JPS6240018B2 - - Google Patents

Info

Publication number
JPS6240018B2
JPS6240018B2 JP54028488A JP2848879A JPS6240018B2 JP S6240018 B2 JPS6240018 B2 JP S6240018B2 JP 54028488 A JP54028488 A JP 54028488A JP 2848879 A JP2848879 A JP 2848879A JP S6240018 B2 JPS6240018 B2 JP S6240018B2
Authority
JP
Japan
Prior art keywords
ultrasonic
transducer
endoscope
optical system
ultrasound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54028488A
Other languages
Japanese (ja)
Other versions
JPS55120851A (en
Inventor
Toshitaka Suwaki
Otaro Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2848879A priority Critical patent/JPS55120851A/en
Priority to US06/121,031 priority patent/US4375818A/en
Priority to DE3009482A priority patent/DE3009482C2/en
Publication of JPS55120851A publication Critical patent/JPS55120851A/en
Publication of JPS6240018B2 publication Critical patent/JPS6240018B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Endoscopes (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

【発明の詳細な説明】 本発明は超音波振動子を体腔内に挿入し、体腔
内より生体諸器管の像を造影する体腔内超音波診
断装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intrabody cavity ultrasonic diagnostic apparatus for inserting an ultrasonic transducer into a body cavity and imaging various organs of a living body from within the body cavity.

近年超音波造影技術の進歩により超音波走査に
よるエコー像が医学分野で広く使用されるように
なつた。
In recent years, with advances in ultrasonic contrast technology, echo images obtained by ultrasonic scanning have come to be widely used in the medical field.

超音波造影技術は医学分野で古くから使用され
てきているX線造影に比し、生体に無害、生体軟
組織像が造影剤なしに造影できる、結石・癌組織
に敏感である、装置価格が安い等の利点が評価さ
れ、急速に普及しつつある。
Compared to X-ray contrast, which has been used in the medical field for a long time, ultrasound contrast technology is harmless to living bodies, can image soft tissues of living bodies without contrast agents, is sensitive to stones and cancerous tissue, and is inexpensive. It is rapidly gaining popularity due to its merits such as:

しかし、従来の超音波診断装置は生体表面から
生体内部の諸器管像を造影しているため、みよう
とする器管まで距離があり、且つその間に脂肪層
のような不均質な層を超音波が通過するため、エ
コー信号のS/N比が低下したり、又途中に気体
層が存在すると超音波エネルギーは吸収され減衰
して造影が困難になる場合もある。
However, because conventional ultrasonic diagnostic equipment images images of internal organs from the surface of the living body, there is a distance to the organs to be viewed, and in between, inhomogeneous layers such as fat layers must be crossed. Because the sound waves pass through, the S/N ratio of the echo signal decreases, and if there is a gas layer in the middle, the ultrasound energy is absorbed and attenuated, making imaging difficult.

更に、骨の陰にある器管は骨による超音波エネ
ルギーの吸収により超音波エネルギーが減衰して
造影不可能となつていた。
Furthermore, the ultrasonic energy of organs located behind bones is attenuated due to the absorption of ultrasonic energy by the bones, making it impossible to image them.

