knitted materials. In other words, it goes without saying that the higher the strength of the fiber, the more advantageous it is in terms of reducing the weight of woven or knitted products.On the other hand, in the case of fibers with a small silk factor, in order to obtain high strength fibers, the elongation must be considerably reduced. Not only that, fluff and the like occur, causing problems in terms of quality, and moreover, yarn breakage occurs frequently during the production process, making industrial production difficult. On the other hand, the polyphenylene sulfide false twisted yarn obtained in the present invention has a large silk factor of 10 or more, so even if the elongation is set to remain relatively high at, for example, 20 to 30%, the strength is 2.0 g/de or more. Since processed yarn can be obtained, industrial production becomes possible.

このような仮撚加工糸の用途としては、その「n熱・耐
薬品性を生かした産業用資材(例えば、1(熱・耐薬品
性フィルター等)分野がある。その際織物の仕上げ過程
で、高温処理するため、繊維自体の収縮率を小さくしな
いと、布帛にシボあるいはスジが入り、性能・品位共に
低下する。一方、収縮率を下げる目的で仮撚加工での加
工温度を高温にすると、ポリマーの溶融粘度特性が本発
明の領域以外の場合は、毛羽・断糸が多発して工業的生
産にはなり得ないのである。
Applications of such false twisted yarn include industrial materials that take advantage of its heat and chemical resistance (for example, 1 (heat and chemical resistant filters, etc.). , because of the high temperature treatment, if the shrinkage rate of the fiber itself is not reduced, wrinkles or streaks will appear in the fabric, reducing both performance and quality.On the other hand, if the processing temperature during false twisting is increased to lower the shrinkage rate, If the melt viscosity characteristics of the polymer are outside the range of the present invention, fluffing and yarn breakage will occur frequently and industrial production will not be possible.

すなわち、溶融粘度差(M■1ooo−M■3oo0)
の値が、200ポイズを越える場合は、目標とする高生
産・高物性を有するポリフェニレンサルファイド仮撚加
工糸を得る事は出来ない、つまりこの場合、高分子銀の
直線性が良くないため、(1)物性面で充分なものを得
る事が出来ない([l)仮撚加工性が不良であり、毛羽
及び断糸が多発する等の欠点があり、好ましくない、尚
、M■3oooの値は、重合度、直線性の関係で、60
0ポイズ以上は必要である。すなわち、M■3oooが
600ポイズ未満の時は、重合度か著しく低いか:ある
いは直線性が極めて悪いため、目標とする高生産性及び
高特性を兼備したポリフェニレンサルファイド仮撚加工
糸を得る事ができない。
That is, the melt viscosity difference (M■1ooo-M■3oo0)
If the value of exceeds 200 poise, it is not possible to obtain polyphenylene sulfide false-twisted yarn with the target high productivity and high physical properties.In other words, in this case, the linearity of polymeric silver is not good, 1) It is not possible to obtain sufficient physical properties ([l) There are disadvantages such as poor false twisting processability and frequent fluffing and yarn breakage, etc., which is undesirable, and the value of M■3ooo is 60 due to the degree of polymerization and linearity.
0 poise or more is required. In other words, when M■3ooo is less than 600 poise, the degree of polymerization is extremely low, or the linearity is extremely poor, making it difficult to obtain a polyphenylene sulfide false twisted yarn that has the targeted high productivity and high properties. Can not.

上記の優れた特性を発揮させるためには、紡糸の際紡糸
口金温度を310〜330℃に設定する事が、大切であ
る1口金面温度かが310°C未満の時は、口金面温度
が低過ぎるため、毛羽が多くなり目的とする高生産性・
高物性の仮撚加工糸を得る事は出来ない、一方、口金面
温度が330℃を越える場合は、温度が高過ぎ、繊維の
着色化が進み、紡糸性の低下、更には延伸性及び仮撚加
工性も低下し、好ましくない。
In order to exhibit the above excellent properties, it is important to set the spinneret temperature at 310 to 330°C during spinning.If the spinneret surface temperature is less than 310°C, If the temperature is too low, there will be a lot of fuzz and the desired high productivity/
It is not possible to obtain a false twisted yarn with high physical properties. On the other hand, if the spindle surface temperature exceeds 330°C, the temperature is too high and the coloring of the fibers progresses, resulting in a decrease in spinnability and even lower drawability and false twisting. Twisting workability also deteriorates, which is not preferable.

又、紡糸速度は1000m/分未満、好ましくは、30
0〜800 m/分が良い、紡糸速度が1000rn/
分を越える場合は、(1)得られる仮撚加工糸の強度が
充分でない、(If)仮撚工程での糸切れが多発する、
■又は、毛羽も出やすい、という不利益がある。
Also, the spinning speed is less than 1000 m/min, preferably 30 m/min.
0 to 800 m/min is good, spinning speed is 1000rn/
If the time exceeds 10 minutes, (1) the resulting false-twisted yarn will not have sufficient strength, (If) the yarn will break frequently during the false-twisting process.
■Also, there is a disadvantage that fuzz is likely to appear.

尚、紡糸速度が300m/分未満の場合は、生産性が低
くなる。
Note that if the spinning speed is less than 300 m/min, productivity will be low.

