WO2018216062A1 - Ultrasound-guided needle puncturing device - Google Patents

Ultrasound-guided needle puncturing device Download PDF

Info

Publication number
WO2018216062A1
WO2018216062A1 PCT/JP2017/018997 JP2017018997W WO2018216062A1 WO 2018216062 A1 WO2018216062 A1 WO 2018216062A1 JP 2017018997 W JP2017018997 W JP 2017018997W WO 2018216062 A1 WO2018216062 A1 WO 2018216062A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
distal end
actuator
ultrasonic transducer
end side
Prior art date
Application number
PCT/JP2017/018997
Other languages
French (fr)
Japanese (ja)
Inventor
謙 緒方
雄一 志賀
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/018997 priority Critical patent/WO2018216062A1/en
Publication of WO2018216062A1 publication Critical patent/WO2018216062A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Definitions

  • the present invention relates to an ultrasonic guided puncture device, and more particularly to an ultrasonic guided puncture device that enables a puncture needle to be used under the guidance of an ultrasonic image.
  • ultrasonic imaging apparatuses have been widely used in the medical field, and ultrasonic probes that can be inserted into body cavities and blood vessels to observe internal organs have also been developed.
  • An ultrasonic transducer is provided at the tip of the probe, and there are an electronic scanning method and a mechanical operation method as the scanning method of the ultrasonic transducer. Since the probe itself is inserted into a body cavity or the like, it is preferable that the probe has a smaller diameter.
  • Japanese Patent Laid-Open No. 8-275946 proposes an ultrasonic catheter having a conversion mechanism that converts a reciprocating or rotating movement of a wire into a swinging movement of an ultrasonic transducer.
  • a biopsy that is, a part of a living tissue is collected by a puncture needle using a puncture needle under the guidance of an ultrasound image.
  • a puncture needle insertion channel in a mechanically operated ultrasonic probe, an opening through which the puncture needle protrudes is formed at the tip of the probe, and a structure for moving the ultrasonic transducer and the insertion channel communicating with the opening is formed.
  • the conversion mechanism that converts the reciprocating motion or the rotational motion into the swing motion of the ultrasonic transducer has a swinging ultrasonic transducer. Therefore, the protrusion angle of the puncture needle with respect to the central axis of the probe is reduced. Therefore, there is a problem that the distance that the puncture needle protrudes from the opening at the distal end and reaches the affected area becomes long, and it is difficult for the operator to operate the puncture needle that appears in the ultrasonic image.
  • an object of the present invention is to provide an ultrasonic guided puncture device that can position the position of the opening of the tip portion from which the puncture needle protrudes close to the ultrasonic transducer.
  • An ultrasonic-guided puncture device includes an outer tube that is inserted into a body, a distal end portion provided on a distal end side of the outer tube, and a longitudinal portion of the outer tube that is disposed in the distal end portion.
  • An ultrasonic transducer supported so as to be swingable in a plane along the direction, and a puncture formed on the proximal end side of the ultrasonic transducer so that a puncture needle can be inserted into the outer tube along the longitudinal direction
  • a needle insertion channel an actuator provided on the distal end side of the ultrasonic transducer and having a movable part that reciprocates along the longitudinal direction of the outer tube, the actuator and the actuator along the longitudinal direction of the outer tube
  • a conversion mechanism that is arranged in series in the longitudinal direction and arranged in parallel with the ultrasonic transducer and that converts the reciprocating motion of the movable portion into the oscillation motion of the ultrasonic transducer.
  • FIG. 1 is a configuration diagram showing an overall configuration of an ultrasonic guided puncture system 1 according to an embodiment of the present invention. It is a perspective view of the front-end
  • FIG. 12 is a cross-sectional view of the distal end portion 2a taken along line XII-XII in FIG.
  • FIG. 12 is a cross-sectional view of the distal end portion 2a taken along line XIII-XIII in FIG. It is sectional drawing of the front-end
  • FIG. 1 is a configuration diagram showing the overall configuration of an ultrasonic guided puncture system.
  • the ultrasonic guided puncture system 1 includes an elongated ultrasonic probe 2, a puncture needle device 3, a processor 4, and a monitor 5.
  • the ultrasound probe 2 constitutes an ultrasound-guided puncture device that can use a puncture needle under the guidance of an ultrasound image.
  • the ultrasonic probe 2 is a mechanical scanning probe having an elongated shape that can be inserted into a thin lumen such as a blood vessel, a lung peripheral part, or a pancreaticobiliary system.
  • the ultrasonic probe 2 has an elongated and flexible resin outer tube 2t, and a distal end portion 2a provided and fixed on the distal end side of the outer tube 2t.
  • the diameter of the ultrasonic probe 2 is, for example, 2 to 5 mm.
  • the ultrasonic transducer is disposed in the distal end portion 2a of the ultrasonic probe 2 as will be described later.
  • a puncture needle device connector 2b for connecting the puncture needle device 3 is provided at the proximal end portion of the outer tube 2t.
  • a puncture needle insertion channel (not shown) through which the puncture needle is inserted is formed.
  • an opening of a puncture needle insertion channel is formed in the distal end portion 2a.
  • a cable 2c through which a plurality of signal lines for driving signals for driving the ultrasonic transducer and the like are inserted, extends from the puncture needle device connector 2b.
  • a connector 2d that can be connected to the processor 4 is provided at the proximal end of the cable 2c.
  • the puncture needle device 3 has an elongated puncture needle 3a and a puncture handle 3b for operating the puncture needle 3a.
  • the puncture handle 3b is detachable from the puncture needle device connector 2b and has an insertion channel (not shown) through which the puncture needle 3a is inserted.
  • the puncture needle 3a can enter the puncture needle insertion channel in the ultrasonic probe 2, and as a result, the distal end portion of the puncture needle 3a becomes the distal end portion of the ultrasonic probe 2. It becomes possible to project from the opening 2a.
  • the processor 4 includes a driving device that drives the ultrasonic transducer in the distal end portion 2a, and an image generation unit that generates an ultrasonic image in the subject based on a signal from the ultrasonic transducer.
  • the processor 4 outputs an image signal of the generated ultrasonic image to the monitor 5 that is a display device, and the ultrasonic image is displayed on the monitor 5.
  • the surgeon can perform a biopsy by inserting the puncture needle 3a into the living tissue while looking at the ultrasonic image displayed on the monitor 5.
  • FIG. 2 is a perspective view of the distal end portion of the ultrasonic probe.
  • FIG. 3 is a perspective view of the distal end portion showing a state where the puncture needle protrudes from the distal end portion.
  • FIG. 4 is a perspective view of an actuator of an ultrasonic transducer disposed in the distal end portion.
  • the distal end portion 2a of the ultrasonic probe 2 has a resin casing 2a1.
  • the outer tube 2t and the housing 2a1 provided on the distal end side of the outer tube 2t are configured to be insertable into the body of the subject.
  • the housing 2a1 has a cylindrical shape, and the tip side portion of the housing 2a1 is formed in a hemispherical shape.
  • the central axis of the casing 2 a 1 having a cylindrical shape coincides with the central axis O of the ultrasonic probe 2.
  • an internal space IS1 that accommodates the ultrasonic transducer 21, and an internal space IS2 that accommodates the actuator 22 on the tip side of the internal space IS1.
  • the ultrasonic transducer 21 can be swung around a predetermined axis within a predetermined angle range in the internal space IS1 by an actuator 22 (FIG. 4) disposed in the distal end portion 2a.
  • the ultrasonic transducer 21 is an element made of a single plate having a substantially rectangular outer shape.
  • the actuator 22 has an elongated shape in the direction of the central axis O of the ultrasonic probe 2.
  • a puncture needle insertion channel 14 is formed in the ultrasonic probe 2.
  • the puncture needle insertion channel 14 is formed on the upper side of the ultrasonic probe 2 along the axial direction of the ultrasonic probe 2. That is, the puncture needle insertion channel 14 is formed on the proximal end side of the ultrasonic transducer 21 so that the puncture needle 3a can be inserted into the outer tube 2t along the longitudinal direction.
  • An opening 15 communicating with the puncture needle insertion channel 14 is formed on the side surface of the cylindrical housing 2a1 at the tip 2a. The opening 15 is formed on the side surface of the distal end portion 2 a on the proximal end side of the ultrasonic transducer 21.
  • the puncture needle insertion channel 14 is formed so that the puncture needle 3 a is directed to the scanning range of the ultrasonic transducer 21.
  • the tip of the puncture needle 3a can protrude from the opening 15 with respect to the central axis O at a protrusion angle ⁇ .
  • the signal line 16 for the ultrasonic transducer 21 extends from the proximal end side of the ultrasonic transducer 21 into the outer tube 2t.
  • the signal line 16 is disposed along the longitudinal direction on the side opposite to the puncture needle insertion channel 14 with respect to the central axis O of the distal end portion 2a.
  • Two signal lines 16a for the actuator 22 also extend into the outer tube 2t.
  • the plurality of signal lines 16 and 16a are inserted into the cable 2c.
  • FIG. 5 is a front view of the actuator 22.
  • FIG. 5 is a view as seen from a direction orthogonal to the axis of the distal end portion 2a.
  • FIG. 6 is a right side view of the actuator 22.
  • FIG. 7 is a left side view of the actuator 22. 6 shows a side view of the actuator 22 disposed in the distal end portion 2a when viewed from the proximal end side, and
  • FIG. 7 shows the actuator 22 disposed in the distal end portion 2a viewed from the distal end side. Shows the side.
  • FIG. 8 is a cross-sectional view of the actuator 22.
  • the actuator 22 is disposed in the internal space IS2 (see FIG. 4) of the distal end portion 2a of the ultrasonic probe 2, and moves the ultrasonic transducer 21 within a predetermined angle around a predetermined axis.
  • This is a drive device for rocking.
  • the actuator 22 is an electromagnetic driving device using a moving magnet type voice coil motor which is an electromagnetic actuator.
  • the actuator 22 uses a moving magnet type voice coil motor, but a moving coil type voice coil motor may be used.
  • the actuator 22 which is an electromagnetic actuator, includes a frame member 31, a movable portion 32 disposed in the frame member 31, and a transducer that is disposed on the proximal end side of the movable portion 32 and on which the ultrasonic transducer 21 is mounted. And a mounting portion 33.
  • the movable part 32 reciprocates along the longitudinal direction of the outer tube 2t.
  • the frame member 31 has a cylindrical portion 31a and two arms 31b. As shown in FIGS. 4 and 5, the two arms 31 b are provided so as to extend in the proximal direction in parallel to each other from the proximal end of the cylindrical portion 31 a. Each arm 31b is formed with a hole 31b1 through which a shaft portion 33a2 described later is inserted.
  • a hole 31a1 is formed on the proximal end side of the cylindrical portion 31a, and a hole 31a2 is also formed on the distal end side of the cylindrical portion 31a. That is, the actuator 22 has a frame member 31 that accommodates the movable portion 32 therein, and a hole 31a2 is formed on the opposite side of the frame member 31 to a conversion mechanism 33X described later.
  • the actuator 22 has a frame member 31 that houses therein a movable portion 32 that reciprocates along the longitudinal direction of the outer tube 2t. That is, the actuator 22 has a movable portion 32 that is provided on the distal end side of the ultrasonic transducer 21 and reciprocates along the longitudinal direction of the outer tube 2t.
  • a hole 31 a 1 is formed on the base end side of the frame member 31.
  • the upper side surface 31a3 and the lower side surface 31a4 of the cylindrical portion 31a have flat surfaces.
  • a through groove 31a5 extending along the axial direction of the cylindrical portion 31a is formed on the upper side surface 31a3 of the cylindrical portion 31a, and the cylindrical portion 31a is also formed on the lower side surface 31a4 of the cylindrical portion 31a.
  • a through groove 31a6 extending along the axial direction is formed.
  • Two coil portions 34 formed by winding a coil wire rod are provided on the outer peripheral surface of the cylindrical portion 31a.
  • a part of the outer shape of the two coil portions 34 has a flat surface, and each coil portion 34 has two flat surface portions 34a and 34b in the vertical direction.
  • the planes of the two plane portions 34a and 34b are orthogonal to the line connecting the puncture needle insertion channel 14 and the voice coil motor when the outer tube 2t is viewed from the distal end side.
  • the movable part 32 has the cylindrical member 32a and the extension part 32b extended in the base end direction from the base end of the column member 32a.
  • the upper surface and the lower surface of the columnar member 32a have two flat portions 32a1 and 32a2 that are formed by being cut along the axial direction of the cylindrical portion 31a.
  • the flat surface portion 32a1 is parallel to the upper side surface 31a3 of the cylindrical portion 31a, and the flat surface portion 32a2 is parallel to the lower side surface 31a4 of the cylindrical portion 31a.
  • a convex portion 32at is formed on the plane portion 32a1.
  • the convex portion 32 at has a height at which a part of the convex portion 32 at enters the through groove 31 a 5, and restricts rotation of the movable portion 32 around the axis.
  • the columnar member 32a is movable along the axial direction of the distal end portion 2a in the cylindrical portion 31a in a state where the convex portion 32at enters the through groove 31a5.
  • the cylindrical member 32a has an elongated recess 32a4 formed along the axial direction of the cylindrical member 32a. As shown in FIG. 8, the recess 32a4 is formed below the cylindrical member 32a. In the recess 32a4, two permanent magnets 35 are arranged along the axial direction of the cylindrical member 32a. Each permanent magnet 35 has a rectangular parallelepiped shape, and the N pole and the S pole are arranged in the recess 32a4 in a predetermined direction so that the magnetization direction is a direction perpendicular to the axial direction of the cylindrical portion 31a.
  • each coil and each magnet of the coil portion 34 have a shape in which the dimension in the reciprocating motion direction is longer than the dimension in the direction orthogonal to the reciprocating motion direction of the movable portion 32. Therefore, the space efficiency of the tip 2a is good.
  • two coil portions 34 formed of a coil wire are arranged in series along the axial direction of the axis O of the tip portion 2a, and the two permanent magnets 35 are also connected to the shaft of the tip portion 2a. Since it is arranged in series along the axial direction of O, the space efficiency of the tip 2a is good.
  • the cylindrical member 32a is made of a ferromagnetic material.