そこで、例えば超音波振動子を直腸に挿入して
前立腺を検査する体腔内超音波診断装置が考えら
れている。体腔内超音波診断装置は、超音波パル
スを生体表面から発射させる前者の装置に比べ、
目標臓器に近い位置で、より高い周波数の超音波
を使用することができるから、高品位の画像を得
ることができる利点があるが、従来提案されてい
るこの種装置は、その挿入部がいずれもリジツト
に構成され、上述したように直腸に挿入して前立
腺を診断する等の比較的浅く単純な形状の体腔に
挿入して使用される。しかし、最近では、体腔内
超音波診断装置の利点を活かし、挿入部をフレキ
シブルに構成して、複雑かつ深い食道や胃に超音
波振動子を挿入し、高解像力の下で心臓、膵臓等
の臓器を診断する装置の開発が望まれている。
Therefore, for example, an intra-body ultrasound diagnostic apparatus has been considered that inspects the prostate by inserting an ultrasound transducer into the rectum. Compared to the former device, which emits ultrasonic pulses from the surface of the living body, intracorporeal ultrasound diagnostic devices are
This type of device has the advantage of being able to obtain high-quality images because it can use higher frequency ultrasound near the target organ. The device is also rigid and is used by being inserted into a relatively shallow body cavity with a simple shape, such as by inserting it into the rectum to diagnose the prostate gland, as described above. However, recently, by taking advantage of the advantages of intracorporeal ultrasound diagnostic equipment and flexibly configuring the insertion section, ultrasound transducers can be inserted into the complicated and deep esophagus and stomach, allowing them to examine the heart, pancreas, etc. under high resolution. There is a desire to develop a device to diagnose organs.

一方、体腔内超音波診断装置において、セクタ
スキヤン像を得るためには、挿入部の径に制限が
あるため、一般には挿入部先端に超音波振動子を
有する超音波ビーム走査手段を設け、挿入部後端
に連結される操作部に超音波ビーム走査用の駆動
手段および超音波ビームの方向を検出する角度検
出器等を設けて構成することが考えられ、リジツ
ドな挿入部を持つ上述した体腔内超音波診断装置
においては、挿入部先端に設けた超音波ビーム走
査手段と操作部に設けた駆動手段および角度検出
器とを剛体から成る軸で連結して構成されてい
る。したがつて、この場合には、超音波ビームの
方向と角度検出器の回転とが1対1に対応するの
で、角度検出器として従来から用いられている
sin、cos関数発生型のポテンシヨメータを有効に
用いることができる。しかし、挿入部をフレキシ
ブルに構成する場合には、超音波ビーム走査手段
と駆動手段および角度検出器との間もフレキシブ
ルな動力伝達手段、例えばコイルワイヤを用いて
連結する必要がある。しかしながら、この場合に
はコイルワイヤのねじれ方向の遊びに起因して超
音波ビームの実際の方向と角度検出器によつて検
出される方向との間にずれが生じ、所望の像を正
確に表示できないことがあると共に、そのずれを
補正することは極めて困難である。
On the other hand, in order to obtain a sector scan image in an intrabody cavity ultrasound diagnostic device, there is a limit to the diameter of the insertion section. It is conceivable that the operating section connected to the rear end of the body be provided with a driving means for ultrasound beam scanning and an angle detector for detecting the direction of the ultrasound beam, etc. The internal ultrasonic diagnostic apparatus is constructed by connecting an ultrasonic beam scanning means provided at the distal end of the insertion section to a drive means and an angle detector provided to the operating section by a shaft made of a rigid body. Therefore, in this case, there is a one-to-one correspondence between the direction of the ultrasonic beam and the rotation of the angle detector, which has been conventionally used as an angle detector.
Potentiometers that generate sin and cos functions can be used effectively. However, when the insertion section is configured to be flexible, it is necessary to connect the ultrasonic beam scanning means, the driving means, and the angle detector using flexible power transmission means, such as coil wire. However, in this case, due to play in the twisting direction of the coil wire, a deviation occurs between the actual direction of the ultrasound beam and the direction detected by the angle detector, resulting in an accurate display of the desired image. There are some things that cannot be done, and it is extremely difficult to correct the deviation.

本発明は上記事情に鑑みてなされたもので、フ
レキシブルな挿入部を有し、この挿入部に内蔵さ
れたフレキシブルな駆動ワイヤを介して、先端部
に配置された超音波送受波振動子を回動走査させ
る内視鏡において、超音波振動子の駆動ワイヤ等
のねじれによる位置検知ずれの生じないようにし
た体腔内超音波診断装置を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and has a flexible insertion section, and rotates an ultrasonic transducer transducer disposed at the tip via a flexible drive wire built into the insertion section. An object of the present invention is to provide an intrabody cavity ultrasonic diagnostic apparatus in which position detection errors due to twisting of a driving wire of an ultrasonic transducer do not occur in an endoscope that performs dynamic scanning.

