JPS6239369A - Power steering device of rear wheel steering wheel - Google Patents

Power steering device of rear wheel steering wheel

Info

Publication number
JPS6239369A
JPS6239369A JP17878285A JP17878285A JPS6239369A JP S6239369 A JPS6239369 A JP S6239369A JP 17878285 A JP17878285 A JP 17878285A JP 17878285 A JP17878285 A JP 17878285A JP S6239369 A JPS6239369 A JP S6239369A
Authority
JP
Japan
Prior art keywords
steering
rear wheel
steering shaft
amount
reaction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17878285A
Other languages
Japanese (ja)
Other versions
JPH069983B2 (en
Inventor
Hiroyuki Ikemoto
池本 浩之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17878285A priority Critical patent/JPH069983B2/en
Publication of JPS6239369A publication Critical patent/JPS6239369A/en
Publication of JPH069983B2 publication Critical patent/JPH069983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

PURPOSE:To improve steering safety of a vehicle, by a method wherein rotation of a steering shaft is controlled by means of a steering force exerted on a steering handle and a steering force exerted on a rear surface by a road surface, and a steering angle of a rear wheel is controlled according to the rotary angle of the steering shaft. CONSTITUTION:A first control amount deciding means 11 is provided for deciding a first control amount by which a steering shaft 4 is rotated in a direction, in which a steering force is exerted, according to an output from a steering force sensor 8 attached on a steering shaft 4. A second control amount deciding means 12 is provided for deciding a second control amount by which the steering shaft 4 is rotated in a direction, in which the steering shaft is returned to a reference position, according to an output from a rear wheel steering reaction force sensor 9. The first and the second rotation control amount are inputted to a steering shaft rotation control signal output means 13 for synthesis to output a steering shaft rotation control signal from a steering shaft actuator 5. A rear wheel desired steering amount is decided by a deciding means 14 according to an output from a steering displacement amount sensor 10 detecting a rotary angle from the reference position of the steering shaft 4 to control a rear wheel steering mechanism 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、操舵ハンドルの回動に応じて前輪及び後輪を
転舵する前後@転舵車の舵取装置に係り、特に操舵ハン
ドルに結合した操舵軸と後輪を転舵する後輪転舵機構を
機械的に分離してそれらの連係を電気的制御装置で置換
するようにした前後輪転舵車の動力舵取装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a steering device for a front-rear @ steered vehicle that steers front wheels and rear wheels according to the rotation of a steering wheel, and particularly relates to a steering device for a steering wheel. The present invention relates to a power steering device for a front and rear wheel steered vehicle in which a coupled steering shaft and a rear wheel steering mechanism for steering rear wheels are mechanically separated and their linkage is replaced by an electrical control device.

〔従来技術〕[Prior art]

従来、この種の技術は、特開昭56−108351号公
報及び特開昭57−15066号公報に示されるように
、操舵レバーの操舵量を光学的に検出し、又は前輪転舵
機構の転舵角速度を電気的に検出して後輪転舵機構の転
舵角を電気的に制御するようにしている。かかる構成に
より、操舵レバーと1&輪転舵機構、又は前輪転舵機構
と後輪転舵機構とを機械的に連結する連結機構をなくし
て連結機構の配設に必要な空間を有効に利用するように
している。
Conventionally, this type of technology optically detects the amount of steering of a steering lever or detects the amount of steering of a front wheel steering mechanism, as shown in Japanese Patent Laid-Open No. 56-108351 and Japanese Patent Laid-Open No. 57-15066. The steering angle speed is electrically detected to electrically control the steering angle of the rear wheel steering mechanism. With this configuration, a coupling mechanism that mechanically couples the steering lever and the 1 & wheel steering mechanism, or the front wheel steering mechanism and the rear wheel steering mechanism is eliminated, and the space required for disposing the coupling mechanism is effectively utilized. ing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、上記従来の装置にあっては、操舵レバーの操
舵量又は前輪転舵機構の転舵量に基づいて電気的制御装
置が後輪転舵機構の転舵角を一方的に制御するので、後
輪が路面から受ける反力が操舵ハンドルに伝達されなく
なる。これにより、操舵ハンドルには後輪転舵による操
舵反力、保舵反力及び操舵ハンドルの復元力が逆送され
な(な1て運転者は車両の転舵状態と一致した操舵感覚
で車両を運転できないので車両の操縦安定性が悪化する
However, in the conventional device described above, the electric control device unilaterally controls the steering angle of the rear wheel steering mechanism based on the steering amount of the steering lever or the steering amount of the front wheel steering mechanism. The reaction force that the wheels receive from the road surface is no longer transmitted to the steering wheel. As a result, the steering reaction force caused by turning the rear wheels, the steering reaction force, and the restoring force of the steering wheel are not sent back to the steering wheel. Since the vehicle cannot be driven, the steering stability of the vehicle deteriorates.

本発明は、上記問題に対処するため、操舵ハンドルに付
与される操舵力及び後輪が路面から受ける転舵反力に基
づいて操舵軸の回動を制御し、かつ操舵軸の回転角に基
づいて後輪の転舵角を制御することによって、操舵ハン
ドルの回動に応して後輪を転舵しかつ後輪の転舵に応じ
た操舵反力、保舵反力及び操舵ハンドルの復元力を操舵
ハンドルに発生させるようにした前後輪転舵車の動力舵
取装置を提供しようとするものである。
In order to solve the above problems, the present invention controls the rotation of the steering shaft based on the steering force applied to the steering wheel and the turning reaction force that the rear wheels receive from the road surface, and also controls the rotation of the steering shaft based on the rotation angle of the steering shaft. By controlling the steering angle of the rear wheels, the rear wheels can be turned in response to the rotation of the steering wheel, and the steering reaction force, holding reaction force, and restoration of the steering wheel can be achieved in response to the turning of the rear wheels. It is an object of the present invention to provide a power steering device for a front and rear wheel steered vehicle that generates force at a steering wheel.

〔問題点を解決するための手段〕[Means for solving problems]

かかる問題の解決にあたり、本発明の構成上の特徴は第
1図に示すように、操舵ハンドル1の回動に応じて前輪
2及び後輪3を転舵する前後輪転舵車の舵取装置におい
て、操舵ハンドル1に結合した操舵軸4と、該操舵軸4
を回転駆動する操舵軸アクチュエータ5と、前記操舵軸
4の回動に応じて前輪2を転舵する前輪転舵制御手段6
と、後輪3に機械的に結合され後輪3を転舵する後輪転
舵機構7と、操舵ハンドル1から前記操舵軸4に付与さ
れる操舵力を検出する操舵力センサ8と、後輪3から前
記後輪転舵機構7に付与される後輪転舵反力を検出する
後輪転舵反力センサ9と、前記操舵軸4の基準位置から
の回転角を操舵変位量として検出する操舵変位量センサ
10と、前記操舵力センサ8出力に基づいて前記検出操
舵力の増加に応じて増加しかつ前記操舵軸4を操舵力の
付与される方向へ回転させる第1制御量を決定する第1
制御量決定手段11と、前記後輪転舵反力センサ9出力
に基づいて前記検出転舵反力の増加に応じて増加しかつ
前記操舵軸4を前記基準位置に復帰させる方向へ回転さ
せる第2制御量を決定する第2制御量決定手段12と、
前記第1制御母及び第2制御量を合成した操舵軸回転制
御信号を前記操舵軸アクチュエータ5に出力して前記操
舵軸の回転を制御する操舵軸回転制御信号出力手段13
と、前記操舵変位量センサ10出力に基づいて後輪3の
目標転舵量を決定する後輪目標転舵量決定手段14と、
前記決定後輪目標転舵量に応じた後輪転舵制御信号を前
記後輪転舵機構7に出力して後輪の転舵量が前記決定後
輪目標転舵量になるように前記後輪転舵機構7を制御す
る後輪転舵制御信号出力手段15とを備えたことにある
In order to solve this problem, the structural features of the present invention are as shown in FIG. , a steering shaft 4 coupled to the steering handle 1, and the steering shaft 4
a steering shaft actuator 5 that rotationally drives the steering shaft 4; and a front wheel steering control means 6 that steers the front wheels 2 according to the rotation of the steering shaft 4.
a rear wheel steering mechanism 7 that is mechanically coupled to the rear wheels 3 and steers the rear wheels 3; a steering force sensor 8 that detects the steering force applied from the steering wheel 1 to the steering shaft 4; a rear wheel steering reaction force sensor 9 that detects a rear wheel steering reaction force applied from 3 to the rear wheel steering mechanism 7; and a steering displacement amount that detects a rotation angle of the steering shaft 4 from a reference position as a steering displacement amount. a first control amount that increases in accordance with an increase in the detected steering force and that rotates the steering shaft 4 in the direction in which the steering force is applied, based on the sensor 10 and the output of the steering force sensor 8;
a second control unit that rotates the steering shaft 4 in a direction that increases in accordance with an increase in the detected steering reaction force based on the output of the rear wheel steering reaction force sensor 9 and returns the steering shaft 4 to the reference position; a second controlled amount determining means 12 that determines the controlled amount;
Steering shaft rotation control signal output means 13 that outputs a steering shaft rotation control signal obtained by combining the first control amount and the second control amount to the steering shaft actuator 5 to control the rotation of the steering shaft.
and a rear wheel target turning amount determining means 14 that determines a target turning amount of the rear wheels 3 based on the output of the steering displacement amount sensor 10;
A rear wheel steering control signal corresponding to the determined rear wheel target turning amount is output to the rear wheel steering mechanism 7, and the rear wheel is steered so that the rear wheel turning amount becomes the determined rear wheel target turning amount. This is because the rear wheel steering control signal output means 15 for controlling the mechanism 7 is provided.

〔作用効果〕[Effect]

上記のように構成した本発明においては、操舵力センサ
8が操舵ハンドル1の回動により操舵軸4に付与される
操舵力を検出し、この検出操舵力に基づいて第1制御量
決定手段11が操舵軸4を操舵力の付与される方向に回
転させる第1制御量を決定し、この第1制御量により操
舵軸回転制御信号出力手段13が操舵軸アクチュエータ
5に操舵軸回転制御信号を出力して、操舵軸アクチュエ
ータ5が操舵軸4を操舵力の付与される方向に回転させ
る。この操舵軸4の回転に応じて前輪転舵制御手段6は
前輪2を転舵する。また、この操舵軸4の基準位置から
の回転角は操舵変位量として操舵変位量センサ10によ
り検出され、この検出操舵変位量に基づいて後輪目標転
舵量決定手段14、後輪転舵制御信号出力手段15及び
後輪転舵機構7が後輪3を転舵するので、後輪3は操舵
ハンドル1の回動操作に応じて転舵される。このとき、
後輪3は路面から転舵方向とは逆方向の後輪転舵反力を
受け、この後輪転舵反力は後輪転舵反力センサ9によっ
て検出されて、この検出転舵反力に基づいて第2制御量
決定手段12が操舵軸4を基準位置に復帰させる方向に
回転させるための第2制御量を決定し、この第2制御量
は操舵軸回転制御信号出力手段13によって第1制御量
と合成される。そして、この合成結果に基づき、操舵軸
回転制御信号出力手段13が操舵軸回転制御信号を操舵
軸アクチュエータ5に出力して操舵軸40回転が制御さ
れる。
In the present invention configured as described above, the steering force sensor 8 detects the steering force applied to the steering shaft 4 by rotation of the steering wheel 1, and based on this detected steering force, the first control amount determining means 11 determines a first control amount for rotating the steering shaft 4 in the direction in which the steering force is applied, and based on this first control amount, the steering shaft rotation control signal output means 13 outputs a steering shaft rotation control signal to the steering shaft actuator 5. The steering shaft actuator 5 then rotates the steering shaft 4 in the direction in which the steering force is applied. The front wheel steering control means 6 steers the front wheels 2 in accordance with the rotation of the steering shaft 4. Further, the rotation angle of the steering shaft 4 from the reference position is detected as a steering displacement amount by a steering displacement amount sensor 10, and based on this detected steering displacement amount, the rear wheel target turning amount determining means 14 sends a rear wheel turning control signal. Since the output means 15 and the rear wheel steering mechanism 7 steer the rear wheels 3, the rear wheels 3 are steered in accordance with the rotational operation of the steering handle 1. At this time,
The rear wheels 3 receive a rear wheel steering reaction force from the road surface in a direction opposite to the steering direction, this rear wheel steering reaction force is detected by the rear wheel steering reaction force sensor 9, and based on the detected rear wheel steering reaction force, The second control amount determination means 12 determines a second control amount for rotating the steering shaft 4 in the direction of returning it to the reference position, and this second control amount is transmitted to the first control amount by the steering shaft rotation control signal output means 13. is synthesized with Then, based on this synthesis result, the steering shaft rotation control signal output means 13 outputs a steering shaft rotation control signal to the steering shaft actuator 5, so that the rotation of the steering shaft 40 is controlled.

このような作用により、運転者が車両を回転させるため
操舵ハンドル1を回動操作している場合、F桑舵軸4に
は上記後輪転舵反力による操舵軸4を回転させる力が操
舵ハンドル1の回動とは反対方向に操舵反力として作用
するので、操舵ハンドル1には後輪転舵反力に基づく操
舵反力が逆送される。また、運転者が操舵ハンドルlを
回動位置に保持している場合及び操舵ハンドル1を中立
位置に戻す場合、上記後輪転舵反力によって操舵軸4を
回転させる力が操舵軸4を基準位置に戻す方向に作用す
るので、後輪転舵反力に基づ(保舵反力及び操舵ハンド
ル1の復元力が操舵ハンドル1に与えられる。上記のよ
うに、操舵ハンドル1にはその回動操作に応じた後輪転
舵反力に基づく操舵反力、保舵反力及び復元力が逆送さ
れるので車両の操縦安定性が良好となる。
Due to this action, when the driver rotates the steering wheel 1 to rotate the vehicle, the force to rotate the steering shaft 4 due to the rear wheel turning reaction force is applied to the F-shaped steering shaft 4. Since the steering reaction force acts in the opposite direction to the rotation of the steering wheel 1, the steering reaction force based on the rear wheel turning reaction force is sent back to the steering wheel 1. Furthermore, when the driver holds the steering wheel l in the rotational position or returns the steering wheel 1 to the neutral position, the force of rotating the steering shaft 4 due to the rear wheel steering reaction force moves the steering shaft 4 to the reference position. Therefore, based on the rear wheel steering reaction force (steering reaction force and restoring force of the steering wheel 1), the steering wheel 1 is given a restoring force to the steering wheel 1. Since the steering reaction force, the steering reaction force, and the restoring force based on the rear wheel turning reaction force corresponding to the steering reaction force are reversely transmitted, the steering stability of the vehicle is improved.

〔実施例〕〔Example〕

a、基本構成 本発明の基本構成を図面を用いて説明すると、第2図は
、運転者が操作するマスク部Aと、前輪を転舵する第1
スレーブ部131’と、後輪を転舵する第2スレーブ部
B2と、マスク部A、第1スレーブ部Bl及び第2スレ
ーブ部B2を電気的に制御する電気制御装置Cから成る
車両用動力舵取装置の概略を示している。
a. Basic configuration The basic configuration of the present invention will be explained with reference to the drawings. Figure 2 shows the mask section A operated by the driver and the first section that steers the front wheels.
A vehicle power rudder consisting of a slave part 131', a second slave part B2 that steers the rear wheels, and an electric control device C that electrically controls the mask part A, the first slave part Bl, and the second slave part B2. The figure shows an outline of the extraction device.

マスク部Aは、操舵ハンドル20に固着された操舵軸2
1と同軸21の下端に設けられ操舵軸21を回転駆動す
る操舵軸モータ22とを備え、操舵軸21には、操舵軸
モータ′22による同軸21の基準位置からの回転角を
検出し同回転角に比例した操舵変位fil Y mを表
わす信号を発生する操舵変位量センサ23と、操舵ハン
ドル20から操舵軸21に付与される操舵力Fmに比例
して同軸21に発生する捩れ量を検出する歪みゲージよ
り成り、操舵力Fmを表す信号を発生する操舵力センサ
24が取付けられている。なお、この場合、操舵ハンド
ル20及び操舵軸21が左(又は右)回転したとき、操
舵力Fm及び操舵変位量Ymは各々正(又は負)となる
The mask portion A is connected to the steering shaft 2 fixed to the steering handle 20.
1 and a steering shaft motor 22 which is provided at the lower end of the coaxial shaft 21 and rotates the steering shaft 21. A steering displacement amount sensor 23 generates a signal representing a steering displacement fil Y m proportional to the angle, and detects the amount of twist occurring in the steering shaft 21 in proportion to the steering force Fm applied to the steering shaft 21 from the steering handle 20. A steering force sensor 24, which is made up of a strain gauge and generates a signal representing the steering force Fm, is attached. In this case, when the steering wheel 20 and the steering shaft 21 rotate to the left (or right), the steering force Fm and the steering displacement amount Ym each become positive (or negative).