  • the movable part 32 uses a ferromagnetic member as the material of the cylindrical member 32a that holds the two permanent magnets 35, thereby reducing the magnetic resistance and increasing the output efficiency of the magnetic circuit. The power to move is increased.
  • the driving of the actuator is affected by disturbances (for example, disturbance acceleration due to the advance and retreat of the probe and bending due to the operator's operation, vibration during insertion of the puncture needle) and variations in solids.
  • disturbances for example, disturbance acceleration due to the advance and retreat of the probe and bending due to the operator's operation, vibration during insertion of the puncture needle
  • image degradation such that the swinging motion of the ultrasonic transducer cannot be smoothly performed and the ultrasonic image is blurred.
  • the change in the inductance of the coil with respect to the change in the position of the movable portion 32 is increased, so that the speed or position of the movable portion 32 can be determined without using a sensor. It can be estimated and so-called sensorless control can be applied.
  • An induced electromotive force is generated in the coil part 34 by the movement of the movable part 32.
  • the ferromagnetic portion of the movable portion 32 is separated from the two coil portions 34 so that the change in the magnitude of the current flowing in the coil portion 34 generated based on the induced electromotive force can detect the terminal movement position of the movable portion 32. Place inside.
  • the length of the ferromagnetic cylindrical member 32a in the axial direction is longer than the length of the two coil portions 34 in the axial direction of the distal end portion 2a. It is preferable. As a result, the position of the movable part 32 in the actuator 22 can be detected based on the magnitude of the current flowing through the coil part 34.
  • the two permanent magnets 35 are disposed in the recess 32a4 of the cylindrical member 32a, when the cylindrical member 32a is made of a ferromagnetic material, the two permanent magnets 35 are 32a is disposed between the distal end portion 32a5 and the proximal end portion 32a6. That is, the ferromagnetic member is provided on both the distal end side and the proximal end side of the two permanent magnets 35. Therefore, the influence of the magnetic field from the outside in the axial direction of the tip portion 2a can be shielded, and even if a magnetic body exists before and after the tip portion 2a in the axial direction, the magnetic force pulled by the magnetic body is reduced. This reduces the output efficiency of the actuator 22.
  • the extending portion 32b extending from the cylindrical member 32a is made of a nonmagnetic material or a weak magnetic material. That is, a portion of the movable portion 32 on the conversion mechanism 33X side described later is a nonmagnetic material or a weak magnetic material. If the extending portion 32b is a ferromagnetic material, the inductance change becomes asymmetric when performing the sensorless control described above, and thus the position of the movable portion 32 may not be detected with high accuracy. Therefore, the extension part 32b is made of a non-magnetic material or a weak magnetic material so as not to deteriorate the accuracy of position detection.
  • the N pole and the S pole are predetermined along the axial direction of the distal end portion 2a in the two coil portions 34 formed of the coil wire wound around the axis of the distal end portion 2a of the ultrasonic probe 2.
  • Two permanent magnets 35 are arranged so as to face.
  • the two coil portions 34 and the two permanent magnets 35 of the movable portion 32 form a moving magnet type voice coil motor.
  • a pin 32 b 1 is formed on the base end side of the extending part 32 b of the movable part 32.
  • the pin 32b1 has a shape that protrudes in a direction orthogonal to the axial direction of the distal end portion 2a.
  • the transducer mounting portion 33 includes a fixed portion 33a on which the single-plate ultrasonic transducer 21 having a substantially rectangular outer shape is mounted and fixed, and an extending portion 33b extending from the fixed portion 33a.
  • the fixing portion 33a has a flat surface portion 33a1 for fixing the single-plate ultrasonic transducer 21 with fixing means such as an adhesive (see FIG. 6).
  • the rectangular fixed portion 33a has two shaft portions 33a2 protruding in opposite directions. The two shaft portions 33a2 are inserted into the two holes 31b1 of the two arms 31b so that the fixed portion 33a can rotate about the shaft of the shaft portion 33a2.
  • the extending portion 33b extends from the surface opposite to the flat surface portion 33a1.
  • the extending portion 33b has an elongated through slit 33b1.
  • the pin 32b1 of the extending part 32b of the movable part 32 enters the through slit 33b1.
  • the fixed portion 33a is supported by the two arms 31b so as to be rotatable around the axes of the two shaft portions 33a2, and the fixed portion 33a is rotated around the axes of the two shaft portions 33a2.
  • the through slit 33b1 is formed so that the pin 32b1 can sometimes move in the through slit 33b1.
  • the pin 32b1 When the extending portion 32b of the movable portion 32 moves back and forth within a predetermined range along the axial direction of the distal end portion 2a, the pin 32b1 also moves in the front and rear direction along the axial direction of the distal end portion 2a.
  • the reciprocating motion of the pin 32b1 moves the extending portion 33b engaged with the pin 32b1, and generates a swinging motion that swings the fixed portion 33a around the two shaft portions 33a2.
  • FIG. 9 is a cross-sectional perspective view of the distal end portion 2a when the ultrasonic transmission / reception surface of the ultrasonic transducer 21 is inclined toward the proximal end side.
  • FIG. 10 is a cross-sectional perspective view of the distal end portion 2a when the ultrasonic transmission / reception surface 21a of the ultrasonic transducer 21 is inclined toward the distal end side.
  • FIG. 11 is a cross-sectional view of the distal end portion 2a when the ultrasonic transducer 21 is at an intermediate position where it does not swing.
  • 12 is a cross-sectional view of the distal end portion 2a taken along line XII-XII in FIG. FIG.
  • FIG. 12 is a view of the distal end portion 2a as viewed from the distal end side.
  • 13 is a cross-sectional view of the distal end portion 2a taken along line XIII-XIII in FIG.
  • FIG. 13 is a view of the distal end portion 2a as viewed from the distal end side.
  • the ultrasonic transmission / reception surface 21a of the ultrasonic transducer 21 is inclined toward the proximal end side of the distal end portion 2a.
  • the ultrasonic transmission / reception surface 21a of the ultrasonic transducer 21 is inclined toward the distal end side of the distal end portion 2a.
  • the fixed portion 33a alternately turns around the axis of the two shaft portions 33a2 in the first direction and in the second direction opposite to the first direction.
  • the pin 32b1 moves in the through slit 33b1 by rotating.
  • the movable portion 32 having the pin 32b1 and the extending portion 33b having the through slit 33b1 engaged with the pin 32b1 convert the reciprocating motion of the movable portion 32 into the swinging motion of the ultrasonic transducer 21.
  • the conversion mechanism 33X is disposed in series with the actuator 22 in the longitudinal direction along the longitudinal direction of the outer tube 2t, and is disposed in parallel with the ultrasonic transducer 21 in the longitudinal direction. This is converted into a swing motion of the child 21.
  • the two signal lines 16 a of the actuator 22 are along the inner wall of the housing 2 a 1 on the actuator 22 side with respect to the central axis O, avoiding the oscillating ultrasonic transducer 21. Arranged.
  • At least one of the signal line 16 and the two signal lines 16a described above is disposed along the longitudinal direction on the opposite side of the puncture needle insertion channel 14 with respect to the central axis O of the distal end portion 2a. May be.
  • a seal member 2a2 for sealing the internal spaces IS1 and IS2 is provided in the housing 2a1 of the distal end portion 2a.
  • the internal spaces IS1 and IS2 are filled with oil that is an acoustic medium for impedance matching. That is, the seal member 2a2 is provided in the distal end portion 2a, and seals the ultrasonic transducer 21, the actuator 22, and the conversion mechanism 33X.
  • the seal member 2a2 has a plurality of holes through which the signal lines 16 and 16a are passed. Each hole is provided with a sealing agent such as an epoxy resin for sealing the periphery of each signal line.
  • sealing member 2a2 is used to seal only the distal end portion in the distal end portion 2a, the amount of the acoustic medium for impedance matching is small, and the risk of bubbles entering the acoustic medium is reduced. .
  • the housing 2a1 of the distal end portion 2a has the opening portion 15 of the actuator 22, the ultrasonic transducer 21, and the puncture needle insertion channel 14 in this order from the distal end side.
  • the actuator 22 is provided on the distal end side of the distal end portion 2a, and the ultrasonic transducer 21 is supported so as to be swingable in a plane along the longitudinal direction of the outer tube 2t.
  • the ultrasonic transducer 21 fixed to the fixed portion 33a is pivotally supported by the two shaft portions 33a2 and can swing within a predetermined angle range around the axes of the two shaft portions 33a2.
  • a moving magnet type voice coil motor is formed by the two coil portions 34 and the two permanent magnets. By changing the direction of the current flowing through the coil wires of the two coil portions 34, the moving direction of the two permanent magnets 35 along the axial direction of the tip portion 2a can be controlled.
  • FIG. 14 is a cross-sectional view of the distal end portion 2a when the ultrasonic transmission / reception surface 21a of the ultrasonic transducer 21 is inclined toward the proximal end side.
  • FIG. 15 is a cross-sectional view of the distal end portion 2a when the ultrasonic transmission / reception surface 21a of the ultrasonic transducer 21 is inclined toward the distal end side.
  • the housing 2a1 provided on the distal end side of the outer tube 2t has the internal space IS1 that accommodates the ultrasonic transducer 21 and the conversion mechanism 33X, and the internal space IS2 that accommodates the actuator 22.
  • the two signal lines 16 a of the actuator 22 are disposed along the opposite side of the puncture needle insertion channel 14 with respect to the central axis O.
  • the movable part 32 moves to the tip side as shown in FIG. 14 according to the principle of a moving magnet type voice coil motor, It is close to the inner wall on the tip side of the cylindrical portion 31a.
  • the ultrasonic transmission / reception surface 21a of the ultrasonic transducer 21 faces the proximal end side.
  • the normal line direction of the ultrasonic wave transmitting / receiving surface 21a is inclined toward the proximal end side by ⁇ 1 with respect to the direction orthogonal to the axis of the distal end portion 2a.
  • the movable portion 32 When a current in a second direction opposite to the first direction is passed through each coil wire of the two coil portions 34, the movable portion 32 is moved as shown in FIG. 15 according to the principle of a moving magnet type voice coil motor. , It moves to the base end side and approaches the inner wall on the base end side of the cylindrical portion 31a. At this time, the ultrasonic transmission / reception surface 21a of the ultrasonic transducer 21 faces the distal end side. As shown in FIG. 15, the normal line direction of the ultrasonic wave transmitting / receiving surface 21a is inclined toward the distal end side by ⁇ 2 with respect to the direction orthogonal to the axis of the distal end portion 2a.
  • the ultrasonic transducer 21 swings in the range of the angle ( ⁇ 1 + ⁇ 2) around the axis of the shaft portion 33a2. Therefore, the ultrasonic probe 2 is inserted into, for example, a body cavity or a blood vessel, and the ultrasonic transducer 21 in the internal space IS1 of the distal end portion 2a is swung so that the ultrasonic wave mechanically scans within the subject. By doing so, an ultrasonic image is displayed on the monitor 5.
  • the ultrasonic image by the ultrasonic transducer 21 is in the range of the angle ( ⁇ 1 + ⁇ 2) described above and includes a portion in the vicinity of the opening 15. Therefore, as shown in FIG. 3, the distance that the puncture needle 3a protrudes from the opening 15 of the distal end portion 2a at the projection angle ⁇ and reaches the affected area is shortened, and the operator can observe the ultrasound image while viewing the ultrasonic image. Easy to operate.
  • the internal organ in the protruding direction of the puncture needle 3a may be made more observable by making ⁇ 2 larger than ⁇ 1. That is, the scanning range of the ultrasonic transducer 21 may be inclined toward the distal end side of the distal end portion 2a.
  • the ultrasonic transducer 21 can be a single plate type, a high-resolution ultrasonic image can be obtained and the ultrasonic probe 2 can be made to have a small diameter.
  • a single-plate ultrasonic transducer since the size of the single plate can be increased, an ultrasonic image with high azimuth resolution can also be obtained.
  • the ultrasonic transducer can be swung at high speed using a voice coil motor that is an electromagnetic actuator, the obtained ultrasonic image is real time, and the operator can smoothly perform puncture scanning. In other words, the operability of puncturing while viewing an ultrasonic image is good for the surgeon.
  • the actuator 22 is disposed on the distal end side of the distal end portion 2 a, and the opening 15 is disposed on the proximal end side of the ultrasonic transducer 21. Therefore, since the opening 15 of the distal end portion 2a from which the puncture needle 3a protrudes can be disposed in the vicinity of the ultrasonic transducer 21, the distance from the puncture needle 3a protruding from the opening 15 to the lesioned portion is short. .
  • the reciprocating or rotating motion of the wire is converted into the oscillating motion of the ultrasonic transducer, even if an opening through which the puncture needle projects is provided.
  • An opening is disposed on the proximal end side of the conversion mechanism, and a distance from the puncture needle protruding from the opening to the lesion is increased.
  • the puncture needle protrudes from the opening in a place that is not reflected in the ultrasonic image, so that it is difficult for the operator to grasp the position of the needle.
  • the puncture operability while viewing the ultrasonic image is not good.
  • the operator can observe the needle while viewing the ultrasonic image. Easy to grasp the position and good puncture operability.
  • an ultrasonic guided puncture device capable of positioning the opening of the tip portion from which the puncture needle protrudes near the ultrasonic transducer. it can.
  • the puncture needle 3a protrudes from the opening 15, but the opening of the puncture needle so that a contrast tube for examination such as ERCP (endoscopic retrograde cholangiopancreatography) can also protrude.
  • ERCP endoscopic retrograde cholangiopancreatography
  • the protrusion angle from 15 may be increased. As a result, it can be easily applied to examinations such as ERCP (endoscopic retrograde cholangiopancreatography).
  • FIG. 16 is a cross-sectional view of the distal end portion 2a of the ultrasonic probe 2 in which an inclined surface 14a for increasing the protrusion angle ⁇ 1 of the contrast tube 3c is formed on the distal end side in the vicinity of the opening 15.
  • the projection angle ⁇ 1 of the contrast tube 3c is large, for example, when the distal end portion 2a is in the vicinity of the papilla of the duodenum, the contrast tube 3c can be easily inserted into the bile duct.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