以下、本発明の実施例を図面に基いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

内視鏡1は観察用光学系2・照明用光学系3及
び流体などを導入する通路(図示していない)を
少なくとも具備しており、更に先端部には上記観
察用光学系2・照明用光学系3の観察・照明方向
に開口している収納部4が形成してある。超音波
送受波振動子5は例えばPZT、ニオブ酸リチユム
等の圧電材料及びダンパー材等から構成し、支持
部材6を一体的に設けて回転軸7により内視鏡の
長軸方向に回転できるように上記内視鏡1の収納
部4に配設してある。上記超音波送受波振動子5
を駆動する駆動手段である可撓性を有し摺動する
ワイヤ8は内視鏡1の先端部と操作部(図示して
ない)の間に配設してある可撓性を有するチユー
ブ9内を摺動できるように挿入されており、摺動
ワイヤ8の先端10は上記超音波送受波振動子5
の支持部材6に取付けてあり、他端は内視鏡1の
操作部に操作できるように導いてある。上記超音
波送受波振動子5の回転角度位置を検出する手段
であるリニア型のポテンシヨンメータ11の出入
軸12の先端は上記超音波送受波振動子5の支持
部材6に当接するように配設してある。
The endoscope 1 is equipped with at least an observation optical system 2, an illumination optical system 3, and a passageway (not shown) for introducing fluid, etc., and further includes the observation optical system 2 and illumination optical system 2 at the distal end. A storage section 4 is formed which is open in the observation/illumination direction of the optical system 3. The ultrasonic wave transmitting/receiving transducer 5 is made of a piezoelectric material such as PZT or lithium niobate, a damper material, etc., and is integrally provided with a support member 6 so that it can be rotated in the longitudinal direction of the endoscope by a rotating shaft 7. It is arranged in the storage section 4 of the endoscope 1. The above ultrasonic wave transmitting/receiving transducer 5
A flexible and sliding wire 8, which is a driving means for driving the endoscope 1, is connected to a flexible tube 9 disposed between the tip of the endoscope 1 and the operating section (not shown). The tip 10 of the sliding wire 8 is inserted so that it can slide inside the ultrasonic transducer 5.
The other end is guided to the operating section of the endoscope 1 so that it can be operated. The tip of the input/output shaft 12 of a linear potentiometer 11, which is a means for detecting the rotational angular position of the ultrasonic transducer 5, is arranged so as to abut against the support member 6 of the ultrasonic transducer 5. It has been set up.

又、ポテンシヨンメータ11の機能としては上
記超音波送受波振動子5の回転角度に対応して
Sinα又はCosαに比例した抵抗曲線をもつもの
を用いて第11図の画像表示部13に用いる
CRTのXY走査情報を直接得ることができる。
Furthermore, the function of the potentiometer 11 is to correspond to the rotation angle of the ultrasonic wave transmitting/receiving transducer 5.
A device with a resistance curve proportional to Sinα or Cosα is used for the image display section 13 in Fig. 11.
You can directly obtain the XY scanning information of the CRT.

第2図は本発明の他の実施例で、内視鏡1の先
端部には観察用光学系2・照明用光学系3の観
察・照明方向に開口している収納部4が形成して
ある。超音波送受波振動子5は一体的に支持部材
6を設け、回転軸7により内視鏡1の長軸方向を
横切つて回転できるように上記収納部4に配設し
てある。上記回転軸7は、一端が回転型のポテン
シヨンメータ14に取付けてあり、他端は回転ワ
イヤ15に取付けてある。
FIG. 2 shows another embodiment of the present invention, in which a housing section 4 is formed at the distal end of the endoscope 1 and is open in the observation and illumination direction of the observation optical system 2 and the illumination optical system 3. be. The ultrasonic wave transmitting/receiving transducer 5 is integrally provided with a support member 6 and is disposed in the housing portion 4 so as to be rotatable across the longitudinal axis direction of the endoscope 1 by a rotating shaft 7. The rotating shaft 7 has one end attached to a rotary potentiometer 14 and the other end attached to a rotating wire 15.