第1スレーブ部B1は、電気制御装置Cにより回転制御
される前輪転舵軸モータ30と、同モータ30により一
端が結合され他端にピニオン31を有する前輪転舵軸3
2と、ビニオン31に噛合して左右前輪33a、33b
を転舵制御するランク軸34を備えている。ランク軸3
4は、左右タイロッド35a、35b及び左右ナックル
アーム36a、36bを介して左右前輪33a、33b
に各々接続されて、同軸34の車体横方向への往復運動
により、左右前輪33a、33bを転舵する。前輪転舵
軸32には、前輪転舵軸モータ30による同軸32の基
準位置からの回転角を検出して同回転角に比例した前輪
転舵変位量Ysfを表す信号を発生する前輪転舵変位量
センサ37と、左右前輪33a、33bから前輪転舵軸
32に付与される前輪転舵反力Fsfに比例して前輪転
舵軸32に発生する捩れ量を検出する歪みゲージより成
り、前輪転舵反力Fsfを表す信号を発生する前輪転舵
反力センサ38が取付けられている。
The first slave part B1 includes a front wheel steered shaft motor 30 whose rotation is controlled by an electric control device C, and a front wheel steered shaft 3 which is connected at one end by the motor 30 and has a pinion 31 at the other end.
2, and the left and right front wheels 33a, 33b mesh with the binion 31.
A rank shaft 34 is provided to control the steering of the vehicle. Rank axis 3
4 is connected to left and right front wheels 33a, 33b via left and right tie rods 35a, 35b and left and right knuckle arms 36a, 36b.
The left and right front wheels 33a and 33b are steered by the reciprocating movement of the coaxial shaft 34 in the lateral direction of the vehicle body. The front wheel steering shaft 32 has a front wheel steering displacement device that detects the rotation angle of the same shaft 32 from a reference position by the front wheel steering shaft motor 30 and generates a signal representing a front wheel steering displacement amount Ysf proportional to the rotation angle. It consists of a quantity sensor 37 and a strain gauge that detects the amount of torsion generated in the front wheel steering shaft 32 in proportion to the front wheel steering reaction force Fsf applied to the front wheel steering shaft 32 from the left and right front wheels 33a, 33b. A front wheel steering reaction force sensor 38 is attached that generates a signal representing the steering reaction force Fsf.

なお、この場合、前輪転舵軸32が右(又は左)回転し
、ランク軸34が左(又は右)方向に変位し、左右前輪
33a、33bが左(又は右)方向に転舵されたとき、
前輪転舵反力Fsf及び前輪転舵変位量Ysfは各々正
(又は負)となる。
In this case, the front wheel steering shaft 32 rotated to the right (or left), the rank shaft 34 was displaced to the left (or right), and the left and right front wheels 33a, 33b were steered to the left (or right). When,
The front wheel turning reaction force Fsf and the front wheel turning displacement amount Ysf are each positive (or negative).

第2スレーブB2は、電気制御装置Cにより回転制御さ
れる後輪転舵軸モータ40と、同モータ40により一端
が結合され他端にピニオン41を有する後輪転舵軸42
と、ビニオン41に噛合して左右後輪43a、43bを
転舵制御するランク軸44を備えている。ランク軸44
は、左右タイロッド45a、45b及び左右ナックルア
ーム45a、46bを介して左右後輪43a、43bに
各々接続されて、同軸44の車体横方向への往復運動に
より、左右後輪43a、43bを転舵する。
The second slave B2 includes a rear wheel steering shaft motor 40 whose rotation is controlled by the electric control device C, and a rear wheel steering shaft 42 which is connected at one end by the motor 40 and has a pinion 41 at the other end.
and a rank shaft 44 that meshes with the binion 41 and controls the steering of the left and right rear wheels 43a, 43b. Rank axis 44
is connected to the left and right rear wheels 43a, 43b via left and right tie rods 45a, 45b and left and right knuckle arms 45a, 46b, respectively, and steers the left and right rear wheels 43a, 43b by the reciprocating movement of the coaxial shaft 44 in the lateral direction of the vehicle body. do.

後輪転舵軸42には、後輪転舵軸モータ40による同軸
42の基準位置からの回転角を検出して同回転角に比例
した後輪転舵変位量Ysrを表す信号を発生する後輪転
舵変位量センサ47と、左右後輪4.3a、43bから
後輪転舵軸42に付与される後輪転舵反力Fsrに比例
して後輪転舵軸42に発生ずる捩れ量を検出する歪みゲ
ージより成り、後輪転舵反力Fsrを表す信号を発生す
る後輪転舵反力センサ48が取り付けられている。なお
、この場合、後輪転舵!tb42が右(又は左)回転し
、ランク軸44が左(又は右)方向に変位して、左右前
輪43a、43bが左(又は右)方向に転舵されたとき
、後輪転舵反力Fsr及び後輪転舵変位量Ysrは正(
又は負)となる。
The rear wheel steering shaft 42 has a rear wheel steering displacement device that detects the rotation angle of the same shaft 42 from a reference position by the rear wheel steering shaft motor 40 and generates a signal representing a rear wheel steering displacement amount Ysr proportional to the rotation angle. It consists of a quantity sensor 47 and a strain gauge that detects the amount of twist generated in the rear wheel steering shaft 42 in proportion to the rear wheel steering reaction force Fsr applied to the rear wheel steering shaft 42 from the left and right rear wheels 4.3a, 43b. , a rear wheel steering reaction force sensor 48 is attached that generates a signal representing the rear wheel steering reaction force Fsr. In this case, the rear wheels are steered! When the tb42 rotates to the right (or left), the rank shaft 44 is displaced to the left (or right), and the left and right front wheels 43a, 43b are steered to the left (or right), the rear wheel steering reaction force Fsr and the rear wheel steering displacement amount Ysr is positive (
or negative).

電気制御装置Cは、操舵軸21の回転を制御する制御信
号を操舵軸モータ22に出力する操舵軸モータ制御回路
50と、前輪転舵軸32の回転を制御する制御信号を前
輪転舵軸モータ30に出力する前輪転舵軸モータ制御回
路51と、後輪転舵軸42の回転を制御する制御信号を
後輪転舵軸モータ40に出力する後輪転舵軸モータ制御
回路52を備えている。操舵軸モータ制御回路50は、
操舵力センサ24に接続された操舵力演算器53によっ
て算出されかつ操舵力Fmに比例する制御量Kmf−F
mと、合成転舵反力演算器54によって算出されかつ前
輪転舵反力FSr及び後輪転舵反力Fsrの合成転舵反
力に対応した制御IKsff−Fsf+Ksfr−Fs
rとを入力して、その値が正(又は負)のとき操舵軸2
1を左(又は右)回転させる回転制御量Mm=Kmf 
−Fm−Ksff−Fsr−Ksfr−Fsrを表す制
御信号を出力する。合成転舵反力演算器54には、前輪
転舵反力センサ38に接続された前輪転舵反力演算器5
5から前輪転舵反力Fsfに比例した制御量Ksfr−
Fsfが供給され、かつ後輪転舵反力センサ48に接続
された後輪転舵反力演算器56から後輪転舵反力Fsr
に比例した制御量Ksrr−Fsrが供給されている。
The electric control device C includes a steering shaft motor control circuit 50 that outputs a control signal for controlling the rotation of the steering shaft 21 to the steering shaft motor 22, and a steering shaft motor control circuit 50 that outputs a control signal that controls the rotation of the front wheel steering shaft 32 to the front wheel steering shaft motor 22. A front wheel steered shaft motor control circuit 51 outputs to the rear wheel steered shaft motor 30, and a rear wheel steered shaft motor control circuit 52 outputs a control signal for controlling the rotation of the rear wheel steered shaft 42 to the rear wheel steered shaft motor 40. The steering shaft motor control circuit 50 is
The control amount Kmf-F is calculated by the steering force calculator 53 connected to the steering force sensor 24 and is proportional to the steering force Fm.
m, and control IKsff-Fsf+Ksfr-Fs calculated by the composite steering reaction force calculator 54 and corresponding to the composite steering reaction force of the front wheel steering reaction force FSr and the rear wheel steering reaction force Fsr.
r, and if the value is positive (or negative), the steering axis 2
Rotation control amount Mm=Kmf to rotate 1 to the left (or right)
-Fm-Ksff-Fsr-Ksfr-Fsr is output. The synthetic steering reaction force calculator 54 includes a front wheel turning reaction force calculator 5 connected to the front wheel turning reaction force sensor 38 .
5 to the control amount Ksfr- proportional to the front wheel steering reaction force Fsf.
Rear wheel steering reaction force Fsr is supplied from a rear wheel steering reaction force calculator 56 which is supplied with Fsf and connected to the rear wheel steering reaction force sensor 48.
A control amount Ksrr-Fsr proportional to is supplied.

なお、係数K m f 、係数Ksff及び係数Ksf
rは、操舵力Fm、前輪転舵反力Fsf及び後輪転舵反
力Fsrが各々操舵軸21の回転トルクにもたらす影響
度合を示すものであり、係数Kmf及び係数Ksffは
常に正である。また、係数Ksfrは、左右後輪4.3
a、43bが左右前輪33a、33bに対し同相に転舵
されるとき正となり、左右後輪43a、43bが左右前
輪33a、33bに対し逆相に転舵されるとき負となる
。前輪転舵軸モータ制御回路51は、操舵変位量センサ
23に接続された前輪目標転舵量演算器57によって算
出されかつ操舵変位51 Y mに比例する制御量K 
m pf−Ymと、前輪転舵変位量センサ37に接続さ
れた前輪転舵変位量/Jili算器58によって算出さ
れかつ前輪転舵変位量Ysfに比例する制御MKspf
−Ysfを入力して、その値が正(又は負)のとき前輪
転舵軸32を右(又は左)回転させる回転制御量Ms 
f =Kmp f−Ym−Ks p f ・Ysfを表
す制御信号を出力する。なお、係数Kmpf及び係数K
spfは、操舵変位量Ym及び前輪転舵変位量Ysfが
各々前輪転舵軸32の回転角にもたらす影響度合を示す
ものであり、係数Kmpf及び係数Kspfはともに正
である。後輪転舵軸モータ制御回路52は、操舵変位量
センサ23に接続された後輪目標転舵量演算器59によ
って算出されかつ操舵変位量Ymに比例する制御量Km
pr−yH1と、後輪転舵変位量センサ47に接続され
た後輪転舵変位量演算器60によって算出されかつ後輪
転舵変位量Ysrに比例する制御JiKspr−Ysr
を入力して、その値が正(又は負)のとき後輪転舵軸4
2を右(又は左)回転させる回転制御量Ms r =K
mp r −Ym −Kspr−Ysrを表す制御信号
を出力する。なお、係数Kmpr及び係数Ksprは操
舵変位量Ym及び後輪転舵変位量’lsrが各々後輪転
舵軸42の回転角にもたらす影響度合を示すものであり
、係数Ksprは常に正である。また、係数Kmprは
、左右後輪43a、43bが左右前輪33a、33bに
対し同相に転舵されるとき正となり、左右後輪43a、
43bが左右前輪33a。
Note that the coefficient K m f , the coefficient Ksff, and the coefficient Ksf
r indicates the degree of influence each of the steering force Fm, the front wheel steering reaction force Fsf, and the rear wheel steering reaction force Fsr have on the rotational torque of the steering shaft 21, and the coefficient Kmf and the coefficient Ksff are always positive. In addition, the coefficient Ksfr is 4.3 for the left and right rear wheels.
When the left and right rear wheels 43a and 43b are steered in the same phase with respect to the left and right front wheels 33a and 33b, it becomes positive, and when the left and right rear wheels 43a and 43b are steered in the opposite phase with respect to the left and right front wheels 33a and 33b, it becomes negative. The front wheel turning shaft motor control circuit 51 controls a control amount K which is calculated by a front wheel target turning amount calculator 57 connected to the steering displacement amount sensor 23 and is proportional to the steering displacement 51 Y m.
m pf-Ym and a control MKspf calculated by the front wheel steering displacement amount/Jili calculator 58 connected to the front wheel steering displacement amount sensor 37 and proportional to the front wheel steering displacement amount Ysf.
-Ysf is input, and when the value is positive (or negative), the rotation control amount Ms that rotates the front wheel steering shaft 32 to the right (or left)
A control signal representing f = Kmp f - Ym - Ks p f ·Ysf is output. Note that the coefficient Kmpf and the coefficient K
spf indicates the degree of influence that the steering displacement amount Ym and the front wheel turning displacement amount Ysf each have on the rotation angle of the front wheel turning shaft 32, and both the coefficient Kmpf and the coefficient Kspf are positive. The rear wheel turning shaft motor control circuit 52 generates a control amount Km which is calculated by a rear wheel target turning amount calculator 59 connected to the steering displacement amount sensor 23 and is proportional to the steering displacement amount Ym.
pr-yH1 and a control JiKspr-Ysr calculated by the rear wheel turning displacement amount calculator 60 connected to the rear wheel turning displacement amount sensor 47 and proportional to the rear wheel turning displacement amount Ysr.
input, and if the value is positive (or negative), the rear wheel steering axis 4
Rotation control amount Ms r = K to rotate 2 to the right (or left)
A control signal representing mp r −Ym −Kspr−Ysr is output. Note that the coefficient Kmpr and the coefficient Kspr indicate the degree of influence that the steering displacement amount Ym and the rear wheel turning displacement amount 'lsr respectively have on the rotation angle of the rear wheel turning shaft 42, and the coefficient Kspr is always positive. Further, the coefficient Kmpr becomes positive when the left and right rear wheels 43a, 43b are steered in the same phase with respect to the left and right front wheels 33a, 33b;
43b is the left and right front wheels 33a.

33bに対し逆相に転舵されるとき負となる。It becomes negative when steered in the opposite phase to 33b.

上記のように構成した動力舵取装置の動作を、係数Km
p r及び係数Ksfrが正に設定されている場合につ
いて説明すると、車両が直進中、操舵ハンドル20がそ
の回転角Xmだけ左(又は右)方向に回動されると、操
舵ハンドル20の回動開始時においては操舵軸モータ2
2が操舵軸21を回転させていない、すなわち操舵軸2
1は基準位置にあるので、操舵軸21には操舵ハンドル
20の回動によって捩れが生じる。この操舵軸21の捩
れは歪みゲージより成る操舵力センサ24によって検出
されて、操舵力(又は反作用としての操舵反力)Fmと
して操舵力演算器53に供給される。操舵力演算器53
は操舵力Fmに係数Kmfを乗じた制御量Kmf−Fm
を操舵軸モータ制御回路50に出力する。操舵軸モータ
制御回路50は、操舵力演算器53から入力される制御
量Kmf−Fmと合成転舵反力演算器54から入力され
る制御量Ksff−Fsf+Ksfr−Fsrに基づい
て操舵軸21の回転制御量M m = K mf・Fm
−Ksff−Fsf−Ksfr−Fsrを表わす制御信
号を出力するが、操舵ハンドル20の回動開始時におい
ては前輪転舵軸32の前輪転舵反力Fsf及び後輪転舵
軸42の後輪転舵反力Fsrが零であるので、操舵軸モ
ータ22には操舵軸21の回転制御量Mm=Kmf −
Fmを表す制御信号が供給される。この制御信号に応じ
て、操舵軸モータ22ば操舵軸21を左(又は右)方向
に回転させるので、操舵軸21は操舵ハンドル20の回
動力向に回転し始める。
The operation of the power steering device configured as described above is determined by the coefficient Km
To explain the case where p r and the coefficient Ksfr are set to positive, when the steering wheel 20 is turned in the left (or right) direction by the rotation angle Xm while the vehicle is traveling straight, the rotation of the steering wheel 20 is At the start, the steering shaft motor 2
2 does not rotate the steering shaft 21, that is, the steering shaft 2
1 is at the reference position, the steering shaft 21 is twisted by rotation of the steering handle 20. This torsion of the steering shaft 21 is detected by a steering force sensor 24 consisting of a strain gauge, and is supplied to a steering force calculator 53 as a steering force (or a steering reaction force as a reaction) Fm. Steering force calculator 53
is the control amount Kmf - Fm, which is the steering force Fm multiplied by the coefficient Kmf
is output to the steering shaft motor control circuit 50. The steering shaft motor control circuit 50 controls the rotation of the steering shaft 21 based on the control amount Kmf-Fm input from the steering force calculator 53 and the control amount Ksff-Fsf+Ksfr-Fsr input from the composite steering reaction force calculator 54. Control amount M m = K mf・Fm
A control signal representing -Ksff-Fsf-Ksfr-Fsr is output, but when the steering wheel 20 starts rotating, the front wheel steering reaction force Fsf of the front wheel steering shaft 32 and the rear wheel steering reaction force of the rear wheel steering shaft 42 are output. Since the force Fsr is zero, the steering shaft motor 22 has the rotation control amount Mm=Kmf − of the steering shaft 21.
A control signal representing Fm is provided. In response to this control signal, the steering shaft motor 22 rotates the steering shaft 21 in the left (or right) direction, so that the steering shaft 21 begins to rotate in the direction of the turning force of the steering handle 20.

この回転により、操舵変位量センサ23からの操舵軸2
1の検出操舵変位fjl Y mは前輪目標転舵量演算
器57に入力され、前輪目標転舵量演算器57は、係数
Kmpfを上記検出操舵変位MY mに乗じた制御量K
mpf−Ymを前輪転舵軸モータ制御回路51に出力す
る。このとき、前輪転舵軸32の転舵変位量Ysfは零
であるので、前輪転舵軸モータ制御回路51は前輪転舵
軸32の回転制御量Ms f =Kmp f −Ymを
表す制御信号を前輪転舵軸モータ30に出力し、前輪転
舵軸モータ30が前輪転舵軸32を右(又は左)方向に
回転させ始める。この回転により、前輪転舵軸32の回
転に伴う前輪転舵変位量Ysfが零より大きく (又は
小さく)なって、前輪転舵変位量演算器58は前輪転舵
変位量Ysfに係数Kspfを乗じた制御量Kspf・
Ysfを前輪転舵軸モータ制御回路51に出力し、この
制御量Kspf・Ysfは前輪転舵変位量Ysfの増加
(又は減少)に従って除々に大きく (小さく)なるの
で、前輪転舵!ll]32の回転制御IMs f =K
mp f −Ym−K s p f−Y s fを表す
制御信号の正(又は負)のレベルが除々に小さくなり、
前輪転舵軸32の転舵変位量YsfがYs f =Km
p f −Ym/Kspfの関係になった回転位置にて
前輪転舵軸32の回転は停止する。この前輪転舵軸32
の右(又は左)回転はビニオン31を介してランク軸3
4に伝達されて、ラック軸34を左(又は右)方向に変
位させる。ラック軸34の左(又は右)方向の変位は左
右タイロッド35a、35b及び左右ナックルアーム3
6a、36bを介して左右前輪33a、33bに伝達さ
れて、左右前輪33a。
Due to this rotation, the steering shaft 2 from the steering displacement amount sensor 23
The detected steering displacement fjl Y m of 1 is input to the front wheel target turning amount calculator 57, and the front wheel target turning amount calculator 57 calculates the control amount K by multiplying the detected steering displacement MY m by a coefficient Kmpf.
mpf-Ym is output to the front wheel steered shaft motor control circuit 51. At this time, since the steering displacement amount Ysf of the front wheel steering shaft 32 is zero, the front wheel steering shaft motor control circuit 51 outputs a control signal representing the rotation control amount Ms f =Kmp f - Ym of the front wheel steering shaft 32. The output is output to the front wheel steered shaft motor 30, and the front wheel steered shaft motor 30 starts rotating the front wheel steered shaft 32 in the right (or left) direction. Due to this rotation, the front wheel steering displacement amount Ysf due to the rotation of the front wheel steering shaft 32 becomes larger (or smaller) than zero, and the front wheel steering displacement amount calculator 58 multiplies the front wheel steering displacement amount Ysf by the coefficient Kspf. control amount Kspf・
Ysf is output to the front wheel steering shaft motor control circuit 51, and this control amount Kspf/Ysf gradually increases (decreases) as the front wheel steering displacement amount Ysf increases (or decreases), so the front wheels are steered! ll]32 rotation control IMs f =K
The positive (or negative) level of the control signal representing mp f - Ym - K s p f - Y s f gradually decreases,
The steering displacement amount Ysf of the front wheel steering shaft 32 is Ys f =Km
The rotation of the front wheel steering shaft 32 stops at the rotational position where the relationship p f -Ym/Kspf is achieved. This front wheel steering shaft 32
The right (or left) rotation of
4 to displace the rack shaft 34 in the left (or right) direction. The displacement of the rack shaft 34 in the left (or right) direction is caused by the left and right tie rods 35a, 35b and the left and right knuckle arms 3.
6a, 36b to the left and right front wheels 33a, 33b, and the left and right front wheels 33a.