延伸・熱処理操作であるが、本発明においては、延伸熱
処理を一度で行なうのではなく、−度、150℃未満の
温度での延伸で配向結晶化させてから、150°C以上
の温度で熱処理する方法が好ましい、又延伸速度も必ず
しも制限されるものではなく、通常の延伸温度、例えば
、100〜800m/分程度を採用すればよい。
Regarding the stretching and heat treatment operations, in the present invention, the stretching heat treatment is not carried out all at once, but after stretching at a temperature of -150°C or less to crystallize the orientation, the heat treatment is performed at a temperature of 150°C or higher. The method of stretching is preferred, and the stretching speed is not necessarily limited, and a normal stretching temperature, for example, about 100 to 800 m/min may be adopted.

次に、仮撚加工方法であるが、前述の如く、本発明で、
使用する未延伸糸は、紡糸速度が1000m/分未満で
捲き取られるため、その破断伸度が極めて大きいので、
In−Draw方式(延伸と仮撚とを同時に行なう)は
困難であり、Out Draw方式(延伸後板撚加工)
を採用する事が大切である。
Next, regarding the false twisting method, as mentioned above, in the present invention,
Since the undrawn yarn used is wound at a spinning speed of less than 1000 m/min, its elongation at break is extremely high.
The In-Draw method (drawing and false twisting are performed at the same time) is difficult, and the Out-Draw method (sheet twisting after stretching) is difficult.
It is important to employ

仮撚加工の装置・条件については、汎用素材であるポリ
エチレンテレフタレートのそれを採用する事が出来、例
えば、加工速度100m/分、加工温度180〜240
℃程度で、有用な仮撚加工糸を得る事が出来る。
Regarding the equipment and conditions for false twisting, those for polyethylene terephthalate, which is a general-purpose material, can be adopted, for example, processing speed 100 m/min, processing temperature 180-240 m/min.
Useful false twisted yarn can be obtained at temperatures around ℃.

(作用効果) ポリフェニレンサルファイドは、耐熱性・耐薬品性に優
れたポリマーであり、その1IjJ維化についても数多
くの報告がなされていることは前述の通りである。
(Effects) Polyphenylene sulfide is a polymer with excellent heat resistance and chemical resistance, and as described above, there have been many reports regarding its 1IjJ fibrillation.

しかしながら、高物性を有し、しかも、工業的に高生産
性を有する製造技術については、未だ実現されていなか
ったか、本発明により、実用繊維という観点からは、(
1)強度4.0g/de以上、シルクファクター20以
上という優れた力学的性質、■180℃での乾熱収縮率
が15%以下という優れた寸法安定性が、実現され、更
に生産技術という観点からは、(1)紡糸時のバック内
の圧力上昇(濾過抵抗圧力上昇)が小さくて、連続運転
可能である、a)紡糸・延伸時の断糸・単糸切れがなく
なる、(1)紡糸速度及び延伸速度が充分に高く、生産
効率が良い、といったことが、又、品質という観点から
は、(1)品質変動が少ない、(!i)毛羽がないとい
った工業的に生産する上での厳しい要求が全て満足され
る。
However, a manufacturing technology with high physical properties and high industrial productivity has not yet been realized, or the present invention has made it possible to achieve (
1) Excellent mechanical properties such as a strength of 4.0 g/de or more and a silk factor of 20 or more; ■ Excellent dimensional stability with a dry heat shrinkage rate of 15% or less at 180°C, and from the perspective of production technology. (1) The pressure increase in the bag during spinning (filtration resistance pressure increase) is small and continuous operation is possible; a) There is no yarn breakage or single yarn breakage during spinning or drawing; (1) Spinning In addition, from the perspective of quality, the speed and drawing speed are sufficiently high and the production efficiency is good. All strict requirements are met.

しかも、本発明においては、単繊維の繊度(デニール)
が1〜2deと極めて細いものまでも適用できるところ
に大きな特徴がある。勿論、単糸繊度が2de以上の太
い繊維について適用できるのは、言うまでもない。又、
フィラメント数についても、ハイマルチ化が可能であり
、例えば100〜150f i lのマルチフィラメン
トにも適用できる。フィラメントの断面形状は丸断面、
中実糸の場合が多いが、必ずしもこれに制限されるわけ
ではなく、必要に応じて、異形断面糸、更には中空糸に
も適用しても、何ら問題はない。勿論本発明は、長繊維
、その仮撚加工糸だけでなく、短繊維の製造に際しても
適用できる。尚、上記の生糸、仮撚糸は長・短繊維を問
わずば耐熱性を要求されるミシン糸の全成分または一成
分としても有用である。
Moreover, in the present invention, the fineness (denier) of the single fiber
A major feature is that it can be applied even to extremely thin objects of 1 to 2 de. Of course, it goes without saying that this method can be applied to thick fibers having a single filament fineness of 2 de or more. or,
As for the number of filaments, high multifilament is possible, for example, it is applicable to multifilaments of 100 to 150 filaments. The cross-sectional shape of the filament is round,
Although it is often a solid yarn, it is not necessarily limited to this, and if necessary, it may be applied to irregular cross-section yarns or even hollow fibers without any problem. Of course, the present invention can be applied not only to long fibers and their false twisted yarns, but also to the production of short fibers. Incidentally, the above-mentioned raw silk and false twisted yarn, regardless of whether they are long or short fibers, are useful as all or one component of sewing thread which requires heat resistance.

[実施例] 以下、本発明を実施例により更に説明する1本実施例に
おいて、用いる物性は、下記の方法で測定したものであ
る。
[Example] Hereinafter, the present invention will be further explained with reference to examples.In this example, the physical properties used were measured by the following methods.