The ultrasonic probe (2) includes: a tip (2a) provided on a distal end side of an outer tube (2t) to be inserted into a body; an ultrasonic vibrator (21) that is disposed inside the tip (2a); a puncture needle insertion channel (14) that is formed on a base end side of the ultrasonic vibrator (21) inside the outer tube (2t) along the longitudinal direction such that a puncture needle can be inserted therethrough; an actuator (22); and a conversion mechanism (33X). The actuator (22) is provided on a distal end side of the ultrasonic vibrator (21) and has a movable part (32) that reciprocates along the longitudinal direction of the outer tube (2t). The conversion mechanism (33X) is disposed along the longitudinal direction of the outer tube (2t) in tandem with the actuator (22) in the longitudinal direction and in parallel with the ultrasonic vibrator (21) in the longitudinal direction and converts the reciprocating motions of the movable part (32) into oscillating motions for the ultrasonic vibrator (21).

Description

超音波ガイド下穿刺装置Ultrasound guided puncture device
 本発明は、超音波ガイド下穿刺装置に関し、特に、超音波画像のガイド下で穿刺針を使用可能とする超音波ガイド下穿刺装置に関する。 The present invention relates to an ultrasonic guided puncture device, and more particularly to an ultrasonic guided puncture device that enables a puncture needle to be used under the guidance of an ultrasonic image.
 従来より、超音波イメージング装置が医療分野で広く用いられており、体腔内や血管内に挿入して体内臓器を観察できる超音波プローブも開発されている。 
 超音波振動子がプローブの先端に設けられ、超音波振動子の走査方式には、電子走査方式と機械操作方式がある。プローブ自体は体腔内などに挿入されるため、プローブの直径は小さい方が好ましい。
Conventionally, ultrasonic imaging apparatuses have been widely used in the medical field, and ultrasonic probes that can be inserted into body cavities and blood vessels to observe internal organs have also been developed.
An ultrasonic transducer is provided at the tip of the probe, and there are an electronic scanning method and a mechanical operation method as the scanning method of the ultrasonic transducer. Since the probe itself is inserted into a body cavity or the like, it is preferable that the probe has a smaller diameter.
 電子式の超音波プローブの場合、プローブの直径を小さくしようとすると、超音波の送受信を行う複数の素子の各々のサイズを小さくしなければならない。しかし、各素子のサイズが小さくなると周囲のノイズの影響を受け易くなるという問題に加えて、素子数が増えると信号線の本数も増え、結果としてプローブの直径の細径化には限界があるという問題がある。その結果、細径の電子走査方式の超音波プローブでは、得られる画像の解像度も高くできないという問題がある。 In the case of an electronic ultrasonic probe, if the diameter of the probe is to be reduced, the size of each of a plurality of elements that transmit and receive ultrasonic waves must be reduced. However, in addition to the problem that the size of each element is likely to be affected by ambient noise, the number of signal lines increases as the number of elements increases, resulting in limitations in reducing the diameter of the probe. There is a problem. As a result, there is a problem that the resolution of the obtained image cannot be increased with a thin-diameter electronic scanning ultrasonic probe.
 一方で、機械走査方式の超音波プローブを採用する場合、細径なプローブ内で超音波振動子を機械的に動かす構造が必要となる。例えば特開平8-275946号公報には、ワイヤの往復運動あるいは回転運動を超音波振動子の揺動運動に変換する変換機構を有する超音波カテーテルが提案されている。 On the other hand, when a mechanical scanning type ultrasonic probe is employed, a structure for mechanically moving the ultrasonic transducer within a small-diameter probe is required. For example, Japanese Patent Laid-Open No. 8-275946 proposes an ultrasonic catheter having a conversion mechanism that converts a reciprocating or rotating movement of a wire into a swinging movement of an ultrasonic transducer.
 超音波診断では、超音波画像のガイド下で穿刺針を使用して、生検、すなわち穿刺針により生体組織の一部を採取することが行われる。 
 機械操作方式の超音波プローブに穿刺針挿通チャンネルを設けようとすると、プローブの先端部に穿刺針が突出する開口が形成され、その開口に連通する挿通チャンネルと、超音波振動子を動かす構造が必要となる。
In ultrasonic diagnosis, a biopsy, that is, a part of a living tissue is collected by a puncture needle using a puncture needle under the guidance of an ultrasound image.
When an attempt is made to provide a puncture needle insertion channel in a mechanically operated ultrasonic probe, an opening through which the puncture needle protrudes is formed at the tip of the probe, and a structure for moving the ultrasonic transducer and the insertion channel communicating with the opening is formed. Necessary.
 しかし、機械走査方式の超音波振動子の場合、例えば上記の提案に係る装置では、往復運動あるいは回転運動を超音波振動子の揺動運動に変換する変換機構が、揺動する超音波振動子の基端側に配設されることになるため、プローブの中心軸に対する穿刺針の突出角度が小さくなってしまう。 
 そのため、穿刺針が先端部の開口から突出してから患部まで到達する距離が長くなり、術者は、超音波画像内に写る穿刺針の操作がしづらくなるという問題がある。
However, in the case of a mechanical scanning ultrasonic transducer, for example, in the apparatus according to the above proposal, the conversion mechanism that converts the reciprocating motion or the rotational motion into the swing motion of the ultrasonic transducer has a swinging ultrasonic transducer. Therefore, the protrusion angle of the puncture needle with respect to the central axis of the probe is reduced.
Therefore, there is a problem that the distance that the puncture needle protrudes from the opening at the distal end and reaches the affected area becomes long, and it is difficult for the operator to operate the puncture needle that appears in the ultrasonic image.
 そこで、本発明は、穿刺針が突出する先端部の開口の位置を超音波振動子の近くに位置させることが可能な超音波ガイド下穿刺装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an ultrasonic guided puncture device that can position the position of the opening of the tip portion from which the puncture needle protrudes close to the ultrasonic transducer.
 本発明の一態様の超音波ガイド下穿刺装置は、体内に挿入される外管と、前記外管の先端側に設けられた先端部と、前記先端部内に配設され、前記外管の長手方向に沿う面内に揺動可能に支持された超音波振動子と、前記超音波振動子の基端側に、前記外管内に前記長手方向に沿って穿刺針が挿通可能に形成された穿刺針挿通チャンネルと、前記超音波振動子の先端側に設けられ、前記外管の長手方向に沿って往復運動をする可動部を有するアクチュエータと、前記外管の長手方向に沿って前記アクチュエータと前記長手方向に直列に配置され、かつ前記超音波振動子と前記長手方向に並列に配置され、前記可動部の往復運動を前記超音波振動子の揺動運動に変換する変換機構と、を備える。  An ultrasonic-guided puncture device according to an aspect of the present invention includes an outer tube that is inserted into a body, a distal end portion provided on a distal end side of the outer tube, and a longitudinal portion of the outer tube that is disposed in the distal end portion. An ultrasonic transducer supported so as to be swingable in a plane along the direction, and a puncture formed on the proximal end side of the ultrasonic transducer so that a puncture needle can be inserted into the outer tube along the longitudinal direction A needle insertion channel, an actuator provided on the distal end side of the ultrasonic transducer and having a movable part that reciprocates along the longitudinal direction of the outer tube, the actuator and the actuator along the longitudinal direction of the outer tube A conversion mechanism that is arranged in series in the longitudinal direction and arranged in parallel with the ultrasonic transducer and that converts the reciprocating motion of the movable portion into the oscillation motion of the ultrasonic transducer. *
本発明の実施の形態に係わる超音波ガイド下穿刺システム1の全体構成を示す構成図である。1 is a configuration diagram showing an overall configuration of an ultrasonic guided puncture system 1 according to an embodiment of the present invention. 本発明の実施の形態に係わる超音波プローブ2の先端部2aの斜視図である。It is a perspective view of the front-end | tip part 2a of the ultrasonic probe 2 concerning embodiment of this invention. 本発明の実施の形態に係わる、先端部2aから穿刺針が突出した状態を示す先端部2aの斜視図である。It is a perspective view of the front-end | tip part 2a which shows the state which the puncture needle protruded from the front-end | tip part 2a concerning embodiment of this invention. 本発明の実施の形態に係わる、先端部内に配設された超音波振動子のアクチュエータ22の斜視図である。It is a perspective view of the actuator 22 of the ultrasonic transducer | vibrator arrange | positioned in the front-end | tip part concerning embodiment of this invention. 本発明の実施の形態に係わるアクチュエータ22の正面図である。It is a front view of the actuator 22 concerning embodiment of this invention. 本発明の実施の形態に係わるアクチュエータ22の右側面図である。It is a right view of the actuator 22 concerning embodiment of this invention. 本発明の実施の形態に係わるアクチュエータ22の左側面図である。It is a left view of the actuator 22 concerning embodiment of this invention. 本発明の実施の形態に係わるアクチュエータ22の断面図である。It is sectional drawing of the actuator 22 concerning embodiment of this invention. 本発明の実施の形態に係わる、超音波振動子21の超音波送受信面が基端側へ傾斜したときの、先端部2aの断面斜視図である。It is a section perspective view of front-end | tip part 2a when the ultrasonic transmission / reception surface of the ultrasonic transducer | vibrator 21 inclines to the base end side concerning embodiment of this invention. 本発明の実施の形態に係わる、超音波振動子21の超音波送受信面21aが先端側へ傾斜したときの、先端部2aの断面斜視図である。It is a section perspective view of tip part 2a when ultrasonic transmission / reception surface 21a of ultrasonic transducer 21 concerning an embodiment of the invention inclines to the tip side. 本発明の実施の形態に係わる、超音波振動子21が揺動していない中間位置にあるときの先端部2aの断面図である。It is sectional drawing of the front-end | tip part 2a when the ultrasonic transducer | vibrator 21 exists in the intermediate position which is not rocking | fluctuated concerning embodiment of this invention. 図11のXII-XII線に沿った先端部2aの断面図である。FIG. 12 is a cross-sectional view of the distal end portion 2a taken along line XII-XII in FIG. 図11のXIII-XIII線に沿った先端部2aの断面図である。FIG. 12 is a cross-sectional view of the distal end portion 2a taken along line XIII-XIII in FIG. 本発明の実施の形態に係わる、超音波振動子21の超音波送受信面21aが基端側に傾斜しているときの先端部2aの断面図である。It is sectional drawing of the front-end | tip part 2a when the ultrasonic transmission / reception surface 21a of the ultrasonic transducer | vibrator 21 inclines to the base end side concerning embodiment of this invention. 本発明の実施の形態に係わる、超音波振動子21の超音波送受信面21aが先端側に傾斜しているときの先端部2aの断面図である。It is sectional drawing of the front-end | tip part 2a when the ultrasonic transmission / reception surface 21a of the ultrasonic transducer | vibrator 21 inclines to the front end side concerning embodiment of this invention. 本発明の実施の形態に係わる、開口部15の近傍の先端側に、造影チューブ3cの突出角α1をより大きくする傾斜面14aを形成した超音波プローブ2の先端部2aの断面図である。It is sectional drawing of the front-end | tip part 2a of the ultrasound probe 2 which formed the inclined surface 14a which makes the protrusion angle (alpha) 1 of the contrast tube 3c larger on the front end side of the vicinity of the opening part 15 concerning embodiment of this invention.
 以下、本発明の実施の形態を、図面を用いて説明する。 
(全体構成)
 図1は、超音波ガイド下穿刺システムの全体構成を示す構成図である。 
 超音波ガイド下穿刺システム1は、細長の超音波プローブ2と、穿刺針装置3と、プロセッサ4と、モニタ5とを有して構成されている。超音波プローブ2が、超音波画像のガイド下で穿刺針を使用可能とする超音波ガイド下穿刺装置を構成する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(overall structure)
FIG. 1 is a configuration diagram showing the overall configuration of an ultrasonic guided puncture system.
The ultrasonic guided puncture system 1 includes an elongated ultrasonic probe 2, a puncture needle device 3, a processor 4, and a monitor 5. The ultrasound probe 2 constitutes an ultrasound-guided puncture device that can use a puncture needle under the guidance of an ultrasound image.
 超音波プローブ2は、血管、肺抹消部、膵胆道系などの細い管腔内に挿通可能な細長形状を有する機械走査方式のプローブである。超音波プローブ2は、細長で可撓性を有する樹脂製の外管2tと、外管2tの先端側に設けられ固定された先端部2aとを有する。超音波プローブ2の直径は、例えば、2から5mmである。超音波振動子は、後述するように超音波プローブ2の先端部2a内に配設されている。穿刺針装置3を接続するための穿刺針装置コネクタ2bが、外管2tの基端部に設けられている。 The ultrasonic probe 2 is a mechanical scanning probe having an elongated shape that can be inserted into a thin lumen such as a blood vessel, a lung peripheral part, or a pancreaticobiliary system. The ultrasonic probe 2 has an elongated and flexible resin outer tube 2t, and a distal end portion 2a provided and fixed on the distal end side of the outer tube 2t. The diameter of the ultrasonic probe 2 is, for example, 2 to 5 mm. The ultrasonic transducer is disposed in the distal end portion 2a of the ultrasonic probe 2 as will be described later. A puncture needle device connector 2b for connecting the puncture needle device 3 is provided at the proximal end portion of the outer tube 2t.
 細長の超音波プローブ2内には、穿刺針が挿通される穿刺針挿通チャンネル(図示せず)が形成されている。先端部2aには、穿刺針挿通チャンネルの開口部が形成されている。 In the elongated ultrasonic probe 2, a puncture needle insertion channel (not shown) through which the puncture needle is inserted is formed. In the distal end portion 2a, an opening of a puncture needle insertion channel is formed.
 超音波振動子を駆動する駆動信号等のための複数の信号線が挿通されたケーブル2cが、穿刺針装置コネクタ2bから延出している。プロセッサ4に接続可能なコネクタ2dが、ケーブル2cの基端部に設けられている。 A cable 2c, through which a plurality of signal lines for driving signals for driving the ultrasonic transducer and the like are inserted, extends from the puncture needle device connector 2b. A connector 2d that can be connected to the processor 4 is provided at the proximal end of the cable 2c.
 穿刺針装置3は、細長の穿刺針3aと、穿刺針3aの操作を行う穿刺用ハンドル3bとを有する。穿刺用ハンドル3bは、穿刺針装置コネクタ2bに着脱自在で、穿刺針3aを挿通する挿通チャンネル(図示せず)を有する。穿刺針3aは、その図示しない挿通チャンネルに挿入されると、超音波プローブ2内の穿刺針挿通チャンネル内に進入可能となり、結果として、穿刺針3aの先端部は、超音波プローブ2の先端部2aの開口部から突出可能となる。 The puncture needle device 3 has an elongated puncture needle 3a and a puncture handle 3b for operating the puncture needle 3a. The puncture handle 3b is detachable from the puncture needle device connector 2b and has an insertion channel (not shown) through which the puncture needle 3a is inserted. When the puncture needle 3a is inserted into the insertion channel (not shown), the puncture needle 3a can enter the puncture needle insertion channel in the ultrasonic probe 2, and as a result, the distal end portion of the puncture needle 3a becomes the distal end portion of the ultrasonic probe 2. It becomes possible to project from the opening 2a.