33bを左(又は右)方向に転舵する。33b to the left (or right).

また、操舵変位量センサ23からの操舵軸21の検出操
舵変位NYmは後輪目標転舵量演算器59にも入力され
、後輪目標転舵量演算器59は、係数Kmprを上記検
出操舵変位量Ymに乗じた制御量Kmp r −Ymを
後輪転舵軸モータ制御回路52に出力する。このとき、
後輪転舵軸42の転舵変位量Ysrは零であるので、後
輪転舵軸モータ制御回路52は後輪転舵軸42の回転制
御量Ms r=Kmp r−Ymを表す制御信号を後輪
転舵軸モータ40に出力し、後輪転舵軸モータ40が後
輪転舵軸42を右(又は左)方向に回転させ始める。こ
の回転により、後輪転舵軸42の回転に伴う後輪転舵変
位量Ysrが零より大きく (又は小さく)なって、後
輪転舵変位量演算器60は、後輪転舵変位量Y s r
に係数Ksprを乗じた制御量Kspr−Ysrを後輪
転舵軸モータ制御回路52に出力し、この制御量Ksp
r−Ysrは後輪転舵変位量Ysrの増加(又は減少)
に従って除々に大きく (又は小さく)なるので、後輪
転舵軸42の回転制御量Ms r =Kmp r −Y
m −Kspr−Ysrを表す制御信号の正(又は負)
のレベルが除々に小さくなり、後輪転舵軸42の転舵変
位1YsrがYs r =Kmp r −Ym/Ksp
rの関係になった回転位置にて後輪転舵軸42の回転は
停止する。この後輪転舵軸42の右(又は左)回転はビ
ニオン41を介してランク軸44に伝達されて、ラック
軸44を左(又は右)方向に変位させる。ランク軸44
の左(又は右)方向の変位は左右タイロッド4.5a、
45b及び左右ナックルアーム46a、46bを介して
左右後輪43a、43bに伝達されて、左右後輪43a
The detected steering displacement NYm of the steering shaft 21 from the steering displacement amount sensor 23 is also input to the rear wheel target turning amount calculator 59, and the rear wheel target turning amount calculator 59 converts the coefficient Kmpr into the detected steering displacement The control amount Kmp r −Ym multiplied by the amount Ym is output to the rear wheel steering shaft motor control circuit 52 . At this time,
Since the steering displacement amount Ysr of the rear wheel steering shaft 42 is zero, the rear wheel steering shaft motor control circuit 52 uses a control signal representing the rotation control amount Ms r=Kmp r−Ym of the rear wheel steering shaft 42 to steer the rear wheels. The output is output to the shaft motor 40, and the rear wheel steering shaft motor 40 starts rotating the rear wheel steering shaft 42 in the right (or left) direction. Due to this rotation, the rear wheel steering displacement amount Ysr due to the rotation of the rear wheel steering shaft 42 becomes larger (or smaller) than zero, and the rear wheel steering displacement amount calculator 60 calculates the rear wheel steering displacement amount Ysr.
A control amount Kspr−Ysr multiplied by a coefficient Kspr is output to the rear wheel steering shaft motor control circuit 52, and this control amount Ksp
r-Ysr is an increase (or decrease) in the rear wheel turning displacement amount Ysr
Therefore, the rotation control amount of the rear wheel steering shaft 42 Ms r =Kmp r −Y
Positive (or negative) of the control signal representing m - Kspr - Ysr
gradually decreases, and the steering displacement 1Ysr of the rear wheel steering shaft 42 becomes Ys r =Kmp r -Ym/Ksp
The rotation of the rear wheel steering shaft 42 stops at the rotational position where the relationship of r is established. This right (or left) rotation of the rear wheel steering shaft 42 is transmitted to the rank shaft 44 via the pinion 41, displacing the rack shaft 44 in the left (or right) direction. Rank axis 44
The displacement in the left (or right) direction is caused by the left and right tie rods 4.5a,
45b and the left and right knuckle arms 46a, 46b to the left and right rear wheels 43a, 43b.
.

43bを左(又は右)方向に転舵する。43b to the left (or right).

一方、左右前輪33a、33bはその左(又は右)方向
の転舵により路面から右(又は左)方向への前輪転舵反
力Fsfを受けて、この前輪転舵反力Fsfが左右ナッ
クルアーム36a、36b、左右タイコンド35a、3
5b、ランク軸34及びビニオン31を介して前輪転舵
軸32に伝達される。この前輪転舵反力Fsfは前輪転
舵軸32を左(又は右)方向に回転させるように作用す
るので、前輪転舵軸モータ30が前輪転舵軸32を回転
させる力とは逆方向となり前輪転舵軸32には捩れが生
じる。この捩れは歪みゲージよりなる前輪転舵反力セン
サ38によって検出され、捩れ量に比例した前輪転舵反
力(又は反作用としての前輪転舵力)Fsfとして前輪
転舵反力演算器55に供給される。前輪転舵反力演算器
55は、前輪転舵反力(転舵力)Fsfに係数Ksff
を乗じた制御量Ksff−Fsfを合成転舵反力演算器
54に出力する。
On the other hand, the left and right front wheels 33a and 33b receive a front wheel steering reaction force Fsf from the road surface in the right (or left) direction due to their steering in the left (or right) direction, and this front wheel steering reaction force Fsf is applied to the left and right knuckle arms. 36a, 36b, left and right tie condoms 35a, 3
5b, is transmitted to the front wheel steering shaft 32 via the rank shaft 34 and the binion 31. This front wheel steering reaction force Fsf acts to rotate the front wheel steering shaft 32 in the left (or right) direction, so the front wheel steering shaft motor 30 rotates the front wheel steering shaft 32 in the opposite direction. Twisting occurs in the front wheel steering shaft 32. This torsion is detected by a front wheel steering reaction force sensor 38 consisting of a strain gauge, and is supplied to a front wheel steering reaction force calculator 55 as a front wheel steering reaction force (or a front wheel steering force as a reaction) Fsf proportional to the amount of twist. be done. The front wheel steering reaction force calculator 55 calculates a coefficient Ksff to the front wheel steering reaction force (steering force) Fsf.
The control amount Ksff−Fsf multiplied by 1 is output to the composite steering reaction force calculator 54.

また、左右後輪43a、43bはその左(又は右)方向
の転舵により路面から右(又は左)方向への後輪転舵反
力Fsrを受けて、この後輪転舵反力Fsrが左右ナッ
クルアーム46a、46b。
In addition, the left and right rear wheels 43a and 43b receive a rear wheel steering reaction force Fsr from the road surface in the right (or left) direction due to the steering in the left (or right) direction, and this rear wheel steering reaction force Fsr is applied to the left and right knuckles. Arms 46a, 46b.

左右タイロッド45a、45b、ラック軸44及びビニ
オン41を介して後輪転舵軸42を左(または右)方向
に回転させるように作用するので、後輪転舵軸モータ4
0が後輪転舵軸42を回転させる力とは逆方向となり後
輪転舵軸42には捩れが生じる。この捩れは歪みゲージ
よりなる後輪転舵反力センサ48によって検出され、捩
れ量に比例した後輪転舵反力(又は反作用としての後輪
転舵力)Fsrとして後輪転舵反力演算器56に供給さ
れる。後輪転舵反力演算器56は、後輪転舵反力(後輪
転舵力)Fsrに係数Ksfrを乗じた制御量Ksfr
−Fsrを合成転舵反力演算器54に出力する。
The rear wheel steering shaft motor 4 acts to rotate the rear wheel steering shaft 42 in the left (or right) direction via the left and right tie rods 45a, 45b, the rack shaft 44, and the binion 41.
0 is in the opposite direction to the force that rotates the rear wheel steering shaft 42, and the rear wheel steering shaft 42 is twisted. This torsion is detected by a rear wheel steering reaction force sensor 48 consisting of a strain gauge, and is supplied to a rear wheel steering reaction force calculator 56 as a rear wheel steering reaction force (or rear wheel steering force as a reaction) Fsr proportional to the amount of twist. be done. The rear wheel steering reaction force calculator 56 calculates a control amount Ksfr obtained by multiplying the rear wheel steering reaction force (rear wheel steering force) Fsr by a coefficient Ksfr.
-Fsr is output to the composite steering reaction force calculator 54.

そして、合成転舵反力演算器54が前輪転舵反力演算器
55からの制御1Ksff−Fsf及び後輪転舵反力演
算器56からの制御量K s f r・Fsrを加算合
成して、合成した制御量Ksff・Fsf+Ksfr・
Fsrを操舵軸モータ制御量12&50に出力する。操
舵軸モータ制御回路50は、操舵力演算器53から入力
される制御量Kmf−Fmと合成転舵反力演算器54か
ら入力される制御fjlKsfr−Fsr+Ksfr−
Fsrに基づいて、操舵軸21の回転制御量M m =
 K m f・Fm−Ksff−Fsf−Ksfr−F
srを表す制御信号を操舵軸モータ22に出力して、操
舵軸モータ22がこの制御信号に基づいて操舵軸21の
回転を制御する。この操舵軸21の左(又は右)方向の
回転動作において、制御量Kmf・Fmは操舵軸21を
左(又は右)方向に回転させるように作用して操舵軸2
1が左(又は右)方向に回転すると、操舵軸21の捩れ
量は減少するので、この捩れ量に比例する操舵力(操舵
反力)Fmは小さく (又は大きく)なり、制御量Km
f ・Fmも小さく (又は大きく)なる。一方、左右
前輪33a、33bに付与される前輪転舵反力(転舵力
)Fsf及び左右後輪43a、43bに付与される後輪
転舵反力(後輪転舵力) Fsrは各々前輪転舵変位量
Ysf及び後輪転舵変位量Ysrが増加(又は減少)す
るに従って太き((又は小さく)なるので、操舵軸21
を右(又は左)方向に回転させるように作用する制御量
Ksff−Fsf+Ksfr−Fsrは大きく (又は
小さく)なる。その結果、操舵軸21を左(又は右)回
転させるための回転制御量Mm=Km f −Fm −
Ksff−Fsf−Ksfr−Fsrは除々に小さく 
(又は大きく)なり、制御量Kmf−Fmと制御1Ks
ff・Fsf+Ksfr−Fsrが等しくなった回転位
置にて操舵軸21の回転は停止する。
Then, the composite steering reaction force calculator 54 adds and synthesizes the control 1Ksff-Fsf from the front wheel steering reaction force calculator 55 and the control amount Ksfr·Fsr from the rear wheel steering reaction force calculator 56, The synthesized control amount Ksff・Fsf+Ksfr・
Fsr is output to the steering shaft motor control amount 12&50. The steering shaft motor control circuit 50 uses the control amount Kmf-Fm input from the steering force calculator 53 and the control fjlKsfr-Fsr+Ksfr- input from the composite steering reaction force calculator 54.
Based on Fsr, the rotation control amount M m of the steering shaft 21 =
K m f・Fm-Ksff-Fsf-Ksfr-F
A control signal representing sr is output to the steering shaft motor 22, and the steering shaft motor 22 controls the rotation of the steering shaft 21 based on this control signal. In this rotational movement of the steering shaft 21 in the left (or right) direction, the control amount Kmf/Fm acts to rotate the steering shaft 21 in the left (or right) direction.
1 rotates in the left (or right) direction, the amount of twist of the steering shaft 21 decreases, so the steering force (steering reaction force) Fm proportional to this amount of twist becomes smaller (or larger), and the control amount Km
f・Fm also becomes smaller (or larger). On the other hand, the front wheel steering reaction force (steering force) Fsf applied to the left and right front wheels 33a, 33b and the rear wheel steering reaction force (rear wheel steering force) Fsr applied to the left and right rear wheels 43a, 43b are respectively front wheel steering. As the displacement amount Ysf and the rear wheel turning displacement amount Ysr increase (or decrease), the steering shaft 21 becomes thicker (or smaller).
The control amount Ksff-Fsf+Ksfr-Fsr that acts to rotate the motor in the right (or left) direction becomes larger (or smaller). As a result, the rotation control amount Mm for rotating the steering shaft 21 to the left (or right) = Km f −Fm −
Ksff-Fsf-Ksfr-Fsr gradually becomes smaller.
(or larger), the control amount Kmf-Fm and the control 1Ks
The rotation of the steering shaft 21 stops at the rotational position where ff·Fsf+Ksfr−Fsr becomes equal.

そして、この状態にて運転者が操舵ハンドル20をさら
に左(又は右)回転させるために操舵ハンドル20に左
(又は右)回転方向の力をさらに付与すると、制御量)
(mf−Fmが制御量Ksff ・Fsf+Ksfr−
Fsrより大きく (又は小さく)なって操舵軸21は
さらに左(又は右)方向に回転する。また、運転者が操
舵ハンドル20に付与する力を弱めると、制御量Ksf
f−F5[+1(sfr−Fsrが制御量Kmf・Fm
より大きく (又は小さく)なって操舵軸21は右(又
は左)方向に回転し始める。
In this state, when the driver further applies a force in the left (or right) rotation direction to the steering wheel 20 in order to further rotate the steering wheel 20 left (or right), the control amount)
(mf-Fm is the control amount Ksff ・Fsf+Ksfr-
becomes larger (or smaller) than Fsr, and the steering shaft 21 further rotates to the left (or right). Furthermore, when the driver weakens the force applied to the steering wheel 20, the control amount Ksf
f-F5 [+1 (sfr-Fsr is the control amount Kmf・Fm
becomes larger (or smaller), and the steering shaft 21 begins to rotate to the right (or left).

また、係数Kmpr及び係数Ksfrが負に設定されて
いる場合について説明する。操舵ハンドル20が左(又
は右)方向に回動されると、左右前輪33a、33bは
上述の場合と同様、左(又は右)方向に転舵されるが、
左右後輪43a、43bは、係数)(mp rが負なの
で上述の場合とは逆に、右(又は左)方向すなわち左右
前輪33a。
Furthermore, a case will be described in which the coefficient Kmpr and the coefficient Ksfr are set to negative values. When the steering wheel 20 is rotated in the left (or right) direction, the left and right front wheels 33a, 33b are steered in the left (or right) direction as in the case described above.
The left and right rear wheels 43a, 43b are fixed in the right (or left) direction, that is, the left and right front wheels 33a, contrary to the above case because the coefficient) (mp r is negative).

33bに対し逆相に転舵される。この転舵により、左右
後輪43a、43bに働く後輪転舵反力173rは上述
の場合とは逆方向に働(ことになり、後輪転舵反力FS
rは上述の場合とは正負の符号が逆となるが、係数Ks
frが負に設定されているので制御量Ksfr−Fsr
の正負の符号は上述 “の場合と同じになり、制御量K
s f r −Fs rは上述の場合と同様操舵軸21
を右(又は左)方向に回転させるように作用する。
33b is steered in the opposite phase. Due to this steering, the rear wheel steering reaction force 173r acting on the left and right rear wheels 43a, 43b acts in the opposite direction to the above case (this means that the rear wheel steering reaction force FS
The sign of r is opposite to that in the above case, but the coefficient Ks
Since fr is set to negative, the control amount Ksfr−Fsr
The positive and negative signs of are the same as in the above case, and the control amount K
s f r −Fs r is the steering shaft 21 as in the above case.
It acts to rotate the motor in the right (or left) direction.

このように、運転者が操舵ハンド/l/20を回動操作
しているとき、操舵ハンドル20を回動位置に保持して
いるとき、及び操舵ハンドル20を中立位置に戻すとき
、前輪転舵反力Fsf及び後輪転舵反力Fsrに基づく
制御量Ksrf−Fsf+Ksfr−Fsrが操舵ハン
ドル20を中立位置に戻すように作用するので、操舵ハ
ンドル20には前輪転舵反力Fsf及び後輪転舵反力F
srに応じた操舵反力、保舵反力及び操舵ハンドル20
の復元力が付与される。
In this way, when the driver rotates the steering hand /l/20, when the driver holds the steering wheel 20 in the rotation position, and when the driver returns the steering wheel 20 to the neutral position, the front wheels are turned. Since the control amount Ksrf-Fsf+Ksfr-Fsr based on the reaction force Fsf and the rear wheel steering reaction force Fsr acts to return the steering wheel 20 to the neutral position, the front wheel steering reaction force Fsf and the rear wheel steering reaction force Fsr are applied to the steering wheel 20. Force F
Steering reaction force, steering reaction force and steering handle 20 according to sr
of resilience is given.