第3図は本発明の回転角度位置検出手段の一実
施例で、回転軸7に取付けた遮光板24を挾んで
LED等からなる発光素子25とフオトダイオー
ド等からなる受光素子26が配設してある。上記
回転軸7は直接又は適当な減速機構を介して、上
記の超音波送受波振動子5の回転軸7に関連させ
る。
FIG. 3 shows an embodiment of the rotational angle position detection means of the present invention, in which a light shielding plate 24 attached to the rotation shaft 7 is sandwiched.
A light emitting element 25 made of an LED or the like and a light receiving element 26 made of a photodiode or the like are provided. The rotating shaft 7 is related to the rotating shaft 7 of the ultrasonic transducer 5, either directly or via a suitable speed reduction mechanism.

したがつて、超音波送受波振動子5が回転する
と、それに対応して遮光板24が移動して、受光
素子26の受光量が変化して超音波送受波振動子
5の回転角度位置を検出することができる。この
際、遮光板24のエツジ部27を図のような直線
状ではなく適当な曲線状に設定することにより超
音波送受波振動子5の回転角をαとした場合、受
光素子27にSinα又はCosαに比例した検出電
圧を得ることが可能になる。
Therefore, when the ultrasonic transducer 5 rotates, the light shielding plate 24 moves correspondingly, the amount of light received by the light receiving element 26 changes, and the rotational angular position of the ultrasonic transducer 5 is detected. can do. At this time, if the rotation angle of the ultrasonic wave transmitting/receiving transducer 5 is set to α by setting the edge portion 27 of the light shielding plate 24 not in a straight line as shown in the figure but in an appropriate curved shape, the light receiving element 27 has a sin α or It becomes possible to obtain a detection voltage proportional to Cosα.

第4図は回転角度位置検出手段の他の実施例
で、超音波送受波振動子5の回転角度検出手段と
して、ロータリーエンコーダ28を用い、光学的
に透明な円板29はその外周部に多数に格子30
を刻み回転軸7に取付けてある。円板29を挾ん
で発光素子25と受光素子26が対向して配設し
てあり、円板29が回転した場合に通過した格子
30の数を検出する。
FIG. 4 shows another embodiment of the rotational angle position detection means, in which a rotary encoder 28 is used as the rotational angle detection means of the ultrasonic wave transmitting/receiving transducer 5, and a large number of optically transparent discs 29 are arranged on the outer periphery of the rotary encoder 28. grid 30
is attached to the rotary shaft 7. A light-emitting element 25 and a light-receiving element 26 are disposed facing each other with a disk 29 in between, and detect the number of gratings 30 that have passed when the disk 29 rotates.

したがつて、回転軸7を超音波送受波振動子5
の回転軸7に直接又はより高い分解能を得るため
に適当な歯車機構を介して関連することにより、
上記超音波送受波振動子5の回転角度に比例した
パルスが受光素子26から得られ回転角度の検出
が可能になる。
Therefore, the rotating shaft 7 is connected to the ultrasonic wave transmitting/receiving transducer 5.
directly or via a suitable gear mechanism to obtain higher resolution.
A pulse proportional to the rotation angle of the ultrasonic transducer 5 is obtained from the light receiving element 26, making it possible to detect the rotation angle.

又、受光素子27より得られた回転角度位置検
出パルスにより超音波パルスを発生をするための
送信回路をトリガすれば一定の角度毎の走査線を
有するセクタスキヤン断層像を得ることができ
る。
Further, by triggering a transmitting circuit for generating ultrasonic pulses using the rotational angle position detection pulse obtained from the light receiving element 27, a sector scan tomographic image having scanning lines at fixed angles can be obtained.