 プロセッサ4は、先端部2a内の超音波振動子を駆動する駆動装置と、超音波振動子からの信号に基づき被検体内の超音波画像を生成する画像生成部とを有する。プロセッサ4は、生成された超音波画像の画像信号を、表示装置であるモニタ5に出力し、超音波画像がモニタ5に表示される。 The processor 4 includes a driving device that drives the ultrasonic transducer in the distal end portion 2a, and an image generation unit that generates an ultrasonic image in the subject based on a signal from the ultrasonic transducer. The processor 4 outputs an image signal of the generated ultrasonic image to the monitor 5 that is a display device, and the ultrasonic image is displayed on the monitor 5.
 術者は、モニタ5に表示された超音波画像を見ながら、穿刺針3aを生体組織に刺して生検を行うことができる。 The surgeon can perform a biopsy by inserting the puncture needle 3a into the living tissue while looking at the ultrasonic image displayed on the monitor 5.
(超音波プローブの先端部の構成)
 図2は、超音波プローブの先端部の斜視図である。図3は、先端部から穿刺針が突出した状態を示す先端部の斜視図である。図4は、先端部内に配設された超音波振動子のアクチュエータの斜視図である。
(Configuration of tip of ultrasonic probe)
FIG. 2 is a perspective view of the distal end portion of the ultrasonic probe. FIG. 3 is a perspective view of the distal end portion showing a state where the puncture needle protrudes from the distal end portion. FIG. 4 is a perspective view of an actuator of an ultrasonic transducer disposed in the distal end portion.
 図2及び図3に示すように、超音波プローブ2の先端部2aは、樹脂製の筐体2a1を有する。外管2tと、外管2tの先端側に設けられた筺体2a1が、被検体の体内に挿入可能に構成されている。 
 筐体2a1は、円筒形状を有し、筐体2a1の先端側部分は、半球状に形成されている。円筒形状を有する筐体2a1の中心軸は、超音波プローブ2の中心軸Oと一致する。
As shown in FIGS. 2 and 3, the distal end portion 2a of the ultrasonic probe 2 has a resin casing 2a1. The outer tube 2t and the housing 2a1 provided on the distal end side of the outer tube 2t are configured to be insertable into the body of the subject.
The housing 2a1 has a cylindrical shape, and the tip side portion of the housing 2a1 is formed in a hemispherical shape. The central axis of the casing 2 a 1 having a cylindrical shape coincides with the central axis O of the ultrasonic probe 2.
 筐体2a1の内側には、図4に示すように、超音波振動子21を収容する内部空間IS1と、内部空間IS1の先端側にアクチュエータ22を収容する内部空間IS2を有している。 Inside the housing 2a1, as shown in FIG. 4, there is an internal space IS1 that accommodates the ultrasonic transducer 21, and an internal space IS2 that accommodates the actuator 22 on the tip side of the internal space IS1.
 超音波振動子21は、先端部2a内に配設されたアクチュエータ22(図4)により、内部空間IS1内において、所定の軸周りに、所定の角度の範囲内で揺動可能となっている。超音波振動子21は、外形が略矩形の単板からなる素子である。 
 アクチュエータ22は、超音波プローブ2の中心軸Oの方向に細長い形状を有している。
The ultrasonic transducer 21 can be swung around a predetermined axis within a predetermined angle range in the internal space IS1 by an actuator 22 (FIG. 4) disposed in the distal end portion 2a. . The ultrasonic transducer 21 is an element made of a single plate having a substantially rectangular outer shape.
The actuator 22 has an elongated shape in the direction of the central axis O of the ultrasonic probe 2.
 超音波プローブ2内には、穿刺針挿通チャンネル14が形成されている。穿刺針挿通チャンネル14は、図2及び図3では、超音波プローブ2の上側に超音波プローブ2の軸方向に沿って形成されている。すなわち、穿刺針挿通チャンネル14は、超音波振動子21の基端側に、外管2t内に長手方向に沿って穿刺針3aが挿通可能に形成されている。穿刺針挿通チャンネル14に連通する開口部15が、先端部2aの円筒形状の筐体2a1の側面に形成されている。開口部15は、超音波振動子21の基端側の先端部2aの側面に形成されている。穿刺針挿通チャンネル14は、穿刺針3aが超音波振動子21のスキャン範囲に向かうように形成されている。穿刺針3aの先端部は、開口部15から中心軸Oに対して突出角αで突出可能となっている。 In the ultrasonic probe 2, a puncture needle insertion channel 14 is formed. In FIG. 2 and FIG. 3, the puncture needle insertion channel 14 is formed on the upper side of the ultrasonic probe 2 along the axial direction of the ultrasonic probe 2. That is, the puncture needle insertion channel 14 is formed on the proximal end side of the ultrasonic transducer 21 so that the puncture needle 3a can be inserted into the outer tube 2t along the longitudinal direction. An opening 15 communicating with the puncture needle insertion channel 14 is formed on the side surface of the cylindrical housing 2a1 at the tip 2a. The opening 15 is formed on the side surface of the distal end portion 2 a on the proximal end side of the ultrasonic transducer 21. The puncture needle insertion channel 14 is formed so that the puncture needle 3 a is directed to the scanning range of the ultrasonic transducer 21. The tip of the puncture needle 3a can protrude from the opening 15 with respect to the central axis O at a protrusion angle α.
 図4に示すように、超音波振動子21用の信号線16は、超音波振動子21の基端側から外管2t内に向けて延出している。信号線16は、先端部2aの中心軸Oに対して、穿刺針挿通チャンネル14とは反対側に長手方向に沿って配設される。アクチュエータ22用の2本の信号線16aも、外管2t内に向けて延出している。複数の信号線16、16aは、ケーブル2c内に挿通されている。 As shown in FIG. 4, the signal line 16 for the ultrasonic transducer 21 extends from the proximal end side of the ultrasonic transducer 21 into the outer tube 2t. The signal line 16 is disposed along the longitudinal direction on the side opposite to the puncture needle insertion channel 14 with respect to the central axis O of the distal end portion 2a. Two signal lines 16a for the actuator 22 also extend into the outer tube 2t. The plurality of signal lines 16 and 16a are inserted into the cable 2c.
(アクチュエータの構成)
 図5は、アクチュエータ22の正面図である。図5は、先端部2aの軸に直交する方向から見た図である。図6は、アクチュエータ22の右側面図である。図7は、アクチュエータ22の左側面図である。図6は、先端部2a内に配設されたアクチュエータ22を基端側から見たときの側面を示し、図7は、先端部2a内に配設されたアクチュエータ22を先端側から見たときの側面を示す。図8は、アクチュエータ22の断面図である。
(Configuration of actuator)
FIG. 5 is a front view of the actuator 22. FIG. 5 is a view as seen from a direction orthogonal to the axis of the distal end portion 2a. FIG. 6 is a right side view of the actuator 22. FIG. 7 is a left side view of the actuator 22. 6 shows a side view of the actuator 22 disposed in the distal end portion 2a when viewed from the proximal end side, and FIG. 7 shows the actuator 22 disposed in the distal end portion 2a viewed from the distal end side. Shows the side. FIG. 8 is a cross-sectional view of the actuator 22.
 上述したように、アクチュエータ22は、超音波プローブ2の先端部2aの内部空間IS2(図4参照)内に配設され、超音波振動子21を所定の軸回りに所定の角度の範囲内で揺動させる駆動装置である。ここでは、アクチュエータ22は、電磁アクチュエータであるムービングマグネットタイプのボイスコイルモータを用いた電磁式駆動装置である。 As described above, the actuator 22 is disposed in the internal space IS2 (see FIG. 4) of the distal end portion 2a of the ultrasonic probe 2, and moves the ultrasonic transducer 21 within a predetermined angle around a predetermined axis. This is a drive device for rocking. Here, the actuator 22 is an electromagnetic driving device using a moving magnet type voice coil motor which is an electromagnetic actuator.
 なお、本実施の形態では、アクチュエータ22は、ムービングマグネット型のボイスコイルモータを用いているが、ムービングコイル型のボイスコイルモータを用いてもよい。 In this embodiment, the actuator 22 uses a moving magnet type voice coil motor, but a moving coil type voice coil motor may be used.
 電磁アクチュエータであるアクチュエータ22は、枠部材31と、枠部材31内に配設された可動部32と、可動部32の基端側に配設され、超音波振動子21が搭載される振動子搭載部33とを有する。可動部32は、外管2tの長手方向に沿って往復運動をする。 The actuator 22, which is an electromagnetic actuator, includes a frame member 31, a movable portion 32 disposed in the frame member 31, and a transducer that is disposed on the proximal end side of the movable portion 32 and on which the ultrasonic transducer 21 is mounted. And a mounting portion 33. The movable part 32 reciprocates along the longitudinal direction of the outer tube 2t.
 図5及び図6に示すように、枠部材31は、円筒部31aと、2本のアーム31bとを有している。図4及び図5に示すように、2本のアーム31bは、円筒部31aの基端から互いに平行に基端方向に延出するように設けられている。各アーム31bには、後述する軸部33a2が挿通される孔31b1が形成されている。 As shown in FIGS. 5 and 6, the frame member 31 has a cylindrical portion 31a and two arms 31b. As shown in FIGS. 4 and 5, the two arms 31 b are provided so as to extend in the proximal direction in parallel to each other from the proximal end of the cylindrical portion 31 a. Each arm 31b is formed with a hole 31b1 through which a shaft portion 33a2 described later is inserted.
 図6及び図8に示すように、円筒部31aの基端側には、孔31a1が形成され、円筒部31aの先端側にも、孔31a2が形成されている。すなわち、アクチュエータ22は、可動部32を内部に収容する枠部材31を有し、枠部材31の後述する変換機構33Xとは反対側には、孔31a2が形成されている。アクチュエータ22は、外管2tの長手方向に沿って往復運動をする可動部32を内部に収容する枠部材31を有する。すなわち、アクチュエータ22は、超音波振動子21の先端側に設けられ、外管2tの長手方向に沿って往復運動をする可動部32を有する。枠部材31の基端側には、孔31a1が形成されている。 6 and 8, a hole 31a1 is formed on the proximal end side of the cylindrical portion 31a, and a hole 31a2 is also formed on the distal end side of the cylindrical portion 31a. That is, the actuator 22 has a frame member 31 that accommodates the movable portion 32 therein, and a hole 31a2 is formed on the opposite side of the frame member 31 to a conversion mechanism 33X described later. The actuator 22 has a frame member 31 that houses therein a movable portion 32 that reciprocates along the longitudinal direction of the outer tube 2t. That is, the actuator 22 has a movable portion 32 that is provided on the distal end side of the ultrasonic transducer 21 and reciprocates along the longitudinal direction of the outer tube 2t. A hole 31 a 1 is formed on the base end side of the frame member 31.
 図7に示すように、円筒部31aの上側側面31a3及び下側側面31a4は、平坦面を有する。図8に示すように、円筒部31aの上側側面31a3には、円筒部31aの軸方向に沿って延びる貫通溝31a5が形成されており、円筒部31aの下側側面31a4にも、円筒部31aの軸方向に沿って延びる貫通溝31a6が形成されている。 As shown in FIG. 7, the upper side surface 31a3 and the lower side surface 31a4 of the cylindrical portion 31a have flat surfaces. As shown in FIG. 8, a through groove 31a5 extending along the axial direction of the cylindrical portion 31a is formed on the upper side surface 31a3 of the cylindrical portion 31a, and the cylindrical portion 31a is also formed on the lower side surface 31a4 of the cylindrical portion 31a. A through groove 31a6 extending along the axial direction is formed.
 円筒部31aの外周面には、コイル線材が巻回されて形成された2つのコイル部34が設けられている。図7に示すように、2つのコイル部34の外形の一部は、平面を有し、各コイル部34は、上下方向に2つの平面部34a、34bを有している。後述する図11に示すように、2つの平面部34aと34bの平面は、先端側から外管2tをみたときに、穿刺針挿通チャンネル14とボイスコイルモータを結ぶ線に対して直交する。 
 そして、可動部32は、円柱部材32aと、円柱部材32aの基端から基端方向に延出した延出部32bを有している。 
 円柱部材32aの上面と下面には、それぞれ、円筒部31aの軸方向に沿ってカットされて形成された2つの平面部32a1と32a2を有している。平面部32a1は、円筒部31aの上側側面31a3に平行であり、平面部32a2は、円筒部31aの下側側面31a4に平行である。
Two coil portions 34 formed by winding a coil wire rod are provided on the outer peripheral surface of the cylindrical portion 31a. As shown in FIG. 7, a part of the outer shape of the two coil portions 34 has a flat surface, and each coil portion 34 has two flat surface portions 34a and 34b in the vertical direction. As shown in FIG. 11 described later, the planes of the two plane portions 34a and 34b are orthogonal to the line connecting the puncture needle insertion channel 14 and the voice coil motor when the outer tube 2t is viewed from the distal end side.
And the movable part 32 has the cylindrical member 32a and the extension part 32b extended in the base end direction from the base end of the column member 32a.
The upper surface and the lower surface of the columnar member 32a have two flat portions 32a1 and 32a2 that are formed by being cut along the axial direction of the cylindrical portion 31a. The flat surface portion 32a1 is parallel to the upper side surface 31a3 of the cylindrical portion 31a, and the flat surface portion 32a2 is parallel to the lower side surface 31a4 of the cylindrical portion 31a.
 平面部32a1には、凸部32atが形成されている。凸部32atは、貫通溝31a5内に凸部32atの一部が入り込む高さを有しており、可動部32の軸周りの回転を規制する。 
 後述するように、円柱部材32aは、凸部32atが貫通溝31a5に入り込んだ状態で、円筒部31a内を先端部2aの軸方向に沿って移動可能となっている。
A convex portion 32at is formed on the plane portion 32a1. The convex portion 32 at has a height at which a part of the convex portion 32 at enters the through groove 31 a 5, and restricts rotation of the movable portion 32 around the axis.
As will be described later, the columnar member 32a is movable along the axial direction of the distal end portion 2a in the cylindrical portion 31a in a state where the convex portion 32at enters the through groove 31a5.
 さらに、円柱部材32aは、円柱部材32aの軸方向に沿って形成された細長の凹部32a4を有している。凹部32a4は、図8に示すように、円柱部材32aの下側に形成されている。凹部32a4内には、2つの永久磁石35が円柱部材32aの軸方向に沿って配置されている。各永久磁石35は、直方体形状を有し、着磁方向が円筒部31aの軸方向に直交する方向になるように、N極とS極が所定の向きで凹部32a4内に配置されている。 Furthermore, the cylindrical member 32a has an elongated recess 32a4 formed along the axial direction of the cylindrical member 32a. As shown in FIG. 8, the recess 32a4 is formed below the cylindrical member 32a. In the recess 32a4, two permanent magnets 35 are arranged along the axial direction of the cylindrical member 32a. Each permanent magnet 35 has a rectangular parallelepiped shape, and the N pole and the S pole are arranged in the recess 32a4 in a predetermined direction so that the magnetization direction is a direction perpendicular to the axial direction of the cylindrical portion 31a.
 図8に示すように、コイル部34の各コイル及び各磁石は、可動部32の往復運動の方向に直交する方向における寸法よりも、往復運動の方向における寸法が長い形状を有する。よって、先端部2aのスペース効率がよい。 As shown in FIG. 8, each coil and each magnet of the coil portion 34 have a shape in which the dimension in the reciprocating motion direction is longer than the dimension in the direction orthogonal to the reciprocating motion direction of the movable portion 32. Therefore, the space efficiency of the tip 2a is good.