なお、上記基本構成に前輪転舵変位速度及び後輪転舵変
位速度による制御を付加するようにすれば、前輪転舵軸
モータ30による前輪転舵軸32及び後輪転舵軸モータ
40による後輪転舵軸42の回転をさらに安定に制御で
きる。この場合、前輪転舵変位量Ysf及び後輪転舵変
位量Ysrを各々微分し、各微分結果に所定の係数を乗
じて、乗算結果を各々前輪転舵軸32の回転制御量Ms
f及び後輪転舵軸42の回転制御量Msrに付加するよ
うにする。
Note that if control based on the front wheel steering displacement speed and the rear wheel steering displacement speed is added to the above basic configuration, the front wheel steering shaft 32 by the front wheel steering shaft motor 30 and the rear wheel steering by the rear wheel steering shaft motor 40 can be controlled. The rotation of the shaft 42 can be controlled more stably. In this case, the front wheel steering displacement amount Ysf and the rear wheel steering displacement amount Ysr are each differentiated, each differentiation result is multiplied by a predetermined coefficient, and the multiplication result is used as the rotation control amount Ms of the front wheel steering shaft 32.
f and the rotation control amount Msr of the rear wheel steering shaft 42.

b、変数の決定及びその意味 上記基本構成に示された本発明の具体的実施例について
説明する前に、上記基本構成の係数)(mr、  Ks
 f f、  Ks f r、  Kmp f、 Km
p r。
b. Determination of variables and their meanings Before explaining the specific embodiments of the present invention shown in the above basic structure, the coefficients of the above basic structure) (mr, Ks
f f, Ks f r, Kmp f, Km
pr.

Kspf、Kspr及び具体的実施例にて計算される諸
変数の算出方法及びその性質について図面を用いて説明
すると、第3図は第2図の本発明の基本構成を等価回路
で表した制御ブロック図である。
The calculation method and properties of Kspf, Kspr, and various variables calculated in specific examples will be explained using drawings. Figure 3 is a control block that represents the basic configuration of the present invention in Figure 2 as an equivalent circuit. It is a diagram.

減算器50a、51a、52aは各々操舵軸モータ制御
回路50.前輪転舵軸モータ制御回路51、後輪転舵軸
モータ制御回路52に対応してそれらの減算作用を示す
もので、乗算器53a、55a、56a、57a、58
a、59a、60aは、各々操舵力演算器53.前輪転
舵反力演算器55、後輪転舵反力演算器56.前輪目標
転舵量演算器57.前輪転舵変位量演算器58.後輪目
標転舵量演算器59.後輪転舵変位量演算器60に対応
してそれらの乗算作用を示すもので、加算器54aは合
成転舵反力演算器54に対応してその加算作用を示すも
のである。また、ブロック22a、30a、40aは各
々操舵軸モータ22゜前輪転舵軸モータ30.後輪転舵
軸モータ40に対応するものであり、関数Km/S、K
s f/S。
The subtracters 50a, 51a, and 52a are each connected to a steering shaft motor control circuit 50. This shows the subtraction effect of the front wheel steered shaft motor control circuit 51 and the rear wheel steered shaft motor control circuit 52, and the multipliers 53a, 55a, 56a, 57a, 58
a, 59a, and 60a are steering force calculators 53.a, 59a, and 60a, respectively. Front wheel steering reaction force calculator 55, rear wheel steering reaction force calculator 56. Front wheel target steering amount calculator 57. Front wheel steering displacement amount calculator 58. Rear wheel target steering amount calculator 59. The multiplication operation of the adder 54a is shown in correspondence with the rear wheel turning displacement amount calculation unit 60, and the addition effect of the adder 54a is shown in correspondence to the composite steering reaction force calculation unit 54. Further, the blocks 22a, 30a, and 40a are a steering shaft motor 22 and a front wheel steering shaft motor 30, respectively. It corresponds to the rear wheel steering shaft motor 40, and the functions Km/S, K
s f/S.

K S f / Sは各々操舵軸モータ22、前輪転舵
軸モータ30、後輪転舵軸モータ40の各回転制御特性
を示すものである。
K S f /S represents the rotation control characteristics of the steering shaft motor 22, front wheel turning shaft motor 30, and rear wheel turning shaft motor 40, respectively.

減算器61は操舵ハンドル20に付与される操舵力によ
って回転する操舵軸21の回転変位1xmと操舵軸モー
タ22によって回転する操舵軸21の操舵変位量Ymと
の差に応じて操舵軸21に生じている捩れ量X m −
Y mを表す等節回路であり、乗算器62は捩れ量X 
m −Y mに比例する操舵力及び操舵力の反作用とし
て操舵軸モータ22から操舵軸21に付与される操舵反
力を算出する等節回路であり、定数1 / Cmは操舵
軸21の弾性係数である。減算器63は前輪転舵軸モー
タ30の転舵力によって回転する前輪転舵軸32の前輪
転舵変位量Ysfと左右前輪33a、33bの前輪転舵
量に応じた前輪転舵tl!332の回転変位量Xsfと
の差に応じて前輪転舵軸32に生じている捩れ量Ysf
−Xsfを表す等節回路であり、乗算器64は捩れ1l
Ysf−Xsfに比例する前輪転舵力及び前輪転舵力の
反作用として左右前輪33a、33bからの前輪転舵軸
32に付与される前輪転舵反力を算出する等節回路であ
り、定数1/Csfは前輪転舵軸32の弾性係数である
The subtracter 61 generates a value on the steering shaft 21 according to the difference between the rotational displacement 1xm of the steering shaft 21 rotated by the steering force applied to the steering handle 20 and the steering displacement amount Ym of the steering shaft 21 rotated by the steering shaft motor 22. amount of twist X m −
The multiplier 62 is an isochoral circuit representing the amount of twist
It is an equinodal circuit that calculates a steering force proportional to m - Y m and a steering reaction force applied from the steering shaft motor 22 to the steering shaft 21 as a reaction to the steering force, and the constant 1/Cm is the elastic coefficient of the steering shaft 21. It is. The subtracter 63 calculates the front wheel steering tl! according to the front wheel steering displacement amount Ysf of the front wheel steering shaft 32 rotated by the steering force of the front wheel steering shaft motor 30 and the front wheel steering amount of the left and right front wheels 33a and 33b! The amount of twist Ysf occurring in the front wheel steering shaft 32 according to the difference from the amount of rotational displacement Xsf of 332
-Xsf, and the multiplier 64 is a torsion 1l
It is an isometric circuit that calculates the front wheel steering reaction force that is applied to the front wheel steering shaft 32 from the left and right front wheels 33a and 33b as a reaction of the front wheel steering force and the front wheel steering force that is proportional to Ysf-Xsf, and has a constant of 1. /Csf is the elastic coefficient of the front wheel steering shaft 32.

減算器65は後輪転舵軸モータ40の後輪転舵力によっ
て回転する後輪転舵軸42の後輪転舵変位1iYsrと
左右後輪43a、43t)の後輪転舵量に応じた後輪転
舵軸42の後輪回転変位量X Srとの差に応じて後輪
転舵軸42に生じている捩れ量Y s r  X s 
rを表す等節回路であり、乗算器66は捩れ量Ysr−
Xsrに比例する後輪転舵力及び後輪転舵力の反作用と
して左右後輪43a、43bから後輪転舵軸42に付与
される後輪転舵反力を算出する等節回路であり、定数1
/Csrは後輪転舵軸42の弾性係数である。
The subtractor 65 calculates the rear wheel steering shaft 42 according to the rear wheel steering displacement 1iYsr of the rear wheel steering shaft 42 rotated by the rear wheel steering force of the rear wheel steering shaft motor 40 and the rear wheel steering amount of the left and right rear wheels 43a, 43t. The amount of twist that occurs in the rear wheel steering shaft 42 according to the difference from the amount of rotational displacement of the rear wheel X Sr
r, and the multiplier 66 is a torsion amount Ysr-
It is an isometric circuit that calculates the rear wheel steering force proportional to Xsr and the rear wheel steering reaction force applied from the left and right rear wheels 43a, 43b to the rear wheel steering shaft 42 as a reaction of the rear wheel steering force, and the constant is 1.
/Csr is the elastic coefficient of the rear wheel steering shaft 42.

上記のように構成された制御ブロックにおいて、システ
ムの均合いく定常状態)を考えると次式が成立する。
In the control block configured as described above, considering the balanced steady state of the system, the following equation holds true.

Kmf−Fm=Ksrf−Fsf+Ksfr−Fsr・
・・ (式1) %式% (式2) Kmpr−Ym=Kspr−Ysr−−−(式3) また、操舵軸21.前輪転舵軸32.後輪転舵軸42に
各々付与される操舵力(操舵反力)Fm。
Kmf-Fm=Ksrf-Fsf+Ksfr-Fsr・
... (Formula 1) %Formula % (Formula 2) Kmpr-Ym=Kspr-Ysr---(Formula 3) Also, the steering shaft 21. Front wheel steering shaft 32. Steering force (steering reaction force) Fm applied to each rear wheel steering shaft 42.

前輪転舵力(前輪転舵反力)Fsf、後輪転舵力(後輪
転舵反力)Fsrと、上記各軸21,32゜42に発生
する各捩れ量Xm−Ym、  Ys r−Xs f、 
Ys r−Xs rとの関係を各弾性係数17Cm、1
/Cs f、1/Cs rを用いて表すと次のようにな
る。
Front wheel steering force (front wheel steering reaction force) Fsf, rear wheel steering force (rear wheel steering reaction force) Fsr, and each twist amount generated on each of the above-mentioned axes 21, 32° 42 Xm-Ym, Ysr-Xsf ,
The relationship between Ys r - Xs r is determined by each elastic modulus of 17Cm, 1
When expressed using /Cs f and 1/Cs r, it becomes as follows.

Fm−(1/Cm)−(Xm−Ym)  ・・(式4) %式% f)・・・ (式5) Fs r= (1/Cs r)−(Ys r−Xsr)
・・・ (弐6) ここで、左右前輪33a、33b及び左右後輪43a、
43bが路面に接触していない、すなわち路面からの前
輪転舵反力及び後輪転舵反力を受けない状R(F s 
f =0 +  F s r =O)において、マスク
部Aから第1スレーブ部B1及び第2スレーブB2へ各
々伝達される回転角の比、すなわち操舵ハンドル20の
回動量に応じた操舵軸210回転変位量Xmに対する左
右前輪33a、33b及び左右後輪43a、43bの各
転舵量に応じた前輪転舵軸32及び後輪転舵軸42の各
回転変位11Xsf、Xsrの比を各々前輪ステアリン
グギヤ比αf及び後輪ステアリングギヤ比αrとして定
義すれば、これらのギヤ比αf、αrは(式1)〜(弐
〇)より次式で表される。
Fm-(1/Cm)-(Xm-Ym)...(Formula 4) % formula% f)...(Formula 5) Fs r= (1/Cs r)-(Ys r-Xsr)
... (26) Here, the left and right front wheels 33a, 33b and the left and right rear wheels 43a,
43b is not in contact with the road surface, that is, the state R (F s
f = 0 + F s r =O), the ratio of the rotation angles transmitted from the mask portion A to the first slave portion B1 and the second slave B2, that is, the steering shaft 210 rotations according to the amount of rotation of the steering handle 20. The ratio of each rotational displacement 11Xsf, Xsr of the front wheel steering shaft 32 and the rear wheel steering shaft 42 according to the respective steering amounts of the left and right front wheels 33a, 33b and left and right rear wheels 43a, 43b with respect to the displacement amount Xm is determined as the front wheel steering gear ratio. If defined as αf and rear wheel steering gear ratio αr, these gear ratios αf and αr are expressed by the following formula from (Formula 1) to (2〇).

cx f =X s f /Xm=Kmp f /K 
s p f・・・ (式7) %式% ・・・ (式8) なお、上記(式8)で示されるように、後輪ステアリン
グギヤ比αrは、係数)(mprが正(又は負)のとき
、正(又は負)となる。そして、これらのギヤ比αf、
αrの値を変更することは、操舵ハンドル20の同一回
動量に対し、各々左右前輪33a、33b及び左右後輪
43a、43bの転蛇量を変更することを意味し、後述
の実施例では、これらのギヤ比αf、αrは操舵特性を
示す選択可能でかつ車速に応じて変化するパラメータと
して扱われる。
cx f =X s f /Xm=Kmp f /K
s p f... (Formula 7) % formula %... (Formula 8) As shown in the above (Formula 8), the rear wheel steering gear ratio αr is determined by the coefficient) (if mpr is positive (or negative) ), it becomes positive (or negative).Then, these gear ratios αf,
Changing the value of αr means changing the amount of rotation of the front left and right wheels 33a, 33b and the rear left and right wheels 43a, 43b for the same amount of rotation of the steering wheel 20. In the embodiments described below, These gear ratios αf and αr are selectable parameters that indicate steering characteristics and are treated as parameters that change depending on the vehicle speed.

また、左右前輪33a、33bが固定され(Xsf=0
)かつ左右後輪43a、43bが路面に接触していない
(Fsr=O)状態において、第1スレーブ部B1から
マスク部Aへ伝達される力の比すなわち前輪転舵反力F
s(に対する操舵反力Fmの比を前輪力逆送比βfとし
て定義すれば、この方運送比βfは(式1)より次式で
表される。
In addition, the left and right front wheels 33a and 33b are fixed (Xsf=0
) and the left and right rear wheels 43a, 43b are not in contact with the road surface (Fsr=O), the ratio of the force transmitted from the first slave part B1 to the mask part A, that is, the front wheel steering reaction force F
If the ratio of the steering reaction force Fm to s( is defined as the front wheel force reversal ratio βf, then this side transport ratio βf is expressed by the following equation from (Equation 1).

βf =Fm/F s f =Ks f f /Kmf
・・・ (式9) そして、この力逆送比β[を変更することは、同一前輪
転舵反力Fsfに対し、操舵反力Fmを変更することを
意味し、後述の実施例では、この力逆送比βrは操舵特
性を示す選択可能でかつ車速に応じて変化するパラメー
タとして扱われる。
βf =Fm/Fs f =Ks f f /Kmf
(Equation 9) Changing this force reverse transmission ratio β[ means changing the steering reaction force Fm for the same front wheel steering reaction force Fsf, and in the examples described below, This force reversal ratio βr is treated as a selectable parameter that indicates steering characteristics and changes depending on the vehicle speed.

また、左右前輪33a、33bが路面に接触しておらず
(Fsf=O)かつ左右後輪43a、43bが固定され
た(Xsr=0)状態において、第2スレーブB 2’
からマスク部Aへ伝達される力の比すなわち後輪転舵反
力Fsrに対する操舵反力Fmの比を後輪力逆送比βr
として定義すれば、この力運送比βrは(式1)より次
式で表わされる。
Further, in a state where the left and right front wheels 33a and 33b are not in contact with the road surface (Fsf=O) and the left and right rear wheels 43a and 43b are fixed (Xsr=0), the second slave B 2'
The ratio of the force transmitted from to the mask part A, that is, the ratio of the steering reaction force Fm to the rear wheel steering reaction force Fsr, is defined as the rear wheel force reverse transmission ratio βr.
If defined as , this force transport ratio βr is expressed by the following formula from (Formula 1).

βr=Fm/Fs r=Ks f r/Kmf ・−(
式10) なお、上記(式10)で示されるように、この力逆送比
βrは、係数Ksfrが正(又は負)のとき、正(又は
負)となる。そして、この方逆送比βrを変更すること
は、同一後輪転舵反力Fsrに対し操舵反力Fmを変更
することを意味し、後述の実施例では、この力逆送比β
rは操舵特性を示す選択可能でかつ車速に応じて変化す
るパラメータとして扱われる。
βr=Fm/Fs r=Ks f r/Kmf ・-(
(Formula 10) Note that, as shown in the above (Formula 10), this force reverse feed ratio βr is positive (or negative) when the coefficient Ksfr is positive (or negative). Changing this reverse feed ratio βr means changing the steering reaction force Fm for the same rear wheel steering reaction force Fsr, and in the embodiment described later, this force reverse feed ratio βr
r is treated as a selectable parameter that indicates the steering characteristic and changes depending on the vehicle speed.

さらに、操舵反力Fmと回転変位57 X mとの比を
操舵弾性係数Qmとし、前輪転舵反力(前輪転舵力)F
sfと回転変位量Xsfとの比を前輪転舵弾性係数Qs
fとし、かつ後輪転舵反力(後輪転舵力) Fsrと回
転変位量Xsrとの比を後輪転舵弾性係数Qsrとすれ
ば、次のような式が成立する Qm=Fm/Xm   ・・・ (式11)Qs f=
Fs f/Xs f ・・・ (式12)Qsr=Fs
r/X5r−−−(式13)なお、前輪転舵弾性係数Q
sfは左右前輪33a、33bのタイヤと路面との間の
摩擦により決定される定数であり、後輪転舵弾性係数Q
srは左右後輪43a、43bのタイヤと路面との間の
摩擦により決定される定数である。
Furthermore, the ratio between the steering reaction force Fm and the rotational displacement 57 X m is defined as the steering elastic coefficient Qm, and the front wheel turning reaction force (front wheel turning force) F
The ratio between sf and rotational displacement Xsf is the front wheel steering elastic coefficient Qs
If f is the ratio between the rear wheel steering reaction force (rear wheel steering force) Fsr and the amount of rotational displacement Xsr is the rear wheel steering elastic coefficient Qsr, then the following formula holds: Qm=Fm/Xm...・ (Formula 11) Qs f=
Fs f/Xs f... (Formula 12) Qsr=Fs
r/X5r --- (Formula 13) In addition, the front wheel steering elastic coefficient Q
sf is a constant determined by the friction between the tires of the left and right front wheels 33a, 33b and the road surface, and is the rear wheel steering elastic coefficient Q.
sr is a constant determined by the friction between the tires of the left and right rear wheels 43a, 43b and the road surface.