又、このようなロータリーエンコーダ28のか
わりに第1図のような機構においては回転角度検
出手段としてリニアエンコーダを用いることが可
能である。
Furthermore, instead of the rotary encoder 28, a linear encoder can be used as the rotation angle detection means in the mechanism shown in FIG.

なお、上記超音波送受波振動子5としては表面
の平面状の振動子としてものの他に、振動子の表
面を第6図の如く凹面状31にすることにより超
音波ビームを収束することができる。
The ultrasonic wave transmitting/receiving transducer 5 can be used not only as a transducer with a flat surface, but also as a transducer with a concave surface 31 as shown in FIG. 6 to converge the ultrasonic beam. .

又、第7図の如く超音波送受波振動子5の表面
に片面を凹状に加工した音響レンズ32を接合す
ることにより超音波ビームを収束することができ
る。
Further, as shown in FIG. 7, the ultrasonic beam can be focused by bonding an acoustic lens 32, one side of which is processed into a concave shape, to the surface of the ultrasonic wave transmitting/receiving transducer 5.

このように収束させて焦点をもつ振動子を用い
ることにより診断部位での超音波ビームは鋭くな
り得られた断層像の方位分解能を向上することが
できる。
By using a vibrator having a convergent focus in this manner, the ultrasound beam at the diagnostic site becomes sharp, and the lateral resolution of the obtained tomographic image can be improved.

第8図は直視形内視鏡の実施例で、2は観察用
光学系、3は照明用光学系、4は収納部、5は超
音波送受波振動子、7は回転軸である。
FIG. 8 shows an embodiment of a direct-viewing endoscope, in which 2 is an observation optical system, 3 is an illumination optical system, 4 is a storage section, 5 is an ultrasonic wave transmitting/receiving transducer, and 7 is a rotating shaft.

又、上記各実施例においても、内視鏡1の先端
口の開口32を第2図に示したように可撓性を有
する水袋34で密閉した状態に構成し、内視鏡1
の流体等を導入する通路(図示してない)から脱
気水を導入して用いることもできる。
Also, in each of the above embodiments, the opening 32 at the distal end of the endoscope 1 is sealed with a flexible water bag 34 as shown in FIG.
It is also possible to use degassed water introduced through a passage (not shown) for introducing fluid, etc.

次に本発明に係わる超音波診断装置による超音
波断層形成プロセスは第9図にブロツク線図で示
したように角度測定手段35よりの角度情報によ
りパルス発生器36よりのパルスを超音波送受波
振動子5に印加し超音波を体腔壁に発射し、体内
各組織の音響インピーダンス(ある部分の音響イ
ンピーダンスをZとし、その密度をρ、音速をC
とすると、Z=ρC)の差に起因する反射波を超
音波送受波振動子5で受け、その反射信号を受信
増幅部37で増幅し、画像表示部13の輝度を変
調すると同時に角度情報より画像表示部13の
XY偏向信号を作りパルス発生器36と同期させ
て掃引信号を画像表示部13に印加し、第10図
に示すように超音波送受波振動子5を回転軸7を
中心にθ回転させることにより体腔内のセクター
スキヤン超音波断層像を体外の画像表示部13上
に形成することができるものである。
Next, in the ultrasonic tomography process using the ultrasonic diagnostic apparatus according to the present invention, as shown in the block diagram in FIG. Ultrasonic waves are applied to the transducer 5 and emitted to the body cavity wall, and the acoustic impedance of each tissue in the body (acoustic impedance of a certain part is Z, its density is ρ, and the speed of sound is C)
Then, the reflected wave caused by the difference in Z=ρC) is received by the ultrasonic transceiver transducer 5, the reflected signal is amplified by the reception amplification section 37, the brightness of the image display section 13 is modulated, and at the same time it is calculated from the angle information. of the image display section 13
By creating an XY deflection signal and applying a sweep signal to the image display section 13 in synchronization with the pulse generator 36, the ultrasonic transducer transducer 5 is rotated by θ around the rotation axis 7 as shown in FIG. A sector scan ultrasonic tomographic image of the inside of the body cavity can be formed on the image display unit 13 outside the body.