 また、図8に示すように、コイル線材により形成される2つのコイル部34が先端部2aの軸Oの軸方向に沿って直列に配置され、2つの永久磁石35も、先端部2aの軸Oの軸方向に沿って直列に配置されるため、先端部2aのスペース効率がよい。 Further, as shown in FIG. 8, two coil portions 34 formed of a coil wire are arranged in series along the axial direction of the axis O of the tip portion 2a, and the two permanent magnets 35 are also connected to the shaft of the tip portion 2a. Since it is arranged in series along the axial direction of O, the space efficiency of the tip 2a is good.
 なお、円柱部材32aは、強磁性体で構成されている。ここでは、可動部32は、2つの永久磁石35を保持する円柱部材32aの材質として強磁性体の部材を用いることにより、磁気抵抗を減らして、磁気回路の出力効率が高くなり、可動部32を動かす力を大きくしている。 The cylindrical member 32a is made of a ferromagnetic material. Here, the movable part 32 uses a ferromagnetic member as the material of the cylindrical member 32a that holds the two permanent magnets 35, thereby reducing the magnetic resistance and increasing the output efficiency of the magnetic circuit. The power to move is increased.
 さらに、アクチュエータの駆動は、外乱(例えば術者の操作によるプローブの進退や湾曲に伴う外乱加速度、穿刺針の挿通時における振動)や、固体のばらつきの影響を受ける。そのため、超音波振動子の揺動運動が滑らかに出来ず、超音波画像がブレてしまうなど、画像劣化の懸念が少なからず残る。そのような課題に対しては、アクチュエータにフィードバック制御を施すのが望ましいが、その場合は別途センサを設ける必要があるため、装置が太径化してしまう。 Furthermore, the driving of the actuator is affected by disturbances (for example, disturbance acceleration due to the advance and retreat of the probe and bending due to the operator's operation, vibration during insertion of the puncture needle) and variations in solids. For this reason, there is a considerable concern about image degradation such that the swinging motion of the ultrasonic transducer cannot be smoothly performed and the ultrasonic image is blurred. For such a problem, it is desirable to perform feedback control on the actuator. In this case, however, it is necessary to provide a separate sensor, so that the apparatus becomes thick.
 本実施の形態では、可動部32に強磁性体を用いることにより、可動部32の位置変化に対するコイルのインダクタンスの変化を大きくすることで、可動部32の速度または位置を、センサを用いずに推定でき、いわゆるセンサレス制御が適用できる。 In the present embodiment, by using a ferromagnetic material for the movable portion 32, the change in the inductance of the coil with respect to the change in the position of the movable portion 32 is increased, so that the speed or position of the movable portion 32 can be determined without using a sensor. It can be estimated and so-called sensorless control can be applied.
 コイル部34には、可動部32の移動により誘導起電力が発生する。その誘導起電力に基づき発生するコイル部34に流れる電流の大きさの変化が、可動部32の末端移動位置を検出できるように、可動部32の強磁性体の部分を、2つのコイル部34の内側に配置する。可動部32の正確な位置制御のために、強磁性体の円柱部材32aの軸方向の長さが、先端部2aの軸方向における2つのコイル部34の長さよりも長くなるように形成されることが好ましい。 
 その結果、コイル部34に流れる電流の大きさに基づいて、アクチュエータ22における可動部32の位置を検出することができる。
An induced electromotive force is generated in the coil part 34 by the movement of the movable part 32. The ferromagnetic portion of the movable portion 32 is separated from the two coil portions 34 so that the change in the magnitude of the current flowing in the coil portion 34 generated based on the induced electromotive force can detect the terminal movement position of the movable portion 32. Place inside. In order to accurately control the position of the movable portion 32, the length of the ferromagnetic cylindrical member 32a in the axial direction is longer than the length of the two coil portions 34 in the axial direction of the distal end portion 2a. It is preferable.
As a result, the position of the movable part 32 in the actuator 22 can be detected based on the magnitude of the current flowing through the coil part 34.
 また、図8に示すように、円柱部材32aの凹部32a4内に2つの永久磁石35が配設されるため、円柱部材32aを強磁性体で構成した場合、2つの永久磁石35は、円柱部材32aの先端部32a5と基端部32a6の間に配設される。すなわち、強磁性体の部材が、2つの永久磁石35の先端側と基端側の両側に設けられている。よって、先端部2aの軸方向における外部からの磁界の影響も、シールドすることができ、かつ先端部2aの軸方向の前後に磁性体が存在しても、その磁性体により引っ張られる磁気力を低減して、アクチュエータ22の出力効率がよい。 Further, as shown in FIG. 8, since the two permanent magnets 35 are disposed in the recess 32a4 of the cylindrical member 32a, when the cylindrical member 32a is made of a ferromagnetic material, the two permanent magnets 35 are 32a is disposed between the distal end portion 32a5 and the proximal end portion 32a6. That is, the ferromagnetic member is provided on both the distal end side and the proximal end side of the two permanent magnets 35. Therefore, the influence of the magnetic field from the outside in the axial direction of the tip portion 2a can be shielded, and even if a magnetic body exists before and after the tip portion 2a in the axial direction, the magnetic force pulled by the magnetic body is reduced. This reduces the output efficiency of the actuator 22.
 さらになお、円柱部材32aから延出する延出部32bは、非磁性体若しくは弱磁性体で構成されている。すなわち、可動部32の後述する変換機構33X側の部分は、非磁性体又は弱磁性体である。延出部32bが強磁性体であると、上述したセンサレス制御を行うときに、インダクタンス変化が非対称となるため、可動部32の位置を精度良く検出できない虞がある。そこで、延出部32bを非磁性体若しくは弱磁性体にして、位置検出の精度を悪化させないようにしている。 Furthermore, the extending portion 32b extending from the cylindrical member 32a is made of a nonmagnetic material or a weak magnetic material. That is, a portion of the movable portion 32 on the conversion mechanism 33X side described later is a nonmagnetic material or a weak magnetic material. If the extending portion 32b is a ferromagnetic material, the inductance change becomes asymmetric when performing the sensorless control described above, and thus the position of the movable portion 32 may not be detected with high accuracy. Therefore, the extension part 32b is made of a non-magnetic material or a weak magnetic material so as not to deteriorate the accuracy of position detection.
 以上のように、超音波プローブ2の先端部2aの軸回りに巻回されたコイル線材からなる2つのコイル部34内に、先端部2aの軸方向に沿ってN極とS極が所定の向きになるように2つの永久磁石35が配設されている。 As described above, the N pole and the S pole are predetermined along the axial direction of the distal end portion 2a in the two coil portions 34 formed of the coil wire wound around the axis of the distal end portion 2a of the ultrasonic probe 2. Two permanent magnets 35 are arranged so as to face.
 2つのコイル部34と、可動部32の2つの永久磁石35が、ムービングマグネット型のボイスコイルモータを形成する。 
 図5及び図6に示すように、可動部32の延出部32bの基端側には、ピン32b1が形成されている。ピン32b1は、先端部2aの軸方向に直交する方向に突出した形状を有する。 
 振動子搭載部33は、外形が略矩形の単板の超音波振動子21が搭載されて固定される固定部33aと、固定部33aから延出する延出部33bを有する。
The two coil portions 34 and the two permanent magnets 35 of the movable portion 32 form a moving magnet type voice coil motor.
As shown in FIGS. 5 and 6, a pin 32 b 1 is formed on the base end side of the extending part 32 b of the movable part 32. The pin 32b1 has a shape that protrudes in a direction orthogonal to the axial direction of the distal end portion 2a.
The transducer mounting portion 33 includes a fixed portion 33a on which the single-plate ultrasonic transducer 21 having a substantially rectangular outer shape is mounted and fixed, and an extending portion 33b extending from the fixed portion 33a.
 固定部33aは、単板の超音波振動子21を接着剤などの固定手段により固定するための平面部33a1を有する(図6参照)。 
 矩形形状の固定部33aは、互いに逆方向に突出する2つの軸部33a2を有する。2つの軸部33a2は、固定部33aが軸部33a2の軸回りに回動可能に、2本のアーム31bの2つの孔31b1に挿通されている。
The fixing portion 33a has a flat surface portion 33a1 for fixing the single-plate ultrasonic transducer 21 with fixing means such as an adhesive (see FIG. 6).
The rectangular fixed portion 33a has two shaft portions 33a2 protruding in opposite directions. The two shaft portions 33a2 are inserted into the two holes 31b1 of the two arms 31b so that the fixed portion 33a can rotate about the shaft of the shaft portion 33a2.
 延出部33bは、平面部33a1の反対側の面から延出している。延出部33bは、細長の貫通スリット33b1を有している。可動部32の延出部32bのピン32b1が貫通スリット33b1内に入り込んでいる。 The extending portion 33b extends from the surface opposite to the flat surface portion 33a1. The extending portion 33b has an elongated through slit 33b1. The pin 32b1 of the extending part 32b of the movable part 32 enters the through slit 33b1.
 より具体的には、固定部33aが2つの軸部33a2の軸回りで回動可能に2本のアーム31bにより支持されると共に、固定部33aが2つの軸部33a2の軸回りに回動したときにピン32b1が貫通スリット33b1内を移動可能なように、貫通スリット33b1は形成されている。 More specifically, the fixed portion 33a is supported by the two arms 31b so as to be rotatable around the axes of the two shaft portions 33a2, and the fixed portion 33a is rotated around the axes of the two shaft portions 33a2. The through slit 33b1 is formed so that the pin 32b1 can sometimes move in the through slit 33b1.
 可動部32の延出部32bが、先端部2aの軸方向に沿って所定の範囲内で前後すると、ピン32b1も先端部2aの軸方向に沿って前後方向に動く。ピン32b1の往復運動は、ピン32b1に係合する延出部33bを動かして、固定部33aを2つの軸部33a2の軸回りに揺動させる揺動運動を生じさせる。 When the extending portion 32b of the movable portion 32 moves back and forth within a predetermined range along the axial direction of the distal end portion 2a, the pin 32b1 also moves in the front and rear direction along the axial direction of the distal end portion 2a. The reciprocating motion of the pin 32b1 moves the extending portion 33b engaged with the pin 32b1, and generates a swinging motion that swings the fixed portion 33a around the two shaft portions 33a2.
 図9は、超音波振動子21の超音波送受信面が基端側へ傾斜したときの、先端部2aの断面斜視図である。図10は、超音波振動子21の超音波送受信面21aが先端側へ傾斜したときの、先端部2aの断面斜視図である。図11は、超音波振動子21が揺動していない中間位置にあるときの先端部2aの断面図である。図12は、図11のXII-XII線に沿った先端部2aの断面図である。図12は、先端部2aを先端側から見た図である。図13は、図11のXIII-XIII線に沿った先端部2aの断面図である。図13は、先端部2aを先端側から見た図である。 FIG. 9 is a cross-sectional perspective view of the distal end portion 2a when the ultrasonic transmission / reception surface of the ultrasonic transducer 21 is inclined toward the proximal end side. FIG. 10 is a cross-sectional perspective view of the distal end portion 2a when the ultrasonic transmission / reception surface 21a of the ultrasonic transducer 21 is inclined toward the distal end side. FIG. 11 is a cross-sectional view of the distal end portion 2a when the ultrasonic transducer 21 is at an intermediate position where it does not swing. 12 is a cross-sectional view of the distal end portion 2a taken along line XII-XII in FIG. FIG. 12 is a view of the distal end portion 2a as viewed from the distal end side. 13 is a cross-sectional view of the distal end portion 2a taken along line XIII-XIII in FIG. FIG. 13 is a view of the distal end portion 2a as viewed from the distal end side.
 可動部32が先端側へ移動すると、図9に示すように、超音波振動子21の超音波送受信面21aは、先端部2aの基端側へ向かって傾斜する。可動部32が基端側へ移動すると、図10に示すように、超音波振動子21の超音波送受信面21aは、先端部2aの先端側へ向かって傾斜する。 When the movable portion 32 moves to the distal end side, as shown in FIG. 9, the ultrasonic transmission / reception surface 21a of the ultrasonic transducer 21 is inclined toward the proximal end side of the distal end portion 2a. When the movable portion 32 moves to the proximal end side, as shown in FIG. 10, the ultrasonic transmission / reception surface 21a of the ultrasonic transducer 21 is inclined toward the distal end side of the distal end portion 2a.
 可動部32が先端部2aの軸方向に沿って往復運動すると、固定部33aが2つの軸部33a2の軸回りに第1の方向及び第1の方向とは逆の第2の方向に交互に回動し、ピン32b1が貫通スリット33b1内を移動する。 When the movable portion 32 reciprocates along the axial direction of the distal end portion 2a, the fixed portion 33a alternately turns around the axis of the two shaft portions 33a2 in the first direction and in the second direction opposite to the first direction. The pin 32b1 moves in the through slit 33b1 by rotating.
 従って、ピン32b1を有する可動部32と、ピン32b1に係合する貫通スリット33b1を有する延出部33bが、可動部32の往復運動を超音波振動子21の揺動運動に変換する変換機構33Xを構成する。変換機構33Xは、外管2tの長手方向に沿ってアクチュエータ22と長手方向に直列に配置され、かつ超音波振動子21と長手方向に並列に配置され、可動部32の往復運動を超音波振動子21の揺動運動に変換する。 Therefore, the movable portion 32 having the pin 32b1 and the extending portion 33b having the through slit 33b1 engaged with the pin 32b1 convert the reciprocating motion of the movable portion 32 into the swinging motion of the ultrasonic transducer 21. Configure. The conversion mechanism 33X is disposed in series with the actuator 22 in the longitudinal direction along the longitudinal direction of the outer tube 2t, and is disposed in parallel with the ultrasonic transducer 21 in the longitudinal direction. This is converted into a swing motion of the child 21.
 図12及び図13に示すように、アクチュエータ22の2本の信号線16aは、揺動する超音波振動子21を避けて、中心軸Oに対してアクチュエータ22側の筐体2a1の内壁に沿って配置される。 As shown in FIGS. 12 and 13, the two signal lines 16 a of the actuator 22 are along the inner wall of the housing 2 a 1 on the actuator 22 side with respect to the central axis O, avoiding the oscillating ultrasonic transducer 21. Arranged.
 なお、上述した信号線16、及び2本の信号線16aの少なくとも1つが、先端部2aの中心軸Oに対して、穿刺針挿通チャンネル14とは反対側に長手方向に沿って配設されていてもよい。 Note that at least one of the signal line 16 and the two signal lines 16a described above is disposed along the longitudinal direction on the opposite side of the puncture needle insertion channel 14 with respect to the central axis O of the distal end portion 2a. May be.
 また、図11に示すように、先端部2aの筐体2a1内には、内部空間IS1、IS2を密閉するためのシール部材2a2が設けられている。具体的には、内部空間IS1、IS2は、インピーダンスマッチングのために音響媒体である油で満たされる。すなわち、シール部材2a2が、先端部2a内に設けられ、超音波振動子21、アクチュエータ22及び変換機構33Xを封止する。 Further, as shown in FIG. 11, a seal member 2a2 for sealing the internal spaces IS1 and IS2 is provided in the housing 2a1 of the distal end portion 2a. Specifically, the internal spaces IS1 and IS2 are filled with oil that is an acoustic medium for impedance matching. That is, the seal member 2a2 is provided in the distal end portion 2a, and seals the ultrasonic transducer 21, the actuator 22, and the conversion mechanism 33X.
 よって、超音波振動子21、アクチュエータ22及び変換機構33Xは、その音響媒体内に配設される。シール部材2a2は、複数の信号線16,16aを通すための孔が複数形成されている。各孔には、各信号線の周囲を封止するための、エポキシ樹脂などの封止剤が設けられている。 Therefore, the ultrasonic transducer 21, the actuator 22, and the conversion mechanism 33X are disposed in the acoustic medium. The seal member 2a2 has a plurality of holes through which the signal lines 16 and 16a are passed. Each hole is provided with a sealing agent such as an epoxy resin for sealing the periphery of each signal line.