(1)ポリマーの粘度特性(M V   、 M V 
3000 )島原@製降下式フロテスターを用いた。試
料量5 g、ノズル寸法0.5φX 4 mn 、 ド
ラム回転数1 rpm 、荷重20〜100 kg+温
度320°Cの条件で測定し、FgMt粘度(MV)を
算出した。次いで、両対数グラフを用いて、粘度(MV
)と剪断速度(γ)との関係をグラフ化し、剪断速度(
−r) 1000sec−1及び剪断速度(? ) 3
0005eC−1で?8@粘度を読み取った。
(1) Polymer viscosity characteristics (M V , M V
3000) A descending type float tester manufactured by Shimabara@ was used. The FgMt viscosity (MV) was calculated by measuring under the conditions of a sample amount of 5 g, a nozzle size of 0.5φ×4 mn, a drum rotation speed of 1 rpm, a load of 20 to 100 kg, and a temperature of 320°C. Then, using a log-log graph, the viscosity (MV
) and shear rate (γ).
-r) 1000sec-1 and shear rate (?) 3
With 0005eC-1? 8 @ Viscosity was read.

(2)強度(St)、伸度CEI ) 通常の引っ張り型試験機にて、室温25℃、温度60%
で試料長10■、引っ張り速度200mm/分の条件で
応力−伸度曲線を求め、応力が最大となる点の伸度(E
りを読み取った。又、最大応力を試料の繊度で割った値
を強度(St)とした。
(2) Strength (St), elongation CEI) At room temperature 25℃, temperature 60% using a normal tensile tester.
Obtain the stress-elongation curve under the conditions of sample length 10 cm and pulling speed 200 mm/min, and calculate the elongation (E) at the point where the stress is maximum.
I read it. Moreover, the value obtained by dividing the maximum stress by the fineness of the sample was defined as the strength (St).

(3乾熱収縮率 マルチフィラメントの「カセ」を作り、180°Cに設
定した乾燥機内で、30分間、無荷重下で処理した時の
収縮率を以下の式より求めた。
(3. Dry heat shrinkage rate) The shrinkage rate when a multifilament "skein" was made and processed under no load for 30 minutes in a dryer set at 180°C was determined from the following formula.

la  i工 収縮率(%) = −x 100 !0 (4)  シルクファクター(SF) (2)で求めた強度(St)と伸度(Eりの値を用いて
、以下の式より求めた。
la i engineering shrinkage rate (%) = -x 100! 0 (4) Silk factor (SF) It was determined from the following formula using the values of strength (St) and elongation (E) determined in (2).

5F=St (g/de)xF■T(%)(5)  断
糸・単糸切れ状況 紡糸・延伸時の断糸・単糸切れを状況を肉眼で観察し、
定性的に評価した。
5F=St (g/de) x F T (%) (5) Situation of yarn breakage and single yarn breakage Visually observe the situation of yarn breakage and single yarn breakage during spinning and drawing.
Evaluated qualitatively.

(a 毛羽1発生状況 ボビンに捲かれた、未延伸糸・および延伸糸の表面を肉
眼で観察し、定性的に評価した。
(a) Status of fuzz 1 occurrence The surfaces of the undrawn yarn and drawn yarn wound around the bobbin were observed with the naked eye and qualitatively evaluated.

(7)捲縮率(’T’c) 捲縮フィラメン1〜の「カセ」をつくり、この「カセ」
に軽荷重(2■/デニール)及び重荷重(200+ur
/デニール)をかけた時の長さを1o、次いで軽荷重下
で沸騰水中で30分処理し、荷重を除去して、自然乾燥
f&(24hr後)軽荷重及び重荷重をかけた時の長さ
を111次いで、軽荷重下のみの長さを12として、以
下の式より求めた。
(7) Crimp rate ('T'c) Make a "skein" of crimped filament 1~, and make this "skein"
Light load (2■/denier) and heavy load (200+ur)
/ denier) is 1o, then treated in boiling water for 30 minutes under a light load, the load is removed, and air dried f & (after 24 hours) the length when a light load and a heavy load are applied. The length was set to 111, and the length only under light load was set to 12, and the length was determined from the following formula.

lx   12 捲縮率(’T’ C) = −X 100! 0 (8)収縮率(%) マルチフィラメントの「カセJをつくり、この「カセ」
に軽荷重(2N/デニール)1重荷重(0,2■/デニ
ール)をかけた時の長さをRo、次いで軽荷重下で沸騰
水中で30分処理し、荷重を取って自然乾燥後(24h
r後)、再び軽荷重及び重荷重をかけた時の長さを21
とし、以下の式より求めた。
lx 12 Crimp rate ('T' C) = -X 100! 0 (8) Shrinkage rate (%) Make a multifilament ``skein J'' and
The length when a light load (2N/denier) and one heavy load (0,2■/denier) is applied to Ro is then treated in boiling water for 30 minutes under a light load, after removing the load and air drying ( 24 hours
r), the length when applying a light load and a heavy load again is 21
It was calculated using the following formula.

la  ll 収縮率(F S ) = −x 100(9)仮撚加工
時の断糸状況 仮撚加工での糸切れ状況を肉眼で観察し、定性的に評価
した。
la ll Shrinkage rate (FS) = -x 100 (9) Yarn breakage during false twisting The yarn breakage during false twisting was visually observed and qualitatively evaluated.