よつて、本発明に係る体腔内超音波診断装置は
体腔内へ内視鏡とともに超音波送受波振動子を挿
入し超音波断層像を造影することにより造影しよ
うとする諸器管までの距離が比較的近くなるため
生体組織による超音波エネルギーの吸収の影響を
受けにくく、5MHz〜10MHzという高い周波数
(波長が短くなる)を使用した造影が可能となり
像の解像度をあげることができる。
Therefore, the intrabody cavity ultrasound diagnostic apparatus according to the present invention inserts an ultrasound transducer and an endoscope into a body cavity and contrasts an ultrasound tomogram, thereby reducing the distance to various organs to be contrasted. Because it is relatively close, it is less susceptible to the absorption of ultrasound energy by living tissue, and it is possible to perform contrast imaging using a high frequency (shorter wavelength) of 5 MHz to 10 MHz, increasing image resolution.

又、体腔内より超音波を送受するため、不均質
な皮下脂肪層や骨等の障害となる部分を通ること
なく比較的均質な組織を通して見ようとする諸器
管を造影することができるためS/Nの良い超音
波像を得ることができる。
In addition, since ultrasound is transmitted and received from within the body cavity, it is possible to image various organs through relatively homogeneous tissues without passing through obstructive areas such as heterogeneous subcutaneous fat layers and bones. /N good ultrasound images can be obtained.

又、膵臓のように解剖学的な位置が体表からの
診断に不適な臓器を胃壁を通し容易に造影でき
る。
Furthermore, an organ such as the pancreas whose anatomical location is inappropriate for diagnosis from the body surface can be imaged easily through the stomach wall.

更に又、内視鏡の観察用光学系と併せて使用す
ることができるための体腔内の表面の診断とそれ
以外の体内の超音波診断像を同時に観察して診断
することができ、しかも内視鏡による観察により
診断すべき個所に正確に超音波をあてることがで
きる。
Furthermore, since it can be used in conjunction with the observation optical system of an endoscope, diagnosis can be made by simultaneously observing and diagnosing the surface inside the body cavity and ultrasonic diagnostic images inside the body. Ultrasound can be applied accurately to the area to be diagnosed through observation using an endoscope.

更に、内視鏡の先端部に配置された超音波送受
波振動子の近傍に回転角度検出手段を設けたの
で、超音波送受波振動子をフレキシブルな駆動ワ
イヤにより駆動する際にも、正確な回転角度検出
が行なえる。
Furthermore, since a rotation angle detection means is provided near the ultrasonic transducer transducer placed at the tip of the endoscope, accurate detection can be achieved even when the ultrasonic transducer transducer is driven by a flexible drive wire. Rotation angle can be detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示した断面図、第
2図は本発明の他の実施例を示した断面図、第3
図は本発明に用いる回転角度位置検出手段の一実
施例を示した斜視図、第4図は本発明に用いる回
転角度位置検出手段の他の実施例を示した斜視
図、第5図は第4図の円板部分の拡大図、第6図
は本発明に用いる超音波送受波振動子の他の実施
例を示した正面図、第7図は本発明に用いる超音
波送受波振動子の他の実施例を示した正面図、第
8図は直視形内視鏡に実施した状態を示した先端
側面図、第9図は超音波断層像形成プロセスを示
したブロツク線図、第10図は表示状態を示した
図である。 1……内視鏡、2……観察用光学系、3……照
明用光学系、4……収納部、5……超音波送受波
振動子、7……回転軸、8,15,17,22,
23……駆動手段、11,14,24,25,2
6,28……回転角度位置検出手段。
Fig. 1 is a sectional view showing one embodiment of the present invention, Fig. 2 is a sectional view showing another embodiment of the invention, and Fig. 3 is a sectional view showing another embodiment of the invention.
The figure is a perspective view showing one embodiment of the rotational angular position detection means used in the present invention, FIG. 4 is a perspective view showing another embodiment of the rotational angular position detection means used in the present invention, and FIG. 4 is an enlarged view of the disk portion, FIG. 6 is a front view showing another embodiment of the ultrasonic transducer used in the present invention, and FIG. 7 is an enlarged view of the ultrasonic transducer used in the present invention. FIG. 8 is a front view showing another embodiment, FIG. 8 is a side view of the distal end showing the state implemented in a direct view endoscope, FIG. 9 is a block diagram showing the ultrasonic tomographic image forming process, and FIG. 10 is a diagram showing a display state. DESCRIPTION OF SYMBOLS 1...Endoscope, 2...Optical system for observation, 3...Optical system for illumination, 4...Storage part, 5...Ultrasonic wave transmitting/receiving transducer, 7...Rotating shaft, 8, 15, 17 ,22,
23...Driving means, 11, 14, 24, 25, 2
6, 28... Rotation angle position detection means.