 このようなシール部材2a2を用いて先端部2a内の先端部分のみを封止するので、インピーダンスマッチングのための音響媒体の量が少量で済むと共に、音響媒体内に気泡が浸入するリスクも減少する。 Since such a sealing member 2a2 is used to seal only the distal end portion in the distal end portion 2a, the amount of the acoustic medium for impedance matching is small, and the risk of bubbles entering the acoustic medium is reduced. .
 以上のように、先端部2aの筐体2a1は、先端側から順に、アクチュエータ22、超音波振動子21及び穿刺針挿通チャンネル14の開口部15を有している。アクチュエータ22は、先端部2aの先端側に設けられ、超音波振動子21は、外管2tの長手方向に沿う面内に揺動可能に支持されている。その結果、固定部33aに固定された超音波振動子21は、2つの軸部33a2に軸支され、2つの軸部33a2の軸回りに所定の角度範囲で揺動可能となっている。 As described above, the housing 2a1 of the distal end portion 2a has the opening portion 15 of the actuator 22, the ultrasonic transducer 21, and the puncture needle insertion channel 14 in this order from the distal end side. The actuator 22 is provided on the distal end side of the distal end portion 2a, and the ultrasonic transducer 21 is supported so as to be swingable in a plane along the longitudinal direction of the outer tube 2t. As a result, the ultrasonic transducer 21 fixed to the fixed portion 33a is pivotally supported by the two shaft portions 33a2 and can swing within a predetermined angle range around the axes of the two shaft portions 33a2.
(作用)
 次に、超音波プローブ2の先端部2a内における、超音波振動子21とアクチュエータ22の動作について説明する。
(Function)
Next, operations of the ultrasonic transducer 21 and the actuator 22 in the distal end portion 2a of the ultrasonic probe 2 will be described.
 2つのコイル部34と2つの永久磁石によりムービングマグネット型のボイスコイルモータが形成される。2つのコイル部34の各コイル線材に流す電流の方向を変更することにより、先端部2aの軸方向に沿った2つの永久磁石35の移動方向を制御することができる。 A moving magnet type voice coil motor is formed by the two coil portions 34 and the two permanent magnets. By changing the direction of the current flowing through the coil wires of the two coil portions 34, the moving direction of the two permanent magnets 35 along the axial direction of the tip portion 2a can be controlled.
 図14は、超音波振動子21の超音波送受信面21aが基端側に傾斜しているときの先端部2aの断面図である。図15は、超音波振動子21の超音波送受信面21aが先端側に傾斜しているときの先端部2aの断面図である。 FIG. 14 is a cross-sectional view of the distal end portion 2a when the ultrasonic transmission / reception surface 21a of the ultrasonic transducer 21 is inclined toward the proximal end side. FIG. 15 is a cross-sectional view of the distal end portion 2a when the ultrasonic transmission / reception surface 21a of the ultrasonic transducer 21 is inclined toward the distal end side.
 上述したように、外管2tの先端側に設けられた筐体2a1は、超音波振動子21及び変換機構33Xを収容する内部空間IS1と、アクチュエータ22を収容する内部空間IS2を有する。アクチュエータ22の2本の信号線16aは、図13に示したように、中心軸Oに対して穿刺針挿通チャンネル14とは反対側に沿って配置される。 As described above, the housing 2a1 provided on the distal end side of the outer tube 2t has the internal space IS1 that accommodates the ultrasonic transducer 21 and the conversion mechanism 33X, and the internal space IS2 that accommodates the actuator 22. As shown in FIG. 13, the two signal lines 16 a of the actuator 22 are disposed along the opposite side of the puncture needle insertion channel 14 with respect to the central axis O.
 2つのコイル部34の各コイル線材に、第1の方向の電流を流すと、ムービングマグネット型のボイスコイルモータの原理により、可動部32は、図14に示すように、先端側に移動し、円筒部31aの先端側の内壁に近接する。このとき、超音波振動子21の超音波送受信面21aは、基端側に向く。図14に示すように、超音波送受信面21aの法線方向が、先端部2aの軸に直交する方向に対してθ1だけ基端側へ傾斜する。 When a current in the first direction is passed through each coil wire of the two coil parts 34, the movable part 32 moves to the tip side as shown in FIG. 14 according to the principle of a moving magnet type voice coil motor, It is close to the inner wall on the tip side of the cylindrical portion 31a. At this time, the ultrasonic transmission / reception surface 21a of the ultrasonic transducer 21 faces the proximal end side. As shown in FIG. 14, the normal line direction of the ultrasonic wave transmitting / receiving surface 21a is inclined toward the proximal end side by θ1 with respect to the direction orthogonal to the axis of the distal end portion 2a.
 2つのコイル部34の各コイル線材に、第1の方向と逆の第2の方向の電流を流すと、ムービングマグネット型のボイスコイルモータの原理により、可動部32は、図15に示すように、基端側に移動し、円筒部31aの基端側の内壁に近接する。このとき、超音波振動子21の超音波送受信面21aは、先端側に向く。図15に示すように、超音波送受信面21aの法線方向が、先端部2aの軸に直交する方向に対してθ2だけ先端側へ傾斜する。 When a current in a second direction opposite to the first direction is passed through each coil wire of the two coil portions 34, the movable portion 32 is moved as shown in FIG. 15 according to the principle of a moving magnet type voice coil motor. , It moves to the base end side and approaches the inner wall on the base end side of the cylindrical portion 31a. At this time, the ultrasonic transmission / reception surface 21a of the ultrasonic transducer 21 faces the distal end side. As shown in FIG. 15, the normal line direction of the ultrasonic wave transmitting / receiving surface 21a is inclined toward the distal end side by θ2 with respect to the direction orthogonal to the axis of the distal end portion 2a.
 よって、電流の流す向きを交互に変更することにより、超音波振動子21は、軸部33a2の軸回りに、角度(θ1+θ2)の範囲で揺動する。 
 従って、超音波プローブ2は、例えば体腔内や血管などの内部に挿通され、先端部2aの内部空間IS1内の超音波振動子21が揺動して超音波が被検体内を機械式で走査することによって、モニタ5に超音波画像が表示される。
Therefore, by alternately changing the direction in which the current flows, the ultrasonic transducer 21 swings in the range of the angle (θ1 + θ2) around the axis of the shaft portion 33a2.
Therefore, the ultrasonic probe 2 is inserted into, for example, a body cavity or a blood vessel, and the ultrasonic transducer 21 in the internal space IS1 of the distal end portion 2a is swung so that the ultrasonic wave mechanically scans within the subject. By doing so, an ultrasonic image is displayed on the monitor 5.
 超音波振動子21による超音波画像は、上述した角度(θ1+θ2)の範囲であって、開口部15の近傍の部分を含む。よって、図3に示すように、穿刺針3aが先端部2aの開口部15から突出角αで突出してから患部まで到達する距離が短くなり、術者は、超音波画像を見ながら穿刺針3aの操作をし易い。 The ultrasonic image by the ultrasonic transducer 21 is in the range of the angle (θ1 + θ2) described above and includes a portion in the vicinity of the opening 15. Therefore, as shown in FIG. 3, the distance that the puncture needle 3a protrudes from the opening 15 of the distal end portion 2a at the projection angle α and reaches the affected area is shortened, and the operator can observe the ultrasound image while viewing the ultrasonic image. Easy to operate.
 なお、θ2がθ1よりも大きくなるようにして、穿刺針3aの突出方向の体内臓器を、より観察できるようにしてもよい。すなわち、超音波振動子21のスキャン範囲を、先端部2aの先端側に傾けるようにしてもよい。 It should be noted that the internal organ in the protruding direction of the puncture needle 3a may be made more observable by making θ2 larger than θ1. That is, the scanning range of the ultrasonic transducer 21 may be inclined toward the distal end side of the distal end portion 2a.
 超音波振動子21は、単板式が使用可能なため、高解像度な超音波画像が得られ、かつ超音波プローブ2を細径にすることができる。特に、単板の超音波振動子によれば、単板のサイズを大きくできるため、方位分解能の高い超音波画像を得ることもできる。 Since the ultrasonic transducer 21 can be a single plate type, a high-resolution ultrasonic image can be obtained and the ultrasonic probe 2 can be made to have a small diameter. In particular, according to a single-plate ultrasonic transducer, since the size of the single plate can be increased, an ultrasonic image with high azimuth resolution can also be obtained.
 また、電磁アクチュエータであるボイスコイルモータを用いて超音波振動子を高速に揺動できるため、得られる超音波画像は、リアルタイムであり、術者は、穿刺走査をスムーズに行うことができる。言い換えれば、術者にとって、超音波画像を見ながらの穿刺の操作性がよい。 Also, since the ultrasonic transducer can be swung at high speed using a voice coil motor that is an electromagnetic actuator, the obtained ultrasonic image is real time, and the operator can smoothly perform puncture scanning. In other words, the operability of puncturing while viewing an ultrasonic image is good for the surgeon.
 上述した特開平8-275946号公報に開示の構成のカテーテルの場合、ワイヤの往復運動あるいは回転運動を超音波振動子の揺動運動に変換する変換機構を用いているため、超音波振動子を高速に揺動可能で高いフレームレートの画像を得ることはできない。しかし、上述した実施の形態では、電磁アクチュエータであるボイスコイルモータを用いているため、超音波振動子を高速に揺動可能で高いフレームレートの画像を得ることができる。 In the case of the catheter disclosed in Japanese Patent Laid-Open No. 8-275946 described above, a conversion mechanism that converts the reciprocating or rotating motion of the wire into the swinging motion of the ultrasonic transducer is used. An image with a high frame rate that can be swung at high speed cannot be obtained. However, in the above-described embodiment, since the voice coil motor that is an electromagnetic actuator is used, the ultrasonic transducer can be swung at high speed and an image with a high frame rate can be obtained.
 さらに、上述した実施の形態では、アクチュエータ22が先端部2aの先端側に配置され、超音波振動子21の基端側に開口部15が配設されている。よって、穿刺針3aが突出する先端部2aの開口部15を、超音波振動子21の近傍に配置することができるため、穿刺針3aが開口部15から突出してから病変部までの距離が短い。 Furthermore, in the above-described embodiment, the actuator 22 is disposed on the distal end side of the distal end portion 2 a, and the opening 15 is disposed on the proximal end side of the ultrasonic transducer 21. Therefore, since the opening 15 of the distal end portion 2a from which the puncture needle 3a protrudes can be disposed in the vicinity of the ultrasonic transducer 21, the distance from the puncture needle 3a protruding from the opening 15 to the lesioned portion is short. .
 上述した特開平8-275946号公報に開示の構成のカテーテルの場合、穿刺針の突出する開口部を設けようとしても、ワイヤの往復運動あるいは回転運動を超音波振動子の揺動運動に変換する変換機構の基端側に開口部が配設されることになり、穿刺針がその開口部から突出してから病変部まで到達するまでの距離が長くなる。その到達距離が長くなると、超音波画像に写らない場所にある開口部から穿刺針が突出することになるため、術者は、針の位置を把握しづらい。その結果、超音波画像を見ながらの穿刺の操作性は良くない。 In the case of the catheter disclosed in Japanese Patent Laid-Open No. 8-275946, the reciprocating or rotating motion of the wire is converted into the oscillating motion of the ultrasonic transducer, even if an opening through which the puncture needle projects is provided. An opening is disposed on the proximal end side of the conversion mechanism, and a distance from the puncture needle protruding from the opening to the lesion is increased. When the reach distance becomes long, the puncture needle protrudes from the opening in a place that is not reflected in the ultrasonic image, so that it is difficult for the operator to grasp the position of the needle. As a result, the puncture operability while viewing the ultrasonic image is not good.
 これに対して、上述した実施の形態の超音波プローブ2では、穿刺針3aが開口部15から突出してから病変部までの距離が短いため、術者は、超音波画像を見ながら、針の位置を把握し易く、穿刺の操作性が良い。 On the other hand, in the ultrasonic probe 2 according to the above-described embodiment, since the distance from the puncture needle 3a protruding from the opening 15 to the lesioned portion is short, the operator can observe the needle while viewing the ultrasonic image. Easy to grasp the position and good puncture operability.
 さらに、アクチュエータとして圧電素子を用いて超音波振動子を揺動させることも考えられるが、圧電素子の駆動信号の周波数が高いため、超音波振動子の出力にノイズが重畳し易くなるという問題がある。これに対して、本実施の形態では、アクチュエータとしてボイスコイルモータを用いているため、圧電素子を利用するアクチュエータと比べて駆動信号の周波数も低く、超音波画像へのノイズの重畳の影響も少ない。 Furthermore, it is conceivable to oscillate the ultrasonic transducer using a piezoelectric element as an actuator. However, since the frequency of the drive signal of the piezoelectric element is high, there is a problem that noise is easily superimposed on the output of the ultrasonic transducer. is there. In contrast, in this embodiment, since the voice coil motor is used as the actuator, the frequency of the drive signal is lower than that of the actuator using the piezoelectric element, and the influence of noise superposition on the ultrasonic image is small. .
 以上のように、上述した実施の形態によれば、穿刺針が突出する先端部の開口の位置を超音波振動子の近くに位置させることが可能な超音波ガイド下穿刺装置を提供することができる。 As described above, according to the above-described embodiment, it is possible to provide an ultrasonic guided puncture device capable of positioning the opening of the tip portion from which the puncture needle protrudes near the ultrasonic transducer. it can.
 なお、上述した例では、開口部15から穿刺針3aが突出しているが、ERCP(内視鏡的逆行性胆道膵管造影)等の検査用の造影チューブも突出できるように、穿刺針の開口部15からの突出角を大きくするようにしてもよい。その結果、ERCP(内視鏡的逆行性胆道膵管造影)等の検査にも適用し易くすることができる。 In the example described above, the puncture needle 3a protrudes from the opening 15, but the opening of the puncture needle so that a contrast tube for examination such as ERCP (endoscopic retrograde cholangiopancreatography) can also protrude. The protrusion angle from 15 may be increased. As a result, it can be easily applied to examinations such as ERCP (endoscopic retrograde cholangiopancreatography).
 図16は、開口部15の近傍の先端側に、造影チューブ3cの突出角α1をより大きくする傾斜面14aを形成した超音波プローブ2の先端部2aの断面図である。図16に示すように、造影チューブ3cの突出角α1が大きいため、例えば、先端部2aが十二指腸の乳頭近傍にあるときに、造影チューブ3cを胆管内に挿入し易い。 FIG. 16 is a cross-sectional view of the distal end portion 2a of the ultrasonic probe 2 in which an inclined surface 14a for increasing the protrusion angle α1 of the contrast tube 3c is formed on the distal end side in the vicinity of the opening 15. As shown in FIG. 16, since the projection angle α1 of the contrast tube 3c is large, for example, when the distal end portion 2a is in the vicinity of the papilla of the duodenum, the contrast tube 3c can be easily inserted into the bile duct.
 本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。 The present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the scope of the present invention.