(財)仮撚加工時の毛羽発生状況 ボビンに捲かれた、仮撚加工糸の表面を肉眼で観察し、
定性的に評価した。
(Foundation) Condition of fuzz generation during false twisting The surface of the false twisted yarn wound around the bobbin was observed with the naked eye.
Evaluated qualitatively.

旧) 仮撚加工 仮撚加工は、スピンドル型の仮撚加工機を使用した。Old) False twisting A spindle type false twisting machine was used for the false twisting process.

(a)撚係数(α) 以下の式で表わされる撚数(T / m )の時、撚係
数α−1と定義した。
(a) Twisting coefficient (α) When the number of twists (T/m) is expressed by the following formula, the twisting coefficient is defined as α-1.

撚数(T/m)=− S璽 撚係数α−0,85とは、上記撚数に0.85を重しな
撚数を言う。
Number of twists (T/m)=-S twist coefficient α-0.85 refers to the number of twists that is the above twist number plus 0.85.

(B) 0ver Feed  (%)ヒーターを介し
て存在する、2つのローラーの周速比の大小で、例えば
: over Feed 2%とは、第10−ラーの周
速が第20−ラーの周速より2%大きいことを示す。
(B) 0ver Feed (%) The size of the circumferential speed ratio of two rollers that exist via the heater, for example: over Feed 2% means that the circumferential speed of the 10th roller is the same as the circumferential speed of the 20th roller. 2% larger than

[実施例1〜5.比較例1〜6] A、ポリマーの合成 (1)後記の表−1中、比較例−2、比較例−3〜4お
よび実施例−1〜5で用いる、MV1000−870P
oisa、 MV   =680Poise、 MV、
ooo−MV3ooo=190ポイズノ;t?’J7−
合成:硫化ナトリウム95.4g、酢酸リチウム2水和
物76.5g 、 NMP (N−メチルピロリドン)
185g、水14gをガラスフラスコに仕込み、210
°Cで2時間処理し、留出物を44CC生じさせた。
[Examples 1-5. Comparative Examples 1 to 6] A. Synthesis of Polymer (1) MV1000-870P used in Comparative Example 2, Comparative Examples 3 to 4, and Examples 1 to 5 in Table 1 below
oisa, MV =680Poise, MV,
ooo-MV3ooo=190 poison;t? 'J7-
Synthesis: Sodium sulfide 95.4g, lithium acetate dihydrate 76.5g, NMP (N-methylpyrrolidone)
Put 185g and 14g of water into a glass flask, and make 210g.
C. for 2 hours yielding 44 cc of distillate.

次に、NMP80g、DCB (ジクロルベンゼン)2
25gの溶液を添加し、窒素シール中で、260℃で4
時間加熱した(圧力は5 kg/ csj )。
Next, 80 g of NMP, 2 DCB (dichlorobenzene)
Add 25g of solution and heat at 260°C under nitrogen blanket for 4 hours.
(pressure is 5 kg/csj).

次いで生成物を熱水で10回洗浄し、乾燥し、チップ化
した。
The product was then washed 10 times with hot water, dried and chipped.

(2)後記の表−1中、比較例−1で用いる、MV  
 =580ポイズ、 M V 3ooo= 450ポイ
ズ1MV−Mv3ooo−130ポイズのポリマー合成
: 上記(1)の合成法において、重合時間を3時間とした
以外は、同様の処法により試料を得た。
(2) MV used in Comparative Example-1 in Table-1 below
=580 poise, MV3ooo=450 poise Polymer synthesis of 1MV-Mv3ooo-130 poise: A sample was obtained by the same method as in the synthesis method (1) above except that the polymerization time was changed to 3 hours.

(a 後記の表−1中、比較例−5で用いるM V  
 = 1300ポイズ、MV3ooO=1150ポイズ
(a In Table 1 below, MV used in Comparative Example 5
= 1300 poise, MV3ooO=1150 poise.

Mv  −M■3ooo=150ポイズポリマーの合成
: 上記(1)の合成法において、硫化ナトリウムの量を9
8「とじ且つ、重合時間を5時間とした以外は、同様の
処法により試料を得た。
Mv −M■3ooo=150 Synthesis of poise polymer: In the synthesis method of (1) above, the amount of sodium sulfide was changed to 9
Samples were obtained using the same procedure except for binding and polymerization time of 5 hours.

(4)後記の表−1中、比較例−6で用いる、MV  
 =750ポイズ、MV3ooo−510ポイズ。
(4) MV used in Comparative Example-6 in Table-1 below
=750 poise, MV3ooo-510 poise.

MV1ooo−MV30oo−230ポイズのポリマー
合成: 1.51のNMP及び1084gのNa2 S −9H
20をガラスフラスコに入れ、水和水が蒸溜されるまで
、撹拌しながら、加熱し、777gの蒸留物を除いた後
、P−ジクロルベンゼン662gを投入し、230°C
で14時間加熱し、得られた固型物を熱水で洗浄し、乾
燥した。次いで、2の試料を270°Cで1゜5時間処
理した後、チップ化して紡糸用の試料とした。
Polymer synthesis of MV1ooo-MV30oo-230 poise: 1.51 NMP and 1084 g Na2S-9H
20 was placed in a glass flask and heated while stirring until the water of hydration was distilled. After removing 777 g of distillate, 662 g of P-dichlorobenzene was added and the temperature was heated at 230°C.
The solid substance obtained was washed with hot water and dried. Next, the sample No. 2 was treated at 270°C for 1°5 hours, and then chipped to give a sample for spinning.