Claims (1)

【特許請求の範囲】 1 少なくとも観察用光学系・照明用光学系を挿
入部の先端部に有する内視鏡と、上記挿入部の先
端部内に回転可能に取付けた超音波送受波振動子
と、上記挿入部内を通つて上記内視鏡の操作部ま
で延びた上記超音波送受波振動子を回転させる可
撓性の駆動ワイヤと、上記挿入部の先端部内であ
つて上記超音波送受波振動子の近傍に設けられた
上記超音波送受波振動子の回転角度検出手段とを
具備したことを特徴とする体腔内超音波診断装
置。 2 上記駆動ワイヤが、摺動ワイヤであることを
特徴とする特許請求の範囲第1項記載の体腔内超
音波診断装置。 3 上記駆動ワイヤが、回転ワイヤであることを
特徴とする特許請求の範囲第1項記載の体腔内超
音波診断装置。
[Scope of Claims] 1. An endoscope having at least an observation optical system and an illumination optical system at the distal end of the insertion section, and an ultrasonic wave transmitting/receiving transducer rotatably mounted within the distal end of the insertion section; a flexible drive wire that rotates the ultrasonic transducer transducer that extends through the insertion section to the operating section of the endoscope; An intrabody cavity ultrasonic diagnostic apparatus comprising: rotation angle detection means for the ultrasonic wave transmitting/receiving transducer provided in the vicinity of the ultrasonic transducer. 2. The intrabody cavity ultrasound diagnostic apparatus according to claim 1, wherein the drive wire is a sliding wire. 3. The intrabody cavity ultrasound diagnostic apparatus according to claim 1, wherein the drive wire is a rotating wire.
JP2848879A 1979-03-12 1979-03-12 Ultrasonic wave diagnosis device for inside of coelom Granted JPS55120851A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2848879A JPS55120851A (en) 1979-03-12 1979-03-12 Ultrasonic wave diagnosis device for inside of coelom
US06/121,031 US4375818A (en) 1979-03-12 1980-02-13 Ultrasonic diagnosis system assembled into endoscope
DE3009482A DE3009482C2 (en) 1979-03-12 1980-03-12 Endoscope with an ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2848879A JPS55120851A (en) 1979-03-12 1979-03-12 Ultrasonic wave diagnosis device for inside of coelom

Publications (2)

Publication Number Publication Date
JPS55120851A JPS55120851A (en) 1980-09-17
JPS6240018B2 true JPS6240018B2 (en) 1987-08-26

Family

ID=12250044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2848879A Granted JPS55120851A (en) 1979-03-12 1979-03-12 Ultrasonic wave diagnosis device for inside of coelom

Country Status (1)