Claims (12)

  1.  体内に挿入される外管と、
     前記外管の先端側に設けられた先端部と、
     前記先端部内に配設され、前記外管の長手方向に沿う面内に揺動可能に支持された超音波振動子と、
     前記超音波振動子の基端側に、前記外管内に前記長手方向に沿って穿刺針が挿通可能に形成された穿刺針挿通チャンネルと、
     前記超音波振動子の先端側に設けられ、前記外管の長手方向に沿って往復運動をする可動部を有するアクチュエータと、
     前記外管の長手方向に沿って前記アクチュエータと前記長手方向に直列に配置され、かつ前記超音波振動子と前記長手方向に並列に配置され、前記可動部の往復運動を前記超音波振動子の揺動運動に変換する変換機構と、
    を備えることを特徴とする超音波ガイド下穿刺装置。
    An outer tube inserted into the body,
    A tip provided on the tip side of the outer tube;
    An ultrasonic transducer disposed in the tip and supported so as to be swingable in a plane along the longitudinal direction of the outer tube;
    A puncture needle insertion channel formed on the proximal end side of the ultrasonic transducer so that a puncture needle can be inserted in the outer tube along the longitudinal direction;
    An actuator provided on the tip side of the ultrasonic transducer and having a movable part that reciprocates along the longitudinal direction of the outer tube;
    The actuator is arranged in series in the longitudinal direction with the actuator along the longitudinal direction of the outer tube, and is arranged in parallel with the ultrasonic transducer in the longitudinal direction. A conversion mechanism for converting into a swing motion;
    An ultrasonic-guided puncture device comprising:
  2.  前記先端部は、前記穿刺針挿通チャンネルに連通する開口部を有し、
     前記開口部は、前記超音波振動子の基端側の前記先端部の側面に形成され、
     前記穿刺針挿通チャンネルは、前記穿刺針が前記超音波振動子のスキャン範囲に向かうように形成されていることを特徴とする請求項1に記載の超音波ガイド下穿刺装置。
    The tip has an opening communicating with the puncture needle insertion channel,
    The opening is formed on a side surface of the distal end portion on the proximal end side of the ultrasonic transducer,
    The ultrasound-guided puncture device according to claim 1, wherein the puncture needle insertion channel is formed so that the puncture needle is directed to a scan range of the ultrasonic transducer.
  3.  前記アクチュエータは、電磁アクチュエータであることを特徴とする請求項1に記載の超音波ガイド下穿刺装置。 The ultrasonic guided puncture apparatus according to claim 1, wherein the actuator is an electromagnetic actuator.
  4.  前記電磁アクチュエータは、コイルと磁石を備えるボイスコイルモータであることを特徴とする請求項3に記載の超音波ガイド下穿刺装置。 The ultrasonic guided puncture apparatus according to claim 3, wherein the electromagnetic actuator is a voice coil motor including a coil and a magnet.
  5.  前記コイル又は前記磁石は、前記往復運動の方向に直交する方向における寸法よりも、前記往復運動の方向における寸法が長い形状を有することを特徴とする請求項4に記載の超音波ガイド下穿刺装置。 The ultrasonic-guided puncture device according to claim 4, wherein the coil or the magnet has a shape in which a dimension in the reciprocating motion direction is longer than a dimension in a direction orthogonal to the reciprocating motion direction. .
  6.  前記ボイスコイルモータは、前記可動部が前記磁石を有するムービングマグネット型であることを特徴とする請求項5に記載の超音波ガイド下穿刺装置。 6. The ultrasonic guided puncture apparatus according to claim 5, wherein the voice coil motor is a moving magnet type in which the movable part has the magnet.
  7.  前記可動部は、強磁性体の部材を有していることを特徴とする請求項6に記載の超音波ガイド下穿刺装置。 The ultrasonic guided puncture apparatus according to claim 6, wherein the movable part includes a ferromagnetic member.
  8.  前記強磁性体の部材は、前記磁石の先端側と基端側の両側に設けられていることを特徴とする請求項7に記載の超音波ガイド下穿刺装置。 8. The ultrasonic guided puncture device according to claim 7, wherein the ferromagnetic member is provided on both sides of a distal end side and a proximal end side of the magnet.
  9.  前記可動部の前記変換機構側の部分は、非磁性体又は弱磁性体であることを特徴とする請求項8に記載の超音波ガイド下穿刺装置。 The ultrasonic-guided puncture device according to claim 8, wherein a portion of the movable portion on the conversion mechanism side is a nonmagnetic material or a weak magnetic material.
  10.  前記コイルの外形の一部は平面部を有し、
     前記平面部の平面は、前記先端側から前記外管をみたときに、前記穿刺針挿通チャンネルと前記ボイスコイルモータを結ぶ線に対して直交することを特徴とする請求項4に記載の超音波ガイド下穿刺装置。
    A part of the outer shape of the coil has a flat portion,
    5. The ultrasonic wave according to claim 4, wherein a plane of the flat portion is orthogonal to a line connecting the puncture needle insertion channel and the voice coil motor when the outer tube is viewed from the distal end side. Guided puncture device.
  11.  前記アクチュエータは、前記可動部を内部に収容する枠部材を有し、前記枠部材の前記変換機構とは反対側には、孔が形成されていることを特徴とする請求項1に記載の超音波ガイド下穿刺装置。 The super actuator according to claim 1, wherein the actuator includes a frame member that accommodates the movable portion therein, and a hole is formed on a side of the frame member opposite to the conversion mechanism. Sonic guided puncture device.
  12.  前記外管の先端側に設けられ、前記超音波振動子及び前記変換機構を収容する第1の内部空間と、前記第1の内部空間の先端側に前記アクチュエータを収容する第2の内部空間を有する筺体を有することを特徴とする請求項1に記載の超音波ガイド下穿刺装置。 A first internal space that is provided on the distal end side of the outer tube and accommodates the ultrasonic transducer and the conversion mechanism, and a second internal space that accommodates the actuator on the distal end side of the first internal space. The ultrasonic-guided puncture device according to claim 1, further comprising a housing having the same.
PCT/JP2017/018997 2017-05-22 2017-05-22 Ultrasound-guided needle puncturing device WO2018216062A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018997 WO2018216062A1 (en) 2017-05-22 2017-05-22 Ultrasound-guided needle puncturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018997 WO2018216062A1 (en) 2017-05-22 2017-05-22 Ultrasound-guided needle puncturing device