B、紡糸、延伸 Aで得た各チップを180°Cの熱風乾燥機中で4時間
乾燥したポリフェニレンサルファイドのチップを340
℃で溶融し、孔径0.35φ1ランド長0.70市の丸
孔が100個設置させた紡糸口金より押し出した。その
際、表−1に示すように、78融粘度特性の異なるポリ
マーを用い、更に、口金面温度。
B. Spinning and stretching polyphenylene sulfide chips obtained by drying each chip obtained in A for 4 hours in a hot air dryer at 180°C.
It was melted at ℃ and extruded from a spinneret equipped with 100 round holes with a hole diameter of 0.35φ and a land length of 0.70 mm. At that time, as shown in Table 1, 78 polymers with different melt viscosity characteristics were used, and the mouth surface temperature was also adjusted.

紡糸速度、及び延伸後200de /100filにな
るように、吐出量を変更して行った。引き続き押し出さ
れたポリマー流を冷却固化させ、油剤を付与させた後、
捲きとった。
The spinning speed and the discharge amount were changed so that the spinning speed was 200 de/100 fil after stretching. After cooling and solidifying the extruded polymer stream and applying an oil agent,
I turned it over.

次に、得られた未延伸糸を、表面温度か100″C及び
120℃のローラー間で延伸を行ない、次いで表面ロー
ラー温度が210°Cのローラーで熱処理を行なった後
、冷却ローラーを通して、350m/分の速度で捲き取
った。尚、各実験における全延伸倍率は表−1に示す、
又、得られた繊維の物性。
Next, the obtained undrawn yarn was drawn between rollers with a surface temperature of 100"C and 120°C, then heat treated with a roller with a surface roller temperature of 210"C, and then passed through cooling rollers for 350 m It was rolled up at a speed of /min.The total stretching ratio in each experiment is shown in Table-1.
Also, the physical properties of the obtained fibers.

断糸・単糸・糸切れ状況及び毛羽の発生状況を表−2に
示す。
Table 2 shows the yarn breakage, single yarn, yarn breakage, and occurrence of fuzz.

比較例−1では、用いたポリマーの重合度が低いなめ、
強度及びシルクファクターが低いものであった。又、延
伸時の断糸及び単糸切れが多く毛羽の発生ら多かった。
In Comparative Example-1, the degree of polymerization of the polymer used was low;
The strength and silk factor were low. Furthermore, there were many yarn breaks and single yarn breakages during drawing, and there was a lot of fuzz.

比較例−2では、ポリマーの溶融粘度特性は好ましいが
、紡糸時の口金面温度が低いため、力学的性質も弱糸的
傾向を示し、又、紡糸、延伸性の面で改善の余地があり
、毛羽も多少存在した。実施例−1〜5は、本発明の好
ましい例であり、繊維物性は優れたものであり、又、紡
糸・延伸時の断糸・単糸切れが極皆無で、毛羽の発生も
ほとんど見られなかった。
In Comparative Example 2, the melt viscosity characteristics of the polymer are favorable, but the mechanical properties tend to be weak due to the low spinneret surface temperature during spinning, and there is room for improvement in terms of spinning and drawing properties. , some fluff was also present. Examples 1 to 5 are preferred examples of the present invention, and the fiber properties are excellent, and there is extremely no yarn breakage or single yarn breakage during spinning and drawing, and almost no fuzz is observed. There wasn't.

比較例−3では、ポリマーの溶融粘度特性は好ましいが
、紡糸時の[1金面温度が高過ぎるため、吐出されたa
維の着色の程度が大きく、紡糸・延伸中での単糸切れが
目立った。
In Comparative Example 3, although the melt viscosity characteristics of the polymer were favorable, the [1 metal surface temperature during spinning was too high, so the ejected a
The degree of coloration of the fibers was large, and single fiber breakage during spinning and drawing was noticeable.

比較例−4では、ポリマーの溶融粘度特性は好ましいか
、紡糸速度が高過ぎるため、断糸・単糸切れが多発し、
又、毛羽も多かった。
In Comparative Example-4, whether the melt viscosity characteristics of the polymer were favorable or because the spinning speed was too high, yarn breakage and single yarn breakage occurred frequently.
Also, there was a lot of fluff.

比較例−5では、繊維物性は良好であるが、ポリマーの
溶融粘度が高過ぎ、延伸時の単糸切れ、毛羽の発生が多
かった。
In Comparative Example 5, the fiber properties were good, but the melt viscosity of the polymer was too high, and single filament breakage and fluffing occurred frequently during drawing.

比較例−6では、(MV   −MV   )の値が大
きく、直線性が不良であるポリマーのため、強度及び伸
度更にシルクファクターの変動が極めて大きかった。又
、延伸時の単糸切れ及び断糸が極めて多く、毛羽も多か
った。
In Comparative Example 6, since the polymer had a large value of (MV - MV ) and poor linearity, fluctuations in strength, elongation, and silk factor were extremely large. Furthermore, there were extremely many single yarn breakages and yarn breakages during drawing, and there was also a lot of fuzz.

尚、本発明で述べている断糸・単糸切れ・毛羽の発生状
況は以下の定義による。
Incidentally, the occurrence of yarn breakage, single yarn breakage, and fluff described in the present invention is based on the following definitions.

[l!yi糸発生] A、紡糸での断糸 B、延伸での断糸 [、× :          ツノ        
      1)        3 回置上[単糸切
れ] A、紡糸での単糸切れ B、延伸での単糸切れ [毛羽状況] 未延伸糸・延伸糸共 [実施例6及び比較例7] 表−2に示す各延伸糸を以下の条件で仮撚加工した。
[l! yi yarn occurrence] A, Yarn breakage during spinning B, Yarn breakage during drawing [, ×: Horn
1) 3 turns [Single yarn breakage] A, Single yarn breakage during spinning B, Single yarn breakage during drawing [Fuzz condition] Both undrawn yarn and drawn yarn [Example 6 and Comparative Example 7] Table-2 Each drawn yarn shown in was subjected to false twisting under the following conditions.

(仮撚条件) 表−3 本 比較の1−6の延伸糸は、力学・性質(強(llt
文)が変量N゛る。
(False twisting conditions) Table 3 The comparative drawn yarns 1-6 have mechanical properties (strong
sentence) has N variables.

比較例−1の延伸糸の場合は、捲縮特性は良好であった
が、用いたポリマーの重合度が低いため強度及びシルク
ファクターが低いものであった。
In the case of the drawn yarn of Comparative Example 1, the crimp properties were good, but the strength and silk factor were low because the degree of polymerization of the polymer used was low.

又、仮撚加工時の断糸が多く、得られる加工糸の毛羽は
多かった。
Furthermore, there were many yarn breaks during false twisting, and the resulting processed yarn had a lot of fuzz.

比較例−2の延伸糸の場合は、用いたポリマーの溶融粘
度特性は好ましいが、紡糸時の口金面温度が低いため、
紡糸・延伸時の毛羽か多く、引き続き行った仮撚加工で
は、断糸・毛羽の点で改良の余地があった。
In the case of the drawn yarn of Comparative Example-2, although the melt viscosity characteristics of the polymer used were favorable, the spinneret surface temperature during spinning was low;
There was a lot of fuzz during spinning and drawing, and there was room for improvement in terms of yarn breakage and fuzz in the subsequent false twisting process.

実施例1〜5の延伸糸の場合は、本発明の好ましい例で
あり、捲縮性能は勿論、力学的性質も満足できる状態で
あった。又、仮撚加工時の断糸は皆無で毛羽の発生も見
られなかった。
The drawn yarns of Examples 1 to 5 are preferred examples of the present invention, and were satisfactory not only in crimp performance but also in mechanical properties. Furthermore, there was no yarn breakage during false twisting, and no fuzz was observed.

比較例−3の延伸糸の場合は、ポリマーの粘度特性は好
ましいが、紡糸時の口金温度が高過ぎるため、吐出され
た繊維が劣化気味で着色の程度が大きく、紡糸・延伸時
の毛羽が目立ち、引き続いて行った仮撚加工では、断糸
・毛羽が多少多かった。
In the case of the drawn yarn of Comparative Example 3, the viscosity characteristics of the polymer are favorable, but because the spinneret temperature during spinning is too high, the discharged fibers are slightly deteriorated and have a large degree of coloring, and the fluff during spinning and drawing is poor. This was noticeable, and during the subsequent false twisting process, there were some yarn breaks and fuzz.

比較例−4の延伸糸の場合は、紡糸速度が高過ぎるなめ
、原糸(未延伸糸)の段階で毛羽が目立ち、仮撚加工で
は、断糸・毛羽が多発した。
In the case of the drawn yarn of Comparative Example 4, the spinning speed was too high, fuzz was noticeable at the stage of raw yarn (undrawn yarn), and yarn breakage and fuzz occurred frequently during false twisting.

比較例−5の延伸糸の場合は、ポリマーの溶融粘度が高
過ぎて、繊維物性は良好であるが、延伸時の単糸切れが
多少多く、引き続き行った仮撚加工では、断糸・毛羽の
点で改良の余地があった。
In the case of the drawn yarn of Comparative Example 5, the melt viscosity of the polymer is too high, and the fiber properties are good, but there are a few single fiber breakages during drawing, and the subsequent false twisting process causes yarn breakage and fluffing. There was room for improvement in this respect.

比較例−6の延伸糸の場合は(MVtooo  MV3
000 )の差が大きく、直線性が不良であるため、延
伸性が極めて悪く、引き続いて行った仮撚加工では、断
糸が多発し、毛羽も極めて多かった。
In the case of the drawn yarn of Comparative Example-6 (MVtoo MV3
000), and the linearity was poor, resulting in extremely poor stretchability, and during the subsequent false twisting process, yarn breakage occurred frequently and there was an extremely large amount of fuzz.

尚、本発明で述べている、断糸・毛羽の発生状況は、以
下の定義による。
Incidentally, the occurrence of yarn breakage and fluff described in the present invention is based on the following definition.

[断糸発生] [毛羽発生状況] しX・繊維が解舒できない程大きい。[Thread breakage] [Fuzz generation status] ・The fiber is so large that it cannot be unwound.

Claims (3)

【特許請求の範囲】[Claims] (1)下記[1]〜[3]の条件を同時に満足する事を
特徴とするポリフェニレンサルファイド繊維。 [1]該繊維は、温度320℃、剪断速度(■)100
0sec^−^1での溶融粘度(MV_1_0_0_0
)が700〜1200ポイズであり、温度320℃、剪
断速度(■)3000sec^−^1での溶融粘度(M
V_3_0_0_0)が600ポイズ以上であり、かつ
、該溶融粘度差(MV_1_0_0_0−MV_3_0
_0_0)が200ポイズ以下であるような線状ポリフ
ェニレンサルファイドからなること。 [2]繊維強度(St)が4.0g/de以上、シルク
ファクター(SF)が20以上であること。 〔シルクファクター(SF)は、繊維強度(St)、繊
維伸度(El)より、以下の式で求めたものを表わす。 SF=St(g/de)×√El(%)〕 [3]温度180℃での乾熱収縮率(HS)が15%以
下であること。
(1) A polyphenylene sulfide fiber characterized by simultaneously satisfying the following conditions [1] to [3]. [1] The fiber has a temperature of 320°C and a shear rate (■) of 100
Melt viscosity at 0 sec^-^1 (MV_1_0_0_0
) is 700 to 1200 poise, and the melt viscosity (M
V_3_0_0_0) is 600 poise or more, and the melt viscosity difference (MV_1_0_0_0-MV_3_0
_0_0) is made of linear polyphenylene sulfide of 200 poise or less. [2] Fiber strength (St) is 4.0 g/de or more and silk factor (SF) is 20 or more. [Silk factor (SF) is calculated from fiber strength (St) and fiber elongation (El) using the following formula. SF=St (g/de)×√El (%)] [3] The dry heat shrinkage rate (HS) at a temperature of 180° C. is 15% or less.
(2)下記[1]の条件を満足する線状ポリフェニレン
サルファイドを口金温度310〜330℃、紡糸速度1
000m/分以下で紡糸し、延伸熱処理する事を特徴と
する請求項(1)記載のポリフェニレンサルファイド繊
維の製造法。 [1]温度320℃、剪断速度(■)1000sec^
−^1での溶融粘度(MV_1_0_0_0)が700
〜1200ポイズであり、温度320℃、剪断速度(■
)3000sec^−^1での溶融粘度(MV_3_0
_0_0)が600ポイズ以上であり、かつ、該溶融粘
度差(MV _1_0_0_0−MV_3_0_0_0)が200ポ
イズ以下であるような線状ポリフェニレンサルファイド
からなること。
(2) Linear polyphenylene sulfide that satisfies the conditions of [1] below is spun at a spinneret temperature of 310 to 330°C and a spinning speed of 1.
2. The method for producing polyphenylene sulfide fiber according to claim 1, wherein the fiber is spun at a speed of 000 m/min or less and subjected to drawing heat treatment. [1] Temperature 320℃, shear rate (■) 1000sec^
- Melt viscosity at 1 (MV_1_0_0_0) is 700
~1200 poise, temperature 320℃, shear rate (■
) Melt viscosity at 3000sec^-^1 (MV_3_0
_0_0) is 600 poise or more, and the melt viscosity difference (MV_1_0_0_0-MV_3_0_0_0) is 200 poise or less.
(3)下記[1]〜[2]の条件を同時に満足する事を
特徴とするポリフェニレンサルファイド仮撚加工糸。 [1]該仮撚加工糸は温度320℃剪断速度(■)10
00sec^−^1での溶融粘度(MV_1_0_0_
0)が700〜1200ポイズであり、温度320℃、
剪断速度3000sec^−^1での溶融粘度(MV_
3_0_0_0)が600ポイズ以上であり、かつ、該
溶融粘度差(MV_1_0_0_0−MV_3_0_0
_0)が200ポイズ以下であるような線状ポリフェニ
レンサルファイドからなること。 [2]捲縮率(TC)が10%以上、収縮率(Fs)が
10%以下、強度(St)が2.0g/de以上、シル
クファクター(SF)が10以上であること。
(3) A polyphenylene sulfide false twisted yarn characterized by simultaneously satisfying the following conditions [1] to [2]. [1] The false twisted yarn has a temperature of 320°C and a shear rate (■) of 10
Melt viscosity at 00sec^-^1 (MV_1_0_0_
0) is 700 to 1200 poise, temperature is 320℃,
Melt viscosity (MV_
3_0_0_0) is 600 poise or more, and the melt viscosity difference (MV_1_0_0_0-MV_3_0_0
_0) is made of linear polyphenylene sulfide of 200 poise or less. [2] The crimp rate (TC) is 10% or more, the shrinkage rate (Fs) is 10% or less, the strength (St) is 2.0 g/de or more, and the silk factor (SF) is 10 or more.
JP5952988A 1988-03-15 1988-03-15 Polyphenylene sulfide fiber, its production and false-twisted yarn of said fiber Pending JPH01239109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5952988A JPH01239109A (en) 1988-03-15 1988-03-15 Polyphenylene sulfide fiber, its production and false-twisted yarn of said fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5952988A JPH01239109A (en) 1988-03-15 1988-03-15 Polyphenylene sulfide fiber, its production and false-twisted yarn of said fiber

Publications (1)

Publication Number Publication Date
JPH01239109A true JPH01239109A (en) 1989-09-25

Family

ID=13115893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5952988A Pending JPH01239109A (en) 1988-03-15 1988-03-15 Polyphenylene sulfide fiber, its production and false-twisted yarn of said fiber

Country Status (1)

Country Link
JP (1) JPH01239109A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239132A (en) * 1988-03-16 1989-09-25 Toyobo Co Ltd Sewing thread
US5178813A (en) * 1990-03-23 1993-01-12 Kureha Kagaku Kogyo K.K. Method of producing poly(phenylene sulfide) fibers
US5372760A (en) * 1992-06-18 1994-12-13 Hoechst Aktiengesellschaft Process for producing polyarylene sulfide fiber and thereby obtainable polyarylene sulfide multifilament yarn
JP2008540850A (en) * 2005-03-18 2008-11-20 ディオレン インドゥストリアル ファイバース ベスローテン フェノートシャップ Method for producing polyphenylene sulfide filament yarn
CN102677198A (en) * 2011-03-18 2012-09-19 四川得阳工程塑料开发有限公司 Polyphenylene sulfide (PPS) nascent fiber drafting and setting technology
WO2016104236A1 (en) * 2014-12-22 2016-06-30 東レ株式会社 Polyphenylene sulfide monofilament and manufacturing method therefor, and package
JP2019173212A (en) * 2018-03-28 2019-10-10 帝人フロンティア株式会社 Sea-island type conjugate fiber bundle
JP2020033680A (en) * 2018-08-31 2020-03-05 帝人フロンティア株式会社 Sea-island type composite fiber bundles, medical supplies containing its ultrafine fibers, and filters for food manufacturing processes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175812A (en) * 1984-08-07 1986-04-18 バイエル・アクチエンゲゼルシヤフト Polyarylsulfide fiber or filament
JPS61152828A (en) * 1984-12-26 1986-07-11 Kureha Chem Ind Co Ltd Production of drawn multifilament of polyarylene sulfide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175812A (en) * 1984-08-07 1986-04-18 バイエル・アクチエンゲゼルシヤフト Polyarylsulfide fiber or filament
JPS61152828A (en) * 1984-12-26 1986-07-11 Kureha Chem Ind Co Ltd Production of drawn multifilament of polyarylene sulfide

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239132A (en) * 1988-03-16 1989-09-25 Toyobo Co Ltd Sewing thread
US5178813A (en) * 1990-03-23 1993-01-12 Kureha Kagaku Kogyo K.K. Method of producing poly(phenylene sulfide) fibers
US5405695A (en) * 1990-03-23 1995-04-11 Kureha Kagaku Kogyo K.K. Poly(phenylene Sulfide) fibers and production process thereof
US5372760A (en) * 1992-06-18 1994-12-13 Hoechst Aktiengesellschaft Process for producing polyarylene sulfide fiber and thereby obtainable polyarylene sulfide multifilament yarn
JP2008540850A (en) * 2005-03-18 2008-11-20 ディオレン インドゥストリアル ファイバース ベスローテン フェノートシャップ Method for producing polyphenylene sulfide filament yarn
CN102677198A (en) * 2011-03-18 2012-09-19 四川得阳工程塑料开发有限公司 Polyphenylene sulfide (PPS) nascent fiber drafting and setting technology
WO2016104236A1 (en) * 2014-12-22 2016-06-30 東レ株式会社 Polyphenylene sulfide monofilament and manufacturing method therefor, and package
US10106917B2 (en) 2014-12-22 2018-10-23 Toray Industries, Inc. Polyphenylene sulfide monofilament and manufacturing method therefor, and package
JP2019173212A (en) * 2018-03-28 2019-10-10 帝人フロンティア株式会社 Sea-island type conjugate fiber bundle
JP2020033680A (en) * 2018-08-31 2020-03-05 帝人フロンティア株式会社 Sea-island type composite fiber bundles, medical supplies containing its ultrafine fibers, and filters for food manufacturing processes

Similar Documents

Publication Publication Date Title
PL184254B1 (en) Yarn made of continuous polyester monofilaments, polyester tyre reinforcement cord and method of making them
JP4132071B2 (en) Manufacturing method of continuous polyester filament yarn
JP3704015B2 (en) Polyketone fiber and method for producing the same
JP3241359B2 (en) Polytrimethylene terephthalate fiber
JPH01239109A (en) Polyphenylene sulfide fiber, its production and false-twisted yarn of said fiber
JP3797459B2 (en) Method for producing polyphenylene sulfide fiber
US5242645A (en) Rubber-reinforcing polyester fiber and process for preparation thereof
JPS61215715A (en) Polyarylene thioether fiber of high performance and production thereof
JP4570273B2 (en) Polyketone fiber, cord and method for producing the same
WO2022211116A1 (en) Polyphenylene sulfide monofilament, method for manufacturing same, and fiber package
JP7176850B2 (en) Sea-island composite fiber bundle
JP2003527497A (en) Manufacture of poly (trimethylene) terephthalate woven staples
US5024797A (en) Processes for the production of mono- and multifilaments and staple fibers based on polyarylene sulfides
JPS62299513A (en) Production of polyphenylene sulfide monofilament
TW202140874A (en) Polyamide multifilament
JP7334623B2 (en) Copolymer polyphenylene sulfide fiber
JP2021161572A (en) Fiber package made of polyphenylene sulfide monofilament, and method of producing the same
CN109477248B (en) Polyolefin fiber and method for producing same
JPS5881637A (en) Heat resistant spun yarn
US5215819A (en) Processes for the production of mono- and multifilaments and staple fibers based on kolyarylene sulfides and high-strength polyarylene sulfide fibers
JPH0673610A (en) Preparation of polyarylene sulfide fiber and multifilament yarn of polyarylene sulfide obtained therefrom
JP3234295B2 (en) Method for producing polyhexamethylene adipamide fiber
JP2004052173A (en) High-strength polyester monofilament and method for producing the same
WO2021193056A1 (en) High-strength polyamide 610 multifilament
JPS63315608A (en) Polyester fiber