一方、回転変位量Xmは、(式1)、 (式2)。On the other hand, the amount of rotational displacement Xm is (Formula 1), (Formula 2).

(式4)、(式5)、 (式7)、 (式9)、(式1
0)に基づき、 Xm=X5 f 10: f + (Cm−βf+Cs
f/αf)  ・Fs f +Crn−βr−Fsr・
・・ (式14) のように表され、かつ同回転変位量1mは、(式1)、
(式3)、(式4)2(弐6)、(式8)。
(Formula 4), (Formula 5), (Formula 7), (Formula 9), (Formula 1
0), Xm=X5 f 10: f + (Cm-βf+Cs
f/αf) ・Fs f +Crn−βr−Fsr・
... is expressed as (Formula 14), and the same rotational displacement of 1 m is (Formula 1),
(Formula 3), (Formula 4) 2 (26), (Formula 8).

(式9)、 (式10)に基づき、 Xm =X s r/ctr + (Cm−βr+Cs
r/αr)  ・、Fsr+Cm−βf−Fsf・・・
 (式15〉 のようにも表される。ここで左右前輪33a、33bが
固定され(Xsf=0)かつ左右後輪43a、43bが
路面と接触していない(Fsr=0)状態における前輪
転舵弾性係数Qsfを値Qsr−とすれば、値Qsfo
oは(式l)、(式9)、 (式14)により、 Qs foo=txf−βf/(txf−βf−Cm+
Csf+a:f−βr−Cm−Fsr/Fs f)  
    ・・・ (式16)のように表される。また、
左右前輪33a、33bが路面に接触しておらず(Fs
f=O)かつ左右後輪43a、43bが固定された(X
sr=0)状態における後輪転舵弾性係数Qsrを値Q
srooとすれば、値Qsr■は(式1)、 (式1O
)、 (式15)により、 Qsroo=cxr−βr/(cxr−βr−Cm+C
sr+cxr−βf−Cm−Fsf/Fsr)    
  ・・・ (式17)のように表される。そして、操
舵弾性係数Qmを前輪転舵弾性係数Qsf及び後輪転舵
弾性係数Qsrを用いて表すと、操舵弾性係数Qmは、
(式1)、(式9)、(式10)、(式12)〜(式1
7)に基づき、 ・・−C式1と) のように表される。ここで、値Qsf■が左右前輪33
a、33bが固定された状態における前輪転舵弾性係数
であることを考えると、値Qsf■は通学時の前輪転舵
弾性係数Qsfに比べて極めて太きく  (Qs f 
oo>>Qs f’)となり、また値QsrOoが左右
後輪43a、43bが固定された状態における後輪転舵
弾性係数であることを考えると、値Q S rooは通
常時の後輪転舵弾性係数Qsrに比べて極めて太きく 
 (Qs roo>>Qs r)なるので、上記(式1
8)は次式のように変形される。
Based on (Formula 9) and (Formula 10), Xm = X s r/ctr + (Cm-βr+Cs
r/αr) ・, Fsr+Cm−βf−Fsf...
It is also expressed as (Formula 15).Here, the front wheel rotation in a state where the left and right front wheels 33a and 33b are fixed (Xsf=0) and the left and right rear wheels 43a and 43b are not in contact with the road surface (Fsr=0) If the rudder elastic coefficient Qsf is the value Qsr-, then the value Qsfo
Qs foo=txf-βf/(txf-βf-Cm+
Csf+a:f-βr-Cm-Fsr/Fs f)
... It is expressed as (Formula 16). Also,
The left and right front wheels 33a, 33b are not in contact with the road surface (Fs
f=O) and the left and right rear wheels 43a, 43b are fixed (X
The rear wheel steering elastic coefficient Qsr in the state (sr=0) is expressed as the value Q
sroo, the value Qsr■ is (Equation 1), (Equation 1O
), (Equation 15), Qsroo=cxr-βr/(cxr-βr-Cm+C
sr+cxr-βf-Cm-Fsf/Fsr)
... is expressed as (Equation 17). Then, when the steering elastic coefficient Qm is expressed using the front wheel steering elastic coefficient Qsf and the rear wheel steering elastic coefficient Qsr, the steering elastic coefficient Qm is
(Formula 1), (Formula 9), (Formula 10), (Formula 12) to (Formula 1
7), it is expressed as follows. Here, the value Qsf■ is 33 for the left and right front wheels.
Considering that a and 33b are the front wheel steering elastic coefficients in a fixed state, the value Qsf is extremely thick compared to the front wheel steering elastic coefficient Qsf when commuting to school (Qs f
oo >> Qs f'), and considering that the value QsrOo is the rear wheel steering elastic coefficient in a state where the left and right rear wheels 43a and 43b are fixed, the value Q S roo is the rear wheel steering elastic coefficient in normal conditions. Extremely thick compared to Qsr
(Qs roo >> Qs r), so the above (Equation 1
8) is transformed as shown below.

Qm=cxf ・βf−Qs f +cxr−βr−Q
Sr・・・ (式19) そして、これらの積αf・βf及び積αr・βrを各々
変更することは、操舵弾性係数Qm、すなわち操舵軸2
1の同一回転変位量Xmに対して必要とされる操舵力F
mの変更を意味し、後述の実施例では、これらの積αf
・βf及び積αr・βrは各々操舵特性を示す選択可能
でかつ車速に応じて変化するパラメータとして扱われる
Qm=cxf ・βf−Qs f +cxr−βr−Q
Sr... (Formula 19) Changing these products αf and βf and αr and βr respectively changes the steering elastic coefficient Qm, that is, the steering axis 2
Steering force F required for the same rotational displacement Xm of 1
m, and in the examples described later, the product αf
- βf and the products αr and βr are each treated as selectable parameters that indicate steering characteristics and change depending on the vehicle speed.

上記(式7)〜(式10)により逆に係数Kmpf、K
mpr、Ksff、Ksfrを求めると、係数Kmp 
f、Kmpr、Ks f f、Ks f rは次式のよ
うになる。
According to the above (Equations 7) to (Equations 10), the coefficients Kmpf, K
When calculating mpr, Ksff, and Ksfr, the coefficient Kmp
f, Kmpr, Ks f f, and Ks f r are expressed as follows.

Kmp f=αf−Ksp f ・・・ (式20)K
mpr=o:r−Kspr−−−(式21)Ksff=
βf−Kmf・・−C式22)Ks f r=βr・K
mf・・・ (式23)ここで、係数Kspf、Ksp
r、Kmf、Kmfは各々係数Kmp f、  Krn
p r、 Ks f f、  Ksfrに対する相対的
な値であるので、後述の実施例において定数として定義
し、係数Kmpf。
Kmp f=αf-Ksp f... (Formula 20)K
mpr=o:r-Kspr---(Formula 21) Ksff=
βf-Kmf...-C formula 22) Ks f r=βr・K
mf... (Formula 23) Here, the coefficients Kspf, Ksp
r, Kmf, Kmf are coefficients Kmp f, Krn, respectively
Since it is a relative value to pr, Ksf, and Ksfr, it is defined as a constant in the example described later, and is the coefficient Kmpf.

Kmpr、Ksff、Ksfrを各々前輪ステアリング
ギヤ比αf、後輪ステアリングギヤ比α「。
Kmpr, Ksff, and Ksfr are the front wheel steering gear ratio αf and the rear wheel steering gear ratio α', respectively.

前輪力逆送比βf及び後輪力逆送比βrにより変化する
値として扱う。
It is treated as a value that changes depending on the front wheel force reverse transmission ratio βf and the rear wheel force reverse transmission ratio βr.

C3具体的実施例 上記のように、前輪ステアリングギヤ比αf。C3 specific example As mentioned above, the front wheel steering gear ratio αf.

後輪ステアリングギヤ比αr、前輪力逆送比βr及び後
輪力運送比βrに基づいて、係数Km、pf。
Based on the rear wheel steering gear ratio αr, the front wheel force reverse transmission ratio βr, and the rear wheel power transfer ratio βr, the coefficients Km and pf are calculated.

Kmpr、Ksff、Ksfrをマイクロコンピュータ
によって演算して、左右前輪33a、33b及び左右後
輪43a、43bを各々転舵制御する本発明の具体的実
施例を図面を用いて説明すると、第4図は運転者が操作
するマスク部Aと、左右前@33a、33bを転舵する
第1スレーブ部B1と、左右後輪43b、43bを転舵
する第2スレーブ部B2と、マスク部A1第1スレーブ
部B1及び第2スレーブ部B2を電気的に制御する電気
制御装置Cとを備えた車両用動力舵取装置を示している
。マスク部A、第1スレーブ部B1及び第2スレーブ部
B2は、第2図の基本構成とほぼ同じに構成されている
ので、同一部分には同一符号を付して詳述しない。
A specific embodiment of the present invention in which the left and right front wheels 33a, 33b and the left and right rear wheels 43a, 43b are respectively controlled by calculating Kmpr, Ksff, and Ksfr by a microcomputer will be described with reference to the drawings. A mask part A operated by the driver, a first slave part B1 that steers the front left and right wheels 33a and 33b, a second slave part B2 that steers the left and right rear wheels 43b and 43b, and a first slave part B1 of the mask part A1. This figure shows a power steering device for a vehicle that includes an electric control device C that electrically controls a section B1 and a second slave section B2. The mask section A, the first slave section B1, and the second slave section B2 have substantially the same basic configuration as that shown in FIG. 2, so the same parts are given the same reference numerals and will not be described in detail.

マスク部Aは操舵ハンドル20.操舵軸21゜操舵軸モ
ータ22.操舵変位量センサ23及び操舵力センサ24
を備えている。操舵変位量センサ23は、操舵軸21の
回転に応じて中点の接地された抵抗器23a上を摺動す
る摺動子23bと、抵抗器23aの両端に接続された重
圧源23cとを備え、摺動子23bの左(又は右)回転
により操舵軸21の基準位置に対する回転角に比例した
操舵変位量Ymを表わす正(又は負)の電圧信号を出力
する。操舵力センサ24は、操舵軸21に貼着され同軸
21の捩れ量に応じて抵抗値の変化する歪みゲージ24
aと、この歪みゲージ24aを一辺として固定抵抗24
b、24c、24dで形成されるブリッジ回路と、歪み
ゲージ24a。
Mask part A is the steering handle 20. Steering shaft 21° Steering shaft motor 22. Steering displacement sensor 23 and steering force sensor 24
It is equipped with The steering displacement sensor 23 includes a slider 23b that slides on a grounded resistor 23a at a midpoint according to the rotation of the steering shaft 21, and a heavy pressure source 23c connected to both ends of the resistor 23a. , a positive (or negative) voltage signal representing a steering displacement amount Ym proportional to the rotation angle of the steering shaft 21 with respect to the reference position is output by left (or right) rotation of the slider 23b. The steering force sensor 24 is a strain gauge 24 that is attached to the steering shaft 21 and whose resistance value changes depending on the amount of twist of the coaxial shaft 21.
a, and a fixed resistor 24 with this strain gauge 24a as one side.
b, 24c, and 24d, and a strain gauge 24a.

抵抗24bの接続点及び抵抗24c、24dの接続点間
に接続された電圧源24eから成る。この操舵力センサ
24は歪みゲージ24a、抵抗24dの接続点から操舵
ハンドル20の左(又は右)回転に応じ操舵軸21に発
生する捩れ量に比例した操舵力Fmを表す正(又は負)
の電圧信号を出力している。なお、抵抗24b、24C
の接続点は接地されている。
It consists of a voltage source 24e connected between the connection point of the resistor 24b and the connection points of the resistors 24c and 24d. The steering force sensor 24 detects a positive (or negative) steering force Fm that is proportional to the amount of twist generated on the steering shaft 21 in response to left (or right) rotation of the steering wheel 20 from the connection point between the strain gauge 24a and the resistor 24d.
outputs a voltage signal. In addition, resistors 24b and 24C
The connection point of is grounded.

第1スレーブ部B1は前輪転舵軸モータ30゜ピニオン
31.前輪転舵軸32.左右前輪33a。
The first slave part B1 includes a front wheel steering shaft motor 30° pinion 31. Front wheel steering shaft 32. Left and right front wheels 33a.

33b、ラック軸34、左右タイロッド35a。33b, rack shaft 34, and left and right tie rods 35a.

35b、左右ナックルアーム36a、36b、前輪転舵
変位量センサ37及び前輪転舵反力センサ38を備えて
いる。前輪転舵変位量センサ37は、前輪転舵軸32の
回転に応じて中点の接地された抵抗器37a上を摺動す
る摺動子37bと、抵抗器37aの両端に接続された電
圧源37cとを備え、摺動子37bの右(又は左)回転
すなわち左右前輪33a、33bの左(又は右)転舵に
より前輪転舵軸32の回転角に比例した前輪転舵変位量
Ysfを表わす正(又は負)の電圧信号を出力する。前
輪転舵反力センサ38は、前輪転舵軸32に貼着され同
軸32の捩れ量に応じて抵抗値の変化する歪みゲージ3
8aと、この歪みゲージ38aを一辺として固定抵抗3
8b、38c、38dで形成されるブリッジ回路と、歪
みゲージ38a1抵抗38bの接続点及び抵抗38C,
38dの接続点間に接続された電圧源38eから成る。
35b, left and right knuckle arms 36a, 36b, a front wheel steering displacement amount sensor 37, and a front wheel steering reaction force sensor 38. The front wheel steering displacement amount sensor 37 includes a slider 37b that slides on a grounded resistor 37a at a midpoint according to rotation of the front wheel steering shaft 32, and a voltage source connected to both ends of the resistor 37a. 37c, and represents a front wheel steering displacement amount Ysf proportional to the rotation angle of the front wheel steering shaft 32 by right (or left) rotation of the slider 37b, that is, left (or right) steering of the left and right front wheels 33a, 33b. Outputs a positive (or negative) voltage signal. The front wheel steering reaction force sensor 38 is a strain gauge 3 that is attached to the front wheel steering shaft 32 and whose resistance value changes depending on the amount of twist of the coaxial shaft 32.
8a and a fixed resistor 3 with this strain gauge 38a as one side.
The bridge circuit formed by 8b, 38c, and 38d, the connection point between the strain gauge 38a1 and the resistor 38b, and the resistor 38C,
It consists of a voltage source 38e connected between the connection points of 38d.

前輪転舵反力センサ38は歪みゲージ38a、抵症3e
aの接続点から左右前輪33a、33bの左(又は右)
転舵に応じ前輪転舵軸32に発生する捩れ量に比例した
前輪転舵反力Fsfを表す正(又は負)の電圧信号を出
力している。なお、抵抗38b、38cの接続点は接地
されている。
The front wheel steering reaction force sensor 38 includes a strain gauge 38a and a strain gauge 3e.
From the connection point a to the left (or right) of the left and right front wheels 33a and 33b
A positive (or negative) voltage signal representing a front wheel steering reaction force Fsf proportional to the amount of twist generated in the front wheel steering shaft 32 in response to steering is output. Note that the connection point between the resistors 38b and 38c is grounded.

第2スレーブ部B2は後輪転舵軸モータ40゜ピニオン
41.後輪転舵軸42.左右後輪43a。
The second slave part B2 includes a rear wheel steering shaft motor 40° pinion 41. Rear wheel steering shaft 42. Left and right rear wheels 43a.

43b、ラック軸44、左右タイロッド45a。43b, rack shaft 44, and left and right tie rods 45a.

45b1左右ナツクルアーム46a、46b、後輪転舵
変位量センサ47及び後輪転舵反力センサ48を備えて
いる。後輪転舵変位置センサ47は、抵抗器47a、摺
動子47b及び電圧源47cにより前輪転舵変位量セン
サ37と同じように構成され、左右後輪43a、43b
の左(又は右)転舵により後輪転舵軸42の回転角に比
例した転舵変位量Y S rを表す正(又は負)の電圧
信号を出力する。後輪転舵反力センサ48は、歪みゲー
ジ48a、固定抵抗48 b、  48 c、  48
 d及び電圧源48eにより前輪転舵反力センサ38と
同じように構成され、左右後輪43a、43bの左(又
は右)転舵に応じ後輪転舵軸42に発生する捩れ量に比
例した後輪転舵反力FSrを表す正(又は負)の電圧信
号を出力している。
45b1 includes left and right knuckle arms 46a, 46b, a rear wheel steering displacement amount sensor 47, and a rear wheel steering reaction force sensor 48. The rear wheel steering displacement position sensor 47 is configured in the same manner as the front wheel steering displacement amount sensor 37 by a resistor 47a, a slider 47b, and a voltage source 47c, and is configured in the same manner as the front wheel steering displacement amount sensor 37.
A positive (or negative) voltage signal representing a steering displacement amount Y S r proportional to the rotation angle of the rear wheel steering shaft 42 is output by steering to the left (or right). The rear wheel steering reaction force sensor 48 includes a strain gauge 48a, fixed resistances 48b, 48c, 48
d and a voltage source 48e in the same manner as the front wheel steering reaction force sensor 38, and is proportional to the amount of twist generated in the rear wheel steering shaft 42 in response to left (or right) steering of the left and right rear wheels 43a, 43b. A positive (or negative) voltage signal representing wheel steering reaction force FSr is output.

電気制御装置Cは操舵変位量センサ23からの操舵変位
量Ym、操舵カセンサ24からの操舵力(又は操舵軸反
力)Fm、前輪転舵変位量センサ37からの前輪転舵変
位量Ys f、前輪転舵反力センサ38からの前輪転舵
反力(又は前輪転舵力)Fs f、後輪転舵変位量セン
サ47からの後輪転舵変位ff1Ysr、後輪転舵反力
センサ48からの後輪転舵反力(又は後輪転舵力) F
s r、及び変速機の出力軸の回転をピックアップし、
車速に対応したビックアンプ信号を発生する車速センサ
70からの車速Vを入力して、操舵軸モータ22の回転
制御量Mm、前輪転舵軸モータ30の回転制御量Msf
及び後輪転舵軸モータ40の回転制御1M5rを算出す
るマイクロコンピュータ71を備えている。
The electric control device C receives the steering displacement amount Ym from the steering displacement amount sensor 23, the steering force (or steering shaft reaction force) Fm from the steering force sensor 24, the front wheel turning displacement amount Ys f from the front wheel turning displacement amount sensor 37, Front wheel steering reaction force (or front wheel steering force) Fs f from the front wheel steering reaction force sensor 38 , rear wheel steering displacement ff1Ysr from the rear wheel steering displacement amount sensor 47 , rear wheel rotation from the rear wheel steering reaction force sensor 48 Rudder reaction force (or rear wheel steering force) F
s r, and pick up the rotation of the output shaft of the transmission,
By inputting the vehicle speed V from the vehicle speed sensor 70 that generates a big amplifier signal corresponding to the vehicle speed, the rotation control amount Mm of the steering shaft motor 22 and the rotation control amount Msf of the front wheel steering shaft motor 30 are determined.
and a microcomputer 71 that calculates rotation control 1M5r of the rear wheel steering shaft motor 40.

マイクロコンピュータ71は、上記各センサ23.24
,37,38,47,48.70からの検出値を入力す
る入カポ−1−71aと、第5図に示されたフローチャ
ートに対応するプログラム及びプログラムの実行に必要
な定数を記憶する読出し専用メモリ (以下単にROM
という)71bと、プログラムを実行する中央処理装置
(以下単にCPUという)71Cと、プログラムの実行
に必要な変数を一時的に記憶する書込み可能メモリ (
以下単にRAMという)71dと、プログラムの実行に
より算出された操舵軸モータ22の回転制御1Mm、前
輪転舵軸モータ30の回転制御MMsr及び後輪転舵軸
モータ40の回転制御量Msrを出力する出力ポードア
1eと、これらの入力ポードア 1 aSROM71 
bXCPU71 c、RAM71d及び出力ポードア1
eを各々共通に接続するハス71fを備えている。入力
ポードア1aには、各センサ23,24,37.38,
47゜48.70からマルチプレクサ72を介して供給
されるアナログ信号をディジタル信号に変換するアナロ
グディジタル変換器(以下単にA/D変換器という)7
3が接続され、マルチプレクサ72は各センサ23,2
4,37,38,47,48゜70からのアナログ信号
を、CPU71 Gから入力ポードア1aを介して供給
される制御信号に応じて、時分割的にA/D変換器73
に選択出力し、A/D変換器73がこの制御信号に同期
してこの出力信号をディジタル信号に変換して、入力ポ
ードア1aに供給している。マルチプレクサ72と操舵
変位量センサ23、操舵力センサ24、前輪転舵変位量
センサ37、前輪転舵反力センサ38゜後輪転舵変位量
センサ47及び後輪転舵反力センサ48との間には各々
バッファアンプ74a、74b、74c、74d、74
e、74fが接続されている。また、マルチプレクサ7
2と車速センサ70との間には、車速センサ70からの
ピンクアンプ信号を矩形波信号に波形整形する波形整形
回路70aと、この矩形波信号を入力し同信号の周波数
に比例した電圧値を示す電圧信号に変換する周波数/電
圧変換器(以下単にf/V変換器という)70bと、f
/V変換器70bの出力をマルチプレクサ72に供給す
るバッファアンプ70Cが接続されている。さらに、入
力ポードア1aには、運転者が車速に応じて変化する一
3種類の操舵特性(ライトモード、ノーマルモード、ス
ポーツモード)の内の1種類を選択するセレクトスイッ
チ75が接続されている。出力ポードア1eには、操舵
軸モータ22の回転制御量Mmをディジタルアナログ変
換するディジタルアナログ変換器(以下単にD/A変換
器という)76aが接続されて、D/A変換器76aは
回転制御量Mmをアナログ信号に変換してパワーアンプ
77aを介して操舵軸モータ22を制御している。
The microcomputer 71 controls each of the above-mentioned sensors 23 and 24.
, 37, 38, 47, 48. 70 input capo-1-71a, and a read-only capacitor that stores programs corresponding to the flowchart shown in FIG. 5 and constants necessary for executing the programs. Memory (hereinafter simply ROM)
) 71b, a central processing unit (hereinafter simply referred to as CPU) 71C that executes programs, and a writable memory (hereinafter simply referred to as CPU) that temporarily stores variables necessary for program execution.
(hereinafter simply referred to as RAM) 71d, and an output that outputs the rotation control amount 1Mm of the steering shaft motor 22, the rotation control amount MMsr of the front wheel steering shaft motor 30, and the rotation control amount Msr of the rear wheel steering shaft motor 40 calculated by executing the program. Port door 1e and these input port doors 1 aSROM71
bXCPU71c, RAM71d and output port door 1
A lotus 71f is provided to commonly connect the terminals e. Each sensor 23, 24, 37, 38,
An analog-to-digital converter (hereinafter simply referred to as an A/D converter) 7 that converts the analog signal supplied from 47°48.70 through the multiplexer 72 into a digital signal.
3 are connected, and the multiplexer 72 connects each sensor 23, 2
The analog signals from 4, 37, 38, 47, 48° 70 are sent to the A/D converter 73 in a time-sharing manner according to the control signal supplied from the CPU 71G via the input port door 1a.
The A/D converter 73 converts this output signal into a digital signal in synchronization with this control signal and supplies it to the input port door 1a. Between the multiplexer 72 and the steering displacement amount sensor 23, the steering force sensor 24, the front wheel turning displacement amount sensor 37, the front wheel turning reaction force sensor 38, the rear wheel turning displacement amount sensor 47, and the rear wheel turning reaction force sensor 48. Buffer amplifiers 74a, 74b, 74c, 74d, 74 respectively
e, 74f are connected. Also, multiplexer 7
2 and the vehicle speed sensor 70, there is a waveform shaping circuit 70a that shapes the pink amplifier signal from the vehicle speed sensor 70 into a rectangular wave signal, and a waveform shaping circuit 70a that inputs this rectangular wave signal and generates a voltage value proportional to the frequency of the signal. a frequency/voltage converter (hereinafter simply referred to as f/V converter) 70b that converts the voltage signal into a voltage signal shown in FIG.
A buffer amplifier 70C is connected to supply the output of the /V converter 70b to the multiplexer 72. Further, a select switch 75 is connected to the input port door 1a, through which the driver selects one of three types of steering characteristics (light mode, normal mode, sport mode) that change depending on the vehicle speed. A digital-to-analog converter (hereinafter simply referred to as a D/A converter) 76a is connected to the output port door 1e, and the D/A converter 76a converts the rotation control amount Mm of the steering shaft motor 22 from digital to analog. Mm is converted into an analog signal and the steering shaft motor 22 is controlled via the power amplifier 77a.

また、聞出カポードア1eには前輪転舵軸モータ30の
回転制御11M5f及び後輪転舵軸モータ40の回転制
御量Msrを各々ディジタルアナログ変換するD/A変
換器76b、76cが接続されて、D/A変換器76b
、76cは回転制御11M5f及び回転制御量Msrを
各々アナログ信号に変換してパワーアンプ77b、77
cを介して前輪転舵軸モータ30及び後輪転舵軸モータ
4oを各々制御している。さらに、出力ポードア1eに
はセレクトスイッチ75の選択操舵特性を表示する表示
器75aが接続されている。
In addition, D/A converters 76b and 76c are connected to the cover door 1e, which convert the rotation control amount 11M5f of the front wheel steering shaft motor 30 and the rotation control amount Msr of the rear wheel steering shaft motor 40 from digital to analog, respectively. /A converter 76b
, 76c convert the rotation control 11M5f and the rotation control amount Msr into analog signals, and power amplifiers 77b, 77
The front wheel steered shaft motor 30 and the rear wheel steered shaft motor 4o are each controlled via the motor 4c. Further, a display 75a for displaying the selected steering characteristic of the select switch 75 is connected to the output port door 1e.

上記のように構成された車両用動力舵取装置の動作を第
5図に示されたフローチャートを用いて説明すると、イ
グニソションスインチの投入により、CPU71 cは
プログラムの実行をステップ100から開始し、プログ
ラムはステップ101に進む。
The operation of the vehicle power steering system configured as described above will be explained using the flowchart shown in FIG. 5. When the ignition switch is turned on, the CPU 71c starts executing the program from step 100. The program then proceeds to step 101.

ステップ101にて、CPU71 Cはセレクトスイッ
チ75の選択状態を入力して、セレクトスイッチ75が
ライトモードを選択している場合モード選択フラグSを
0”に設定し、ノーマルモードを選択している場合モー
ド選択フラグSを“1”に設定し、スポーツモードを選
択している場合モード選択フラグSを“2”に設定して
、このモード選択フラグSをRAM71 dに一時的に
記憶する。ステップ101のモード選択情報の入力後、
CPU71 Cは、ステップ102にてこのモード選択
情報を出力ポードア1eを介して表示器75aに出力し
て表示器75aにて選択された操舵特性モードを点灯表
示し、プログラムをステップi03,104に進める。
In step 101, the CPU 71C inputs the selection state of the select switch 75, and sets the mode selection flag S to 0'' if the select switch 75 selects the light mode, and sets the mode selection flag S to 0'' if the select switch 75 selects the normal mode. The mode selection flag S is set to "1", and if the sports mode is selected, the mode selection flag S is set to "2", and this mode selection flag S is temporarily stored in the RAM 71d.Step 101 After entering the mode selection information,
In step 102, the CPU 71C outputs this mode selection information to the display 75a via the output port door 1e, lights up the selected steering characteristic mode on the display 75a, and advances the program to steps i03 and 104. .

CPU71cはステップ103にて操舵変位量センサ2
3から操舵変位量Ym、操舵力センサ24から操舵力(
又は操舵反力)Fm、前輪転舵変位量センサ37から前
輪転舵変位量Ys f、前輪転舵反力センサ38から前
輪転舵反力(前輪転舵力)Fsf、後輪転舵変位量セン
サ47から後輪転舵変位量Ysr、及び後輪転舵反力セ
ンサ48から後輪転舵反力(又は後輪転舵力)Fsrを
入力してRAM71 dに各々記憶し、ステップ104
にて車速センサ70から車速■を入力してRAM71 
dに記憶して、プログラムをステップ105に進める。
In step 103, the CPU 71c detects the steering displacement amount sensor 2.
3 to the steering displacement amount Ym, and the steering force sensor 24 to the steering force (
or steering reaction force) Fm, front wheel steering displacement amount Ys f from the front wheel steering displacement amount sensor 37, front wheel steering reaction force (front wheel steering force) Fsf from the front wheel steering reaction force sensor 38, rear wheel steering displacement amount sensor 47 and the rear wheel steering reaction force (or rear wheel steering force) Fsr are input from the rear wheel steering reaction force sensor 48 and stored in the RAM 71 d, respectively, and step 104
Input the vehicle speed ■ from the vehicle speed sensor 70 and store it in the RAM 71.
d, and the program proceeds to step 105.

ステップ105にて、CPU71 cはモード選択フラ
グSを読出してモード選択フラグSの値によりモード判
別を行い、モード選択フラグSが“0”である場合操舵
特性としてライトモードが選択されていると判断してス
テップ106の実行に移り、モード選択フラグSが“1
”である場合操舵特性としてノーマルモードが選択され
ていると判断してステップ107の実行に移り、モード
選択フラグSが“2“である場合操舵特性としてスポー
ツモードが選択されていると判断してステップ108の
実行に移る。
In step 105, the CPU 71c reads the mode selection flag S, determines the mode based on the value of the mode selection flag S, and determines that the light mode is selected as the steering characteristic if the mode selection flag S is "0". Then, the process moves to step 106, and the mode selection flag S is set to “1”.
”, it is determined that the normal mode has been selected as the steering characteristic, and the process moves to step 107. If the mode selection flag S is “2”, it is determined that the sport mode has been selected as the steering characteristic. The process moves to step 108.

ステップ106,107,108の演算においては、C
PU71 cは、各々車速VをRAM71dから読出し
て、この車速■と操舵特性モードの種類に基づいて、第
6A図乃至第6D図の特性図に示された前輪ステアリン
グギヤ比αf、後輪ステアリングギヤ比αr、上記比α
fと前輪力逆送比βfとの積αf・βr及び上記比αr
と後輪力逆送比βrとの積αr・βrをROM7 l 
b内に設けられたパラメータテーブルから各々読出して
各氏αf、αrを各々求めるとともに、各氏αf。
In the calculations in steps 106, 107, and 108, C
The PU 71 c reads each vehicle speed V from the RAM 71 d, and based on the vehicle speed ■ and the type of steering characteristic mode, sets the front wheel steering gear ratio αf and the rear wheel steering gear ratio αf shown in the characteristic diagrams of FIGS. 6A to 6D. Ratio αr, above ratio α
Product αf・βr of f and front wheel force reverse transmission ratio βf and the above ratio αr
and the rear wheel force reverse transmission ratio βr.
Each value αf and αr are obtained by reading from the parameter table provided in the parameter table b, and each value αf.

αrで各積αf・βf、αr・βrを除して各氏βr、
βrを算出する。第6A図の特性図は車速■に対する各
モードの前輪ステアリングギヤ比αfの値の変化を示し
ており、これらの各氏αfは全てのモードにおいて車速
■が変化してもほぼ一定の値となるが、ライトモードL
及びスポーツモードSではノーマルモードNに比べ大き
な値である。これはライトモードし及びスポーツモード
Sにおける操舵量とノーマルモードNにおける操舵量が
同じであっても、ライトモードL及びスポーツモードS
における前輪転舵量がノーマルモードNにおける前輪転
舵量に比して大きくなることを意味する。第6B図の特
性図は車速Vに対する各モードの後輪ステアリングギヤ
αrの値の変化を示しており、全てのモードにおいて、
これらの各氏αrは、車速■が零から大きくなるに従っ
て、負から正に連続的に変化し、かつこれらの各氏αr
の絶対値の最大値は各氏αrの値の1/3程度の値であ
る。また、これらの各氏αrは、ノーマルモードN、ラ
イトモードL1スポーツモードSの順にそれらの値が零
となる車速値が大きくなる。
Dividing each product αf・βf, αr・βr by αr, each Mr βr,
Calculate βr. The characteristic diagram in Fig. 6A shows the change in the value of the front wheel steering gear ratio αf in each mode with respect to the vehicle speed ■, and each of these degrees αf remains an almost constant value in all modes even if the vehicle speed ■ changes. , light mode L
In sports mode S, the value is larger than in normal mode N. This means that even if the steering amount in light mode and sport mode S is the same as the steering amount in normal mode N, light mode L and sport mode S
This means that the amount of front wheel turning in is larger than the amount of front wheel turning in normal mode N. The characteristic diagram in FIG. 6B shows changes in the value of the rear wheel steering gear αr in each mode with respect to the vehicle speed V, and in all modes,
Each of these degrees αr changes continuously from negative to positive as the vehicle speed increases from zero, and each of these degrees αr
The maximum absolute value of is approximately 1/3 of the value of each αr. Further, for each of these degrees αr, the vehicle speed values at which these values become zero increase in the order of normal mode N, light mode L1, and sports mode S.

これにより、低車速領域にて左右後輪43a、43bは
左右前輪33a、33bに対し逆相に転舵され、高車速
領域にて左右後輪43a、43bは左右前輪33a、3
3bに対し逆相に転舵され、かつノーマルモードN1ラ
イトモードL1スポーツモードSの順に車速か大きくな
るまで左右後輪43a、43bは左右前輪33a、33
bに対し逆相に転舵される。なお、左右後輪43a、4
3bの転舵量は左右前輪33a、33bの転舵9の1/
3程度となる。第6C図及び第6D図の特性図は車速■
に対する各モードの前輪ステアリング比αrと前輪力送
比βfとの積αf・βf及び後輪ステアリング比αrと
前輪力送比βrとの積αr・βrの各値の変化を示して
いる。これらの積αf・βf及び積αr・βrは、全て
のモードにおいて、車速■が小さいときには一定の値と
なり、車速■の増加によりライトモードL、ノーマル七
−ドN、スポーツモードSの順に大きくなる勾配をもっ
て増加する。これは車速■の増加により操舵ハンドル2
0を回動するために必要とされる操舵力が除々に大きく
なることを意味するとともに、ライトモードL、ノーマ
ルモードN、スポーツモードSの順にこの操舵力が大き
くなることを意味する。
As a result, the left and right rear wheels 43a, 43b are steered in the opposite phase to the left and right front wheels 33a, 33b in a low vehicle speed region, and the left and right rear wheels 43a, 43b are steered in the opposite phase to the left and right front wheels 33a, 33b in a high vehicle speed region.
3b, and the left and right rear wheels 43a, 43b are steered in the opposite phase to the left and right front wheels 33a, 33 until the vehicle speed increases in the order of normal mode N1 light mode L1 sport mode S.
It is steered in the opposite phase to b. In addition, the left and right rear wheels 43a, 4
The amount of steering 3b is 1/1 of the steering 9 of the left and right front wheels 33a and 33b.
It will be about 3. The characteristic diagrams in Figures 6C and 6D are vehicle speed ■
It shows the changes in the product αf·βf of the front wheel steering ratio αr and the front wheel power transmission ratio βf and the product αr·βr of the rear wheel steering ratio αr and the front wheel power transmission ratio βr in each mode. These products αf and βf and products αr and βr have a constant value in all modes when the vehicle speed ■ is small, and increase in the order of light mode L, normal seventh mode N, and sport mode S as the vehicle speed ■ increases. Increases with a gradient. This is due to the increase in vehicle speed.
This means that the steering force required to turn 0 gradually increases, and this steering force increases in the order of light mode L, normal mode N, and sport mode S.

上記ステップ106(又は107,108)にて前後輪
ステアリングギヤ比αf、αr及び前後輪力逆送比βf
、βrの演算後、プログラムはステップ109に進み、
CPU71 cはステップ109にて係数Kmp f、
  Kmp r、  Ks f f、  Ksfrを、
上記前後輪ステアリングギヤ比αf。
In step 106 (or 107, 108), the front and rear wheel steering gear ratios αf, αr and the front and rear wheel force reverse transmission ratio βf
, βr, the program proceeds to step 109,
In step 109, the CPU 71c calculates the coefficient Kmp f,
Kmp r, Ks f f, Ksfr,
The above front and rear wheel steering gear ratio αf.

αrと上記前後輪力逆送比βf、βrとROM71bに
記憶されている係数KSpf、Kspr。
αr, the front and rear wheel force reverse transmission ratio βf, βr, and the coefficients KSpf and Kspr stored in the ROM 71b.

Kmfに基づいて、(式20)乃至(式23)に示され
る演算を実行することにより、算出する。
It is calculated by executing the calculations shown in (Formula 20) to (Formula 23) based on Kmf.

次に、ステップ110にて、CPU71 Gは操舵軸モ
ータ22の回転制御iMm及び前後輪転舵軸モータ30
,40の各回転制御量Ms f、 Ms rを上記算出
係数Kmp f、Kmp r、Ks r f。
Next, in step 110, the CPU 71G controls the rotation control iMm of the steering shaft motor 22 and the front and rear wheel steering shaft motors 30.
, 40 rotation control amounts Ms f, Ms r as the above-mentioned calculation coefficients Kmp f, Kmp r, Ks r f.

Ks(r、上記係数Kspf、Kspr、Kmf。Ks(r, the above coefficients Kspf, Kspr, Kmf.

及び操舵変位量Y m 、操舵力(又は操舵反力)Fm
、前後輪転舵変位置Ysr、Ysr、前後輪転舵反力(
又は転舵力)Fsf、Fsrに基づいて下記(式24)
乃至(式26)に示される演算を実行することにより算
出する。
and steering displacement amount Ym, steering force (or steering reaction force) Fm
, front and rear wheel steering displacement position Ysr, Ysr, front and rear wheel steering reaction force (
or steering force) below (Equation 24) based on Fsf and Fsr.
It is calculated by executing the calculations shown in (Formula 26).

Mm=Kmf−Fm−Ks f f ・Fs f−Ks
 fr−Fsr     ・・・ (式24)%式% ・・・ (式25) Msr=Kmpr=Ym−Kspr−Ysr・・・ (
式26) ステップ110の演算後、プログラムはステップ111
に進み、CPU71 Cは操舵軸21の回転制御量M’
m及び前後輪転舵軸32,42の各回転制御1M5f、
Msrを表す制御信号を出力ポードア1eを介して各々
D/A変換器76a、76b、76cに出力する。D/
A変換器76a。
Mm=Kmf-Fm-Ks f f ・Fs f-Ks
fr-Fsr... (Formula 24) %Formula%... (Formula 25) Msr=Kmpr=Ym-Kspr-Ysr... (
Equation 26) After the calculation in step 110, the program executes step 111.
The CPU 71 C determines the rotation control amount M' of the steering shaft 21.
m and each rotation control 1M5f of the front and rear wheel steering shafts 32, 42,
A control signal representing Msr is outputted to D/A converters 76a, 76b, and 76c, respectively, via output port door 1e. D/
A converter 76a.

76b、76cは各々パワーアンプ77a、77b、7
7cを介して操舵軸モータ22及び前後輪転舵軸モータ
30,40の回転を制御する。操舵軸21の回転が制御
される動作、及び前後輪転舵軸32,42の回転が制御
されて左右前輪33a。
76b and 76c are power amplifiers 77a, 77b, and 7, respectively.
The rotation of the steering shaft motor 22 and the front and rear wheel turning shaft motors 30 and 40 is controlled via the motor 7c. The rotation of the steering shaft 21 is controlled, and the rotation of the front and rear wheel steering shafts 32, 42 is controlled to control the left and right front wheels 33a.

33b及び左右後輪43a、43bが転舵される動作は
基本構成で示した動作と同じである。
33b and the left and right rear wheels 43a, 43b are steered in the same manner as shown in the basic configuration.

上記ステップ111の演算後、プログラムはステップ1
12に進み、CPU71 Cはステップ112にて操舵
変位量YmをRAM71dから読出して、操舵変位量Y
mの絶対値IYmiが所定の小さな値W以下である、す
なわち車両が略直進状態にあるか否かを判別する。この
判別においてCPU71 cが、rYEsJすなわち操
舵変位iYmの絶対値I Ym lが上記値W以下であ
るとの判断をすると、ステップ101の演算の実行に戻
ってステップ101〜105,106 (又は107゜
108)、109〜112の循環演算を実行し、rNO
jすなわち操舵変位量Y mの絶対値IYm1が上記値
Wより大きいと判断するとステップ103の演算の実行
に戻ってステップ103〜105゜106 (又は10
7,108)、109〜112の循環演算を実行して操
舵軸21、前輪転舵軸32及び後輪転舵軸42の回転制
御を行う。このように、車両が略直進状態にあるときに
は、プログラムがステップ101を通過してモードの変
更を可能とし、車両が旋回状態にあるときにはプログラ
ムがステップ101を通過しないようにしてモードの変
更を不可能とすることによって、前後輪ステアリングギ
ヤ比αf、αrにより決定される左右前輪33a、33
b及び左右後輪43a、43bの転舵角の不連続な変化
並びにこれらの比αf、αrと前後輪力逆送比βf、β
rとの容積αr・βf、αr・βrにより決定される操
舵力(又は操舵反力)の不連続な変化をなくすことがで
きる。
After the calculation in step 111 above, the program moves to step 1.
12, the CPU 71C reads the steering displacement amount Ym from the RAM 71d in step 112, and reads the steering displacement amount Ym.
It is determined whether the absolute value IYmi of m is less than or equal to a predetermined small value W, that is, whether the vehicle is traveling substantially straight. In this determination, if the CPU 71 c determines that rYEsJ, that is, the absolute value I Ym l of the steering displacement iYm is less than or equal to the above value W, it returns to the execution of the calculation in step 101 and returns to steps 101 to 105, 106 (or 107° 108), 109 to 112 are executed and rNO
In other words, if it is determined that the absolute value IYm1 of the steering displacement amount Ym is larger than the above value W, the process returns to step 103 and steps 103 to 105°106 (or 10
7, 108) and 109 to 112 are executed to control the rotation of the steering shaft 21, the front wheel steering shaft 32, and the rear wheel steering shaft 42. In this way, when the vehicle is traveling substantially straight, the program passes through step 101 to enable the mode change, and when the vehicle is turning, the program does not pass through step 101 to prevent the mode from being changed. By making it possible, the left and right front wheels 33a, 33 determined by the front and rear wheel steering gear ratios αf, αr
b, discontinuous changes in the steering angles of the left and right rear wheels 43a and 43b, their ratios αf and αr, and the front and rear wheel force reverse transmission ratios βf and β
It is possible to eliminate discontinuous changes in the steering force (or steering reaction force) determined by the volumes αr and βf and αr and βr.

上記のような動作説明でも理解されるように、上記実施
例においてはステップ103,109〜111の演算に
より操舵ハンドル20の回動操作に応じて左右前輪33
a、33b及び左右後輪43a、43bを転舵し、この
左右前輪33a、33b及び左右後輪43a、43bの
転舵により発生する前輪転舵反力及び後輪転舵反力を操
舵反力として操舵ハンドル20に逆送するようにしたの
で、運転者は左右前輪33a、33b及び左右後輪43
a、43bの転舵に応じて、操舵反力、保舵反力及び操
舵ハンドルの復元力を感じながら車両を運転できる。ま
た、この操舵反力はステップ104.106  (又は
107,108)の演算により車速■の増加に従って増
加するので、操縦安定性が良好となる。さらに、前後輪
ステアリングギヤ比αf、αr及びこれらの比αC1α
rと前後輪力逆送比βf、βrとの容積αf・βf、α
r・βrの特性をステップ101,105の演算により
選択可能としたので、運転者の個性に応じて又は車両の
運転状況に応じて操舵ハンドル20の回転操舵に伴う左
右前輪33a、33b及び左右後輪43a、43bの転
舵量及び操舵力(操舵反力)を変更することができる。
As can be understood from the above explanation of the operation, in the above embodiment, the left and right front wheels 33 are adjusted according to the rotation operation of the steering handle 20 by the calculations in steps 103, 109 to 111.
a, 33b and the left and right rear wheels 43a, 43b, and the front wheel steering reaction force and the rear wheel steering reaction force generated by steering the left and right front wheels 33a, 33b and the left and right rear wheels 43a, 43b are used as steering reaction forces. Since the reverse feed is made to the steering wheel 20, the driver can control the left and right front wheels 33a, 33b and the left and right rear wheels 43.
The vehicle can be driven while feeling the steering reaction force, the steering reaction force, and the restoring force of the steering wheel in accordance with the steering of the wheels a and 43b. Moreover, since this steering reaction force increases as the vehicle speed increases according to the calculations in steps 104 and 106 (or 107 and 108), the steering stability is improved. Furthermore, the front and rear wheel steering gear ratios αf, αr and their ratio αC1α
Volume αf・βf, α between r and front and rear wheel force reverse transmission ratio βf, βr
Since the characteristics of r and βr can be selected by the calculations in steps 101 and 105, the left and right front wheels 33a and 33b and the left and right rear wheels are adjusted according to the driver's personality or the driving situation of the vehicle when the steering wheel 20 is rotated. The amount of steering and steering force (steering reaction force) of wheels 43a and 43b can be changed.

d、変形例 次に、上記具体的実施例の第1スレーブ部B1又は第2
スレーブ部B2の変形例を図面を用いて説明すると、第
7図は第4図の左右前輪33a。
d. Modification Next, the first slave section B1 or the second slave section B1 of the above specific embodiment
A modification of the slave portion B2 will be described with reference to the drawings. FIG. 7 shows the left and right front wheels 33a of FIG. 4.

33b又は左右後輪43a、43bに対応する左右車輪
80a、80bを転舵する第3スレーブ部B3を示して
いる。
33b or the left and right wheels 80a, 80b corresponding to the left and right rear wheels 43a, 43b are shown.

第3スレーブ部B3は油圧ポンプ(図示しない)の吐出
油がサーボ弁81を介して付与される油圧シリンダ82
と、油圧シリンダ82に駆動されて左右車輪80a、8
0bを転舵する転舵軸83と同軸83の変位量を転舵変
位量Ysaとして検出する転舵変位量センサ84と、右
車輪80bから転舵軸83に付与される転舵反力Fsa
を検出する転舵反力センサ85を備えている。サーボ弁
81はその中立位置にてサーボ軸81aに固着されたス
プール8 l b、  81 c、  81 dにて、
リザーバ(図示しない)に接続された導管PI、油圧ポ
ンプに接続された導管P2.IJザーバに接続された導
管P3を各々閉止し、第1位置に切換えられたときサー
ボ軸81aを図示左方向へ変位させることによって、導
管P2から供給される圧油を導管P4を介して油圧シリ
ンダ82の右室82aへ供給しかつ油圧シリンダ82の
左室81bに接続された導管P5からの油を導管P1を
介してリザーバに導く。また、サーボ弁81はその第2
位置に切換えられたときサーボ軸81aを図示右方向へ
変位させることによって、導管P2から供給される圧油
を導管P5を介して左室82bへ供給し、かつ油圧シリ
ンダ82の右室82aに接続された導管P4からの油を
導管P3を介してリザーバに導く。サーボ軸81aの左
(及び右)方向への変位は、サーボ軸81aの一端に設
けられ、第4図のマイクロコンピュータ71及びD/A
変換器76b又は76cからパワーアンプ77b又は7
7Cを介して供給される上記具体的実施例の回転制御量
Msf又はMsrに対応する制御信号MSaによって、
駆動制御されるソレノイド又はモータから成るリニアア
クチュエータ86によって制御される。
The third slave part B3 is a hydraulic cylinder 82 to which oil discharged from a hydraulic pump (not shown) is applied via a servo valve 81.
The left and right wheels 80a, 8 are driven by the hydraulic cylinder 82.
A steering displacement amount sensor 84 detects the displacement amount of the same shaft 83 as the steering shaft 83 that steers the steering wheel 80b as a steering displacement amount Ysa, and a steering reaction force Fsa applied from the right wheel 80b to the steering shaft 83.
A steering reaction force sensor 85 is provided to detect the steering reaction force. The servo valve 81 has spools 8lb, 81c, and 81d fixed to the servo shaft 81a in its neutral position.
Conduit PI connected to a reservoir (not shown), conduit P2 connected to a hydraulic pump. By closing the conduits P3 connected to the IJ server and displacing the servo shaft 81a to the left in the figure when switched to the first position, the pressure oil supplied from the conduit P2 is transferred to the hydraulic cylinder via the conduit P4. Oil from a conduit P5, which supplies the right chamber 82a of the hydraulic cylinder 82 and is connected to the left chamber 81b of the hydraulic cylinder 82, is led to the reservoir via the conduit P1. Also, the servo valve 81 is
By displacing the servo shaft 81a to the right in the figure when the position is switched, the pressure oil supplied from the conduit P2 is supplied to the left chamber 82b via the conduit P5, and is connected to the right chamber 82a of the hydraulic cylinder 82. The oil from conduit P4 that has been removed is directed to the reservoir via conduit P3. The displacement of the servo shaft 81a in the left (and right) direction is provided at one end of the servo shaft 81a, and the microcomputer 71 and D/A shown in FIG.
From the converter 76b or 76c to the power amplifier 77b or 7
7C, by the control signal MSa corresponding to the rotation control amount Msf or Msr of the above specific embodiment,
It is controlled by a linear actuator 86 consisting of a driven solenoid or motor.

油圧シリンダ82はサーボ弁81から供給される圧油に
より油圧シリンダ82内を摺動するピストン82cを備
え、このピストン82Cの摺動によりピストン82cに
固着された転舵軸83をその軸方向に変位させる。また
転舵軸83は左右タイロフト87a、87b及び左右ナ
ックルアームasa、ssbを介して左右車輪80a、
80bに連結されており、転舵軸83の変位により左右
車輪soa、aobを転舵する。転舵変位量センサ84
は転舵軸83の変位に応じて中点の接地された抵抗器8
4a上を摺動する摺動子84bと、抵抗器84aの両端
に接続された電圧源84cとを備え、摺動子83bの左
(又は右)変位により転舵軸83の転舵変位量Ysaを
表す正(又は負)の電圧信号を第4図のバッファアンプ
74c又は74eに出力している。転舵反力センサ85
は、転舵軸83に貼着され同軸83の引張り及び圧縮に
応じて抵抗値の変化する歪みゲージ85aと、歪みゲー
ジ85aを一辺として固定抵抗85b。
The hydraulic cylinder 82 includes a piston 82c that slides within the hydraulic cylinder 82 using pressure oil supplied from the servo valve 81, and the sliding of the piston 82C displaces the steering shaft 83 fixed to the piston 82c in its axial direction. let Further, the steering shaft 83 connects the left and right wheels 80a,
80b, and steers the left and right wheels SOA and AOB by displacement of the steering shaft 83. Steering displacement amount sensor 84
is the grounded resistor 8 at the midpoint depending on the displacement of the steering shaft 83.
4a, and a voltage source 84c connected to both ends of the resistor 84a, the steering displacement amount Ysa of the steering shaft 83 is determined by the left (or right) displacement of the slider 83b. A positive (or negative) voltage signal representing this is output to the buffer amplifier 74c or 74e in FIG. Steering reaction force sensor 85
A strain gauge 85a that is attached to the steering shaft 83 and whose resistance value changes according to the tension and compression of the coaxial shaft 83, and a fixed resistor 85b with the strain gauge 85a as one side.

85c、85dで形成されるブリッジ回路と、歪みゲー
ジ85a、抵抗8’5bの接続点及び抵抗85c、85
.dの接続点間に接続された電圧源85eから成り、抵
抗85b、85cの接続点は接地されている。この転舵
反力センサ85は歪みゲージ85a、抵抗85dの接続
点から右車輪80bの左(又は右)転舵に応じて転舵軸
83の歪みゲージ85aの貼着された部分に発生する引
張り(又は圧縮)歪み量に比例した転舵反力(転舵力)
Fsaを表す正(又は負)の電圧信号を第4図のバッフ
ァアンプ74d又は74fに出力している。
The connection point between the bridge circuit formed by 85c and 85d, the strain gauge 85a, and the resistor 8'5b, and the resistor 85c and 85
.. It consists of a voltage source 85e connected between the connection points of resistors 85b and 85c, and the connection point of resistors 85b and 85c is grounded. This steering reaction force sensor 85 detects the tension generated in the portion of the steering shaft 83 to which the strain gauge 85a is attached in response to left (or right) steering of the right wheel 80b from the connection point of the strain gauge 85a and the resistor 85d. (or compression) Steering reaction force (steering force) proportional to the amount of strain
A positive (or negative) voltage signal representing Fsa is output to buffer amplifier 74d or 74f in FIG.

上記のように構成した第3スレーブ部B3の動作を説明
すると、リニアアクチュエータ86には第4図のマイク
ロコンピュータ71から、上記具体的実施例における回
転制御量Msf、Msrに代えて、リニアアクチュエー
タ86を駆動制御する制御量Msaに対応した制御信号
が供給される。
To explain the operation of the third slave section B3 configured as described above, the linear actuator 86 is sent from the microcomputer 71 of FIG. A control signal corresponding to the control amount Msa for driving and controlling the is supplied.

なお、制御量Msaは、リニアアクチュエータ86の特
性に応じて決定されるものであり、実質的に回転制御量
Msf、Msrと同等である。リニアアクチュエータ8
6に供給される制御信号レベルが正(又は負)であると
き、サーボ軸81aは左(又は右)方向に変位して、油
圧ポンプからの油圧を油圧シリンダ82の右室82a 
(又は左室82b)に供給する。この圧油供給により、
ピストン82c及び転舵軸83は左(又は右)方向に変
位して左右タイロッド87a、87b及び左右ナックル
アーム88a、88bを介して左右車輪80a、80b
を左(又は右)方向に転舵する。
Note that the control amount Msa is determined according to the characteristics of the linear actuator 86, and is substantially equivalent to the rotation control amounts Msf and Msr. Linear actuator 8
6 is positive (or negative), the servo shaft 81a is displaced in the left (or right) direction, and the hydraulic pressure from the hydraulic pump is transferred to the right chamber 82a of the hydraulic cylinder 82.
(or the left ventricle 82b). With this pressure oil supply,
The piston 82c and the steering shaft 83 are displaced in the left (or right) direction and are connected to the left and right wheels 80a, 80b via the left and right tie rods 87a, 87b and the left and right knuckle arms 88a, 88b.
Turn the wheel to the left (or right).

この転舵軸83の転舵変位fYsaは転舵軸変位量セン
サ84によって検出されマイクロコンピュータ71に送
出される。このとき、右車輪80bは路面から上記転舵
を阻止する図示右(又は左)方向へ働く転舵反力を受け
て、この転舵反力は右ナックルアーム88b及び右タイ
ロッド87bを介して転舵軸83に伝達される。この転
舵軸83に伝達される転舵反力は、油圧シリンダ82に
よる力と逆方向に働くことになり転舵軸83には転舵反
力(転舵力)に応じた引張り(又は圧縮)歪みが生じる
。この転舵軸83の歪み量に比例した転舵反力(転舵力
)Fsaは転舵反力センサ85によって検出されてマイ
クロコンピュータ71に送出される。これにより、上記
具体的実施例に係る第1スレーブBl又は第2スレーブ
部B2をこれらの変形例である第3スレーブB3で置換
しても、上記具体的実施例と同様な効果が達成される。
This steering displacement fYsa of the steering shaft 83 is detected by the steering shaft displacement amount sensor 84 and sent to the microcomputer 71. At this time, the right wheel 80b receives a steering reaction force from the road surface that acts in the right (or left) direction in the figure to prevent the above steering, and this steering reaction force is transferred via the right knuckle arm 88b and the right tie rod 87b. The signal is transmitted to the rudder shaft 83. The steering reaction force transmitted to the steering shaft 83 acts in the opposite direction to the force exerted by the hydraulic cylinder 82, and the steering shaft 83 is subjected to tension (or compression) corresponding to the steering reaction force (steering force). ) Distortion occurs. A steering reaction force (steering force) Fsa proportional to the amount of distortion of the steering shaft 83 is detected by a steering reaction force sensor 85 and sent to the microcomputer 71 . As a result, even if the first slave Bl or the second slave part B2 according to the above specific embodiment is replaced with the third slave B3 which is a modified example of these, the same effect as in the above specific embodiment can be achieved. .

e、その他の変形例 上記具体的実施例においては、各モード毎の前輪ステア
リングギヤ比αfは、車速Vが変化しても、はぼ一定の
値となるようにしたが、第6A図の特性において、車速
Vが小さいとき各モードの前輪ステアリングギヤ比αf
が若干大きくなるように、また車速■が大きいとき同圧
α「が若干小さくなるようにしてもよい。これにより、
車両の低速走行時には操舵ハンドル20の操舵量が小さ
くても、左右前輪33a、33bの操舵量が大きくなっ
て車両旋回のための運転者の負担が軽減され、かつ、車
両の高速走行時には操舵ハンドル20の操舵量が左右前
輪33a、33bの転舵量へ与える影響が小さくなって
高速走行車両の走行安定性が良好となる。
e. Other Modifications In the specific embodiments described above, the front wheel steering gear ratio αf for each mode was set to a nearly constant value even if the vehicle speed V changed, but the characteristics shown in FIG. 6A , when the vehicle speed V is small, the front wheel steering gear ratio αf of each mode is
may be made slightly larger, or the same pressure α' may be made slightly smaller when the vehicle speed ■ is high.
Even if the amount of steering of the steering wheel 20 is small when the vehicle is running at low speed, the amount of steering of the left and right front wheels 33a, 33b becomes large, reducing the burden on the driver for turning the vehicle. The influence of the steering amount of 20 on the turning amount of the left and right front wheels 33a, 33b is reduced, and the running stability of the high-speed vehicle is improved.

さらに、前輪ステアリングギヤ比αr及び後輪ステアリ
ングギヤ比αrは、操舵変位量Ymの変化をも考慮して
、決定されるようにしてもよい。
Further, the front wheel steering gear ratio αr and the rear wheel steering gear ratio αr may be determined by also taking into consideration a change in the steering displacement amount Ym.

この場合、CP071 Gは、ステップ106(又は1
07.108)の演算において、同ステップ106 (
又は107.108)にて算出した各氏αf、αrに、
ステップ103にて入力した操舵変位量Ymの絶対値l
 Ym lの増加に応じて増加するパラメータを乗算す
る。これにより、同絶対値I Ym lが大きくなるに
従って、各氏αr、αrの絶対値1αf1,1αr1は
大き(なるので、操舵ハンドル20の操舵量が大きくな
るに従って左右前輪33a、33b及び左右後輪43a
、43bの転舵量の変化分が大きくなる。その結果、車
両旋回のために、操舵ハンドル2oの操作を行う運転者
の負担が軽減される。
In this case, CP071G performs step 106 (or 1
07.108), the same step 106 (
or 107.108) for each person αf and αr calculated in 107.108),
Absolute value l of the steering displacement amount Ym input in step 103
Multiply by a parameter that increases as Ym l increases. As a result, as the absolute value I Ym l increases, the absolute values 1αf1, 1αr1 of αr and αr increase (so that as the amount of steering of the steering wheel 20 increases, the left and right front wheels 33a, 33b and the left and right rear wheels 43a
, 43b becomes larger. As a result, the burden on the driver who operates the steering wheel 2o to turn the vehicle is reduced.

また、上記具体的実施例においては、前後輪転舵軸32
.42の回転位置は、前後輪転舵変位量センサ37,4
7からの前後輪転舵変位量Ys f。
In addition, in the above specific embodiment, the front and rear wheel steering shafts 32
.. The rotational position of 42 is determined by the front and rear wheel steering displacement sensors 37, 4.
Front and rear wheel steering displacement amount Ys f from 7.

Ysrを前後輪転舵軸モータ30,40にフィードバッ
クすることによって、制御されるようにしたが、本発明
では、前後輪転舵軸モータ30,40がステンプモータ
で構成されるようにし、マイクロコンピュータ71が、
操舵変位量センサ23からの操舵変位量Ymに応じた同
モータ30の目標回転ステップ数を算出し、この算出結
果に基づいて同モータ30,40の回転変位量が制御さ
れるようにすれば、上記フィードバック制御は不要とな
る。
Although the control is performed by feeding back Ysr to the front and rear wheel steering shaft motors 30 and 40, in the present invention, the front and rear wheel steering shaft motors 30 and 40 are configured with step motors, and the microcomputer 71
If the target rotational step number of the motor 30 is calculated according to the steering displacement amount Ym from the steering displacement amount sensor 23, and the rotational displacement amount of the motors 30 and 40 is controlled based on the calculation result, The above feedback control becomes unnecessary.

また、上記具体的実施例においては、左右前輪33a、
33bが単一の前輪転舵軸モータ30により制御される
ようにしたが、左前輪33a及び右前輪33bが独立に
2箇のモータで制御されるようにしてもよい。さらに、
本発明においては、左右前輪33a、33bは、同前輪
33a、33bと操舵ハンドル20とを機械的に連結し
た前輪転舵機構により転舵されるようにしてもよい。
Further, in the specific embodiment described above, the left and right front wheels 33a,
33b is controlled by a single front wheel steering shaft motor 30, but the front left wheel 33a and the front right wheel 33b may be controlled independently by two motors. moreover,
In the present invention, the left and right front wheels 33a, 33b may be steered by a front wheel steering mechanism that mechanically connects the front wheels 33a, 33b to the steering handle 20.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は特許請求の範囲に記載した発明の構成に対応す
る図、第2図は本発明に係る車両用動力舵取装置の基本
構成を示す図、第3図は第2図に示された基本構成にお
ける制御状態を表す制御プロ・7り図、第4図は本発明
の具体的実施例を示す車両用動力舵取装置の概略図、第
5図は第4図のマイクロコンピュータで実行されるプロ
グラムのフローチャート、第6A図乃至第6D図は本発
明の具体的実施例における操舵特性を示す図、第7図は
第4図の第1スレーブ部又は第2スレーブ部の変形例を
示す図である。 符号の説明 20・・・操舵ハンドル、21・・・操舵軸、22・・
・操舵軸モータ、23・・・操舵変位量センサ、24・
・・操舵力センサ、30.40・・・転舵軸モータ、3
2,42.83・・・転舵軸、33a、33b、43a
、43b、80a、80b・・・車輪、37,47.8
4・・・転舵変位量センサ、38,48.85・・・転
舵反力センサ、50・・・操舵軸モータ制御回路、51
,52・・・転舵軸モータ制御回路、53・・・操舵力
演算器、54・・・合成転舵反力演算器、55゜56・
・・転舵反力演算器、57.59・・・目標転舵量演算
器、58.60・・・転舵変位量演算器、70・・・車
速センサ、71・・・マイクロコンピュータ、75・・
・セレクトスイッチ、81・・・サーボ弁、82・・・
油圧シリンダ、86・・・リニアアクチュエータ。 出願人  トヨタ自動車株式会社 代理人  弁理士 長 谷 照 − 第5図 第6A図        第6B図 献f
FIG. 1 is a diagram corresponding to the configuration of the invention described in the claims, FIG. 2 is a diagram showing the basic configuration of the vehicle power steering device according to the present invention, and FIG. 3 is a diagram corresponding to the configuration of the invention described in the claims. FIG. 4 is a schematic diagram of a vehicle power steering system showing a specific embodiment of the present invention, and FIG. 5 is a diagram showing the control state in the basic configuration shown in FIG. 6A to 6D are diagrams showing steering characteristics in a specific embodiment of the present invention, and FIG. 7 shows a modification of the first slave section or second slave section in FIG. 4. It is a diagram. Explanation of symbols 20... Steering handle, 21... Steering shaft, 22...
・Steering shaft motor, 23...Steering displacement sensor, 24・
・・Steering force sensor, 30.40 ・・Steering shaft motor, 3
2, 42.83... Steering shaft, 33a, 33b, 43a
, 43b, 80a, 80b...wheel, 37, 47.8
4... Steering displacement amount sensor, 38, 48.85... Steering reaction force sensor, 50... Steering shaft motor control circuit, 51
, 52... Steering shaft motor control circuit, 53... Steering force calculator, 54... Composite steering reaction force calculator, 55°56.
... Steering reaction force calculator, 57.59... Target steering amount calculator, 58.60... Steering displacement amount calculator, 70... Vehicle speed sensor, 71... Microcomputer, 75・・・
・Select switch, 81... Servo valve, 82...
Hydraulic cylinder, 86...linear actuator. Applicant Toyota Motor Corporation Representative Patent Attorney Teru Hase - Figure 5 Figure 6A Figure 6B reference f

Claims (1)

【特許請求の範囲】[Claims] 操舵ハンドルの回動に応じて前輪及び後輪を転舵する前
後輪転舵車の舵取装置において、操舵ハンドルに結合し
た操舵軸と、該操舵軸を回転駆動する操舵軸アクチュエ
ータと、前記操舵軸の回動に応じて前輪を転舵する前輪
転舵制御手段と、後輪に機械的に結合され後輪を転舵す
る後輪転舵機構と、操舵ハンドルから前記操舵軸に付与
される操舵力を検出する操舵力センサと、後輪から前記
後輪転舵機構に付与される後輪転舵反力を検出する後輪
転舵反力センサと、前記操舵軸の基準位置からの回転角
を操舵変位量として検出する操舵変位量センサと、前記
操舵力センサ出力に基づいて前記検出操舵力の増加に応
じて増加しかつ前記操舵軸を操舵力の付与される方向へ
回転させる第1制御量を決定する第1制御量決定手段と
、前記後輪転舵反力センサ出力に基づいて前記検出転舵
反力の増加に応じて増加しかつ前記操舵軸を前記基準位
置に復帰させる方向へ回転させる第2制御量を決定する
第2制御量決定手段と、前記第1制御量及び第2制御量
を合成した操舵軸回転制御信号を前記操舵軸アクチュエ
ータに出力して前記操舵軸の回転を制御する操舵軸回転
制御信号出力手段と、前記操舵変位量センサ出力に基づ
いて後輪の目標転舵量を決定する後輪目標転舵量決定手
段と、前記決定後輪目標転舵量に応じた後輪転舵制御信
号を前記後輪転舵機構に出力して後輪の転舵量が前記決
定後輪目標転舵量になるように前記後輪転舵機構を制御
する後輪転舵制御信号出力手段とを備えたことを特徴と
する前後輪転舵車の動力舵取装置。
A steering device for a front-rear wheel steered vehicle that steers front wheels and rear wheels in response to rotation of a steering handle, comprising: a steering shaft coupled to the steering handle; a steering shaft actuator that rotationally drives the steering shaft; and the steering shaft. a front wheel steering control means that steers the front wheels according to the rotation of the rear wheels; a rear wheel steering mechanism that is mechanically coupled to the rear wheels and steers the rear wheels; and a steering force that is applied from the steering handle to the steering shaft. a steering force sensor that detects a rear wheel steering reaction force applied from the rear wheels to the rear wheel steering mechanism; a rear wheel steering reaction force sensor that detects a rear wheel steering reaction force applied from the rear wheels to the rear wheel steering mechanism; and a first control amount that increases in accordance with an increase in the detected steering force and rotates the steering shaft in the direction in which the steering force is applied, based on the output of the steering force sensor. a first control amount determining means; and a second control that increases in accordance with an increase in the detected steering reaction force based on the output of the rear wheel turning reaction force sensor and rotates the steering shaft in a direction to return the steering shaft to the reference position. a second control amount determining means for determining the amount; and a steering shaft rotation for controlling the rotation of the steering shaft by outputting a steering shaft rotation control signal, which is a combination of the first control amount and the second control amount, to the steering shaft actuator. control signal output means; rear wheel target turning amount determining means for determining a target turning amount of the rear wheels based on the output of the steering displacement amount sensor; and rear wheel turning control according to the determined rear wheel target turning amount. Rear wheel steering control signal output means for outputting a signal to the rear wheel steering mechanism to control the rear wheel steering mechanism so that the amount of rear wheel turning becomes the determined rear wheel target turning amount. A power steering device for a vehicle with front and rear wheel steering, characterized by:
JP17878285A 1985-08-14 1985-08-14 Power steering device for front and rear wheel steered vehicles Expired - Lifetime JPH069983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17878285A JPH069983B2 (en) 1985-08-14 1985-08-14 Power steering device for front and rear wheel steered vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17878285A JPH069983B2 (en) 1985-08-14 1985-08-14 Power steering device for front and rear wheel steered vehicles

Publications (2)

Publication Number Publication Date
JPS6239369A true JPS6239369A (en) 1987-02-20
JPH069983B2 JPH069983B2 (en) 1994-02-09

Family

ID=16054538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17878285A Expired - Lifetime JPH069983B2 (en) 1985-08-14 1985-08-14 Power steering device for front and rear wheel steered vehicles

Country Status (1)

Country Link
JP (1) JPH069983B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109173A (en) * 1987-10-23 1989-04-26 Jidosha Kiki Co Ltd Four-wheel steering system
US6450287B1 (en) 1999-08-19 2002-09-17 Mitsubishi Denki Kabushiki Kaisha Electric power steering controller and control method thereof
JP2002274405A (en) * 2001-03-22 2002-09-25 Nsk Ltd Power steering device for automobile
JP2012066822A (en) * 2000-01-26 2012-04-05 Special Products For Industry Vof Wheel strut

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109173A (en) * 1987-10-23 1989-04-26 Jidosha Kiki Co Ltd Four-wheel steering system
US6450287B1 (en) 1999-08-19 2002-09-17 Mitsubishi Denki Kabushiki Kaisha Electric power steering controller and control method thereof
JP2012066822A (en) * 2000-01-26 2012-04-05 Special Products For Industry Vof Wheel strut
JP2002274405A (en) * 2001-03-22 2002-09-25 Nsk Ltd Power steering device for automobile
JP4639500B2 (en) * 2001-03-22 2011-02-23 日本精工株式会社 Automotive power steering system

Also Published As

Publication number Publication date
JPH069983B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
EP1640246B1 (en) Vehicular steering control apparatus
EP1584544B1 (en) Vehicle steering apparatus
US6148948A (en) Electric power steering apparatus
WO2010109676A1 (en) Vehicle steering apparatus
JPH1134893A (en) Electric power-steering device
JP3901928B2 (en) Control device for electric power steering device
US7306072B2 (en) Hydraulic power-assisted steering system
JP2005343315A (en) Vehicular steering device
JPS6212461A (en) Power steering device for car
JPS6239369A (en) Power steering device of rear wheel steering wheel
US11745792B2 (en) Steering device
JPS61291268A (en) Power steering device for vehicle
US5150764A (en) Vehicle rear wheel steer angle control system
JP3050078B2 (en) Steering reaction force control device
JPH069984B2 (en) Power steering device for front and rear wheel steered vehicles
JP2002104220A (en) Control device of motor-driven power steering device
JP2002166844A (en) Control device for motor-driven power steering device
US20050240327A1 (en) Method for controlling motion of vehicle and motion controller of vehicle
JP2661342B2 (en) Rear-wheel steering control device for four-wheel steering vehicles
JP3309473B2 (en) Electric pump type power steering device
JP7294813B2 (en) Rudder control device
JP4026394B2 (en) Electric power steering device for automobile
JP3039103B2 (en) Electric control device for power steering device
JPS62157870A (en) Power steering device for vehicle
JPH06336172A (en) Steering device for vehicle