Country Link
JP (1) JPS55120851A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143740A (en) * 1982-02-19 1983-08-26 株式会社日立製作所 Ultrasonic diagnostic apparatus
JPS62174513U (en) * 1986-04-25 1987-11-06
JP2556489B2 (en) * 1986-12-09 1996-11-20 オリンパス光学工業株式会社 Ultrasonic diagnostic device in body cavity
JP2563929B2 (en) * 1987-05-18 1996-12-18 オリンパス光学工業株式会社 Ultrasonic diagnostic device in body cavity
JP2594559B2 (en) * 1987-05-18 1997-03-26 オリンパス光学工業株式会社 Ultrasonic diagnostic device in body cavity
JP2602830B2 (en) * 1987-05-18 1997-04-23 オリンパス光学工業株式会社 Ultrasound diagnostic equipment
JP2007267998A (en) * 2006-03-31 2007-10-18 Fujinon Corp Optical and ultrasonic tomographic image generator
WO2018216062A1 (en) * 2017-05-22 2018-11-29 オリンパス株式会社 Ultrasound-guided needle puncturing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4416936Y1 (en) * 1965-11-22 1969-07-22
JPS5219484A (en) * 1975-08-05 1977-02-14 Siemens Ag Pulseeecho type ultrasonic video device
JPS5275427A (en) * 1975-11-13 1977-06-24 Smith Kline Instr Ultrasonic wave scanning system
JPS5320947U (en) * 1976-07-31 1978-02-22
JPS5385982A (en) * 1977-01-10 1978-07-28 Tokyo Shibaura Electric Co Explorer for inspecting body cavity
JPS541984A (en) * 1977-06-06 1979-01-09 Aroozu Kk Internal inspection ultrasonic wave diagnosing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328306Y2 (en) * 1972-04-25 1978-07-17

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4416936Y1 (en) * 1965-11-22 1969-07-22
JPS5219484A (en) * 1975-08-05 1977-02-14 Siemens Ag Pulseeecho type ultrasonic video device
JPS5275427A (en) * 1975-11-13 1977-06-24 Smith Kline Instr Ultrasonic wave scanning system
JPS5320947U (en) * 1976-07-31 1978-02-22
JPS5385982A (en) * 1977-01-10 1978-07-28 Tokyo Shibaura Electric Co Explorer for inspecting body cavity
JPS541984A (en) * 1977-06-06 1979-01-09 Aroozu Kk Internal inspection ultrasonic wave diagnosing device

Also Published As

Publication number Publication date
JPS55120851A (en) 1980-09-17

Similar Documents

Publication Publication Date Title
US10105062B2 (en) Miniaturized photoacoustic imaging apparatus including a rotatable reflector
JP3654309B2 (en) Acicular ultrasonic probe
US20030036706A1 (en) Imaging, Therapy, and temperature monitoring ultrasonic system
US20050203416A1 (en) Extended, ultrasound real time 2D imaging probe for insertion into the body
US20110071398A1 (en) Three-dimensional probe apparatus
CN1942144A (en) Ultrasound imaging probe featuring wide field of view
JPH0419860B2 (en)
JP2010068923A (en) Ultrasonic diagnostic apparatus
JP2002523161A (en) Method and apparatus for recording ultrasound images
JPS624131B2 (en)
JPS6240018B2 (en)
US20070232921A1 (en) Transducer assembly having a wide field of view
JPS624130B2 (en)
JPH0919431A (en) Ultrasonic wave transducer
JPS5922534A (en) Ultrasonic diagnostic endoscope
JP2659790B2 (en) Tumor treatment device
JP3462904B2 (en) Needle-shaped ultrasonic probe
JPS628172B2 (en)
JPS639861B2 (en)
JPS6137943B2 (en)
CN108348215A (en) 3D ultrasonic image-forming systems for nerve block application
JP4010908B2 (en) Endoscope
JPS6137942B2 (en)
JP2007082629A (en) Ultrasonic probe
JP2002336258A (en) Ultrasonic probe