Publications (1)

Publication Number Publication Date
WO2018216062A1 true WO2018216062A1 (en) 2018-11-29

Family

ID=64395360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018997 WO2018216062A1 (en) 2017-05-22 2017-05-22 Ultrasound-guided needle puncturing device

Country Status (1)

Country Link
WO (1) WO2018216062A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120851A (en) * 1979-03-12 1980-09-17 Olympus Optical Co Ultrasonic wave diagnosis device for inside of coelom
JP2004343931A (en) * 2003-05-16 2004-12-02 Matsushita Electric Works Ltd Vibratory linear actuator and electric toothbrush using the same
JP2005040204A (en) * 2003-07-23 2005-02-17 Olympus Corp Ultrasonic endoscope apparatus
JP2006296161A (en) * 2005-04-14 2006-10-26 Shinko Electric Co Ltd Linear actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120851A (en) * 1979-03-12 1980-09-17 Olympus Optical Co Ultrasonic wave diagnosis device for inside of coelom
JP2004343931A (en) * 2003-05-16 2004-12-02 Matsushita Electric Works Ltd Vibratory linear actuator and electric toothbrush using the same
JP2005040204A (en) * 2003-07-23 2005-02-17 Olympus Corp Ultrasonic endoscope apparatus
JP2006296161A (en) * 2005-04-14 2006-10-26 Shinko Electric Co Ltd Linear actuator

Similar Documents

Publication Publication Date Title
US7255678B2 (en) High frequency, high frame-rate ultrasound imaging system
US4869258A (en) Intracavitary ultrasound scanner means
JP5073276B2 (en) A rotatable transducer array for volumetric ultrasound
JPH02195949A (en) Small type supersonic probe
KR101027425B1 (en) Motorized multiplane ultrasound probe
US20100234735A1 (en) Ultrasound probe and an ultrasonic diagnosis apparatus
JP2013545562A (en) Image transducer probe
CN104473614A (en) Capsule endoscope
US10080546B2 (en) Three-dimensional ultrasonic probe
WO2018216062A1 (en) Ultrasound-guided needle puncturing device
WO2018105108A1 (en) Ultrasound-guided puncture device
US20200069288A1 (en) Ultrasound probe
JP4119530B2 (en) Endoscope device and position detection catheter inserted into endoscope
JP2007037564A (en) Ultrasonograph
JP4198130B2 (en) Ultrasonic diagnostic equipment
JPH02189139A (en) Internal visual ultrasonic diagnosing device
WO2023032202A1 (en) Ultrasonic motor, ultrasonic probe and medical device system
JP2001198125A (en) Image diagnostic device
KR102477679B1 (en) A catheter-type ultrasound endoscope and inspection system including the same
JP2002336258A (en) Ultrasonic probe
JP2001145629A (en) Front end position detector for endoscope
JP2001145597A (en) Distal end position-detecting probe for endoscope
JP2003061953A (en) Ultrasonic vibrator driving motor, ultrasonic probe including the same and ultrasonic diagnosing apparatus using it
JP2002330969A (en) Cart for ultrasound probe instrument ultrasound probe instrument
WO2013125493A1 (en) Tomographic image acquisition device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP