JPS6239161B2 - - Google Patents

Info

Publication number
JPS6239161B2
JPS6239161B2 JP14672378A JP14672378A JPS6239161B2 JP S6239161 B2 JPS6239161 B2 JP S6239161B2 JP 14672378 A JP14672378 A JP 14672378A JP 14672378 A JP14672378 A JP 14672378A JP S6239161 B2 JPS6239161 B2 JP S6239161B2
Authority
JP
Japan
Prior art keywords
flame retardant
parts
flame
composition
radiation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14672378A
Other languages
Japanese (ja)
Other versions
JPS5573710A (en
Inventor
Myuki Hagiwara
Yosuke Morita
Eisuke Oda
Shunichi Fujimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14672378A priority Critical patent/JPS5573710A/en
Publication of JPS5573710A publication Critical patent/JPS5573710A/en
Publication of JPS6239161B2 publication Critical patent/JPS6239161B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は優れた難燃性並びに耐放射線性を具備
した難燃耐放射線性重合体組成物成形体の製造方
法に関するものである。 炭化水素系重合体、例えば、ポリエチレン、ポ
リプロピレン、エチレン−プロピレン共重合体、
ポリブタジエン、ブタジエン−スチレン共重合
体、ポリスチレン、ポリイソプレン及びその他の
炭化水素系重合体は燃え易く、防災上必要と認め
られるときは、これらを難燃化処理して用いるこ
とが望まれている。この目的から、従来種々の難
燃剤や難燃化の方法が提案されているのは周知の
とおりである。難燃剤としては、例えば有機系難
燃剤として、塩素もしくは臭素化パラフイン、あ
るいは塩素化ポリエチレン等のハロゲン置換脂肪
族系化合物、また、ヘキサプロモベンゼンやデカ
ブロモジフエニルエーテル等のハロゲン置換芳香
族系化合物、トリフエニルホスフエート、トリス
(2・3−ジブロモプロピル)ホスフエート等の
リン系化合物、無機系難燃剤として水酸化アルミ
ニウムなどその他多くの化合物が知られている。
なかでも、臭素等のハロゲン置換芳香族化合物は
熱的に安定で炭化水素系重合体の難燃剤として効
果の大きいものとして知られている。しかしなが
ら、ここに例示したいわゆる添加型の難燃剤の場
合、難燃剤と重合体の間には化学的な結合はな
い。このため長期の使用期間中には難燃剤が成形
体表面に滲出したり、あるいは高温下で揮散する
などのため難燃化重合体成型物の難燃特性が低下
するという場合がしばしば起る。実際に難燃化重
合体成型物が火災に遭遇したときのことを考える
と難燃剤の分子量が小さくかつ添加型である場
合、火焔や熱によつて重合体が着火する以前に成
型物から蒸発揮散してしまうので、難燃化の効果
が著しく減退するという事態に立ち到る。このた
め、あらかじめ過剰に添加しておくなどの措置を
とることがあるが、多量の難燃剤の添加は難燃化
重合体成型物の強度等の機械的性質、絶縁性能等
の電気的性質を著しく低下させる原因となる。 一方、添加型難燃剤でも例えば塩素化ポリエチ
レンのように高分子量のものが提案されている。
この場合は上述したような低分子量のものに見ら
れるような樹脂からの滲出や高温下での揮散は少
ない。しかしながら、これら高分子量の難燃剤は
ごく分子構造の類似した樹脂においてのみ相溶性
を示し構造の異なるもの同志の相溶性は非常に悪
い。また、たとえ表面上混合したように見えて
も、不均一に分散しているにすぎないことが多
く、難燃化効果も悪い。 本発明者等は先に一般に見られる難燃剤のかか
る欠点をもたない、つまり、配合組成物からの難
燃剤の滲出、あるいは揮散がなく、かつ広い範囲
の重合体に対して良好な相溶性を示し、かつ、少
量の使用で有効な難燃化効果が得られる炭化水素
系重合体に対する新しい難燃化法として重合性リ
ン酸エステルを用いる新しい難燃化法を提案し
た。 しかし、この難燃化法により得られた難燃性炭
化水素系重合体組成物においては組成物中に配合
した重合性リン酸エステル系の難燃剤が、重合化
処理により重合体となつた後にも耐加水分解性が
低く、従つて該組成物成形体を高湿度の条件下で
使用した場合に加水分解反応によりその難燃性が
低下するという問題が新たに生起した。 ところで、近年、軽水冷却型原子炉による発電
が普及しつつあるが、原子炉周辺で用いられる電
線・ケーブルの耐火災性の向上が安全性確保のう
ちから強く要請せられている。原子炉周辺では、
電線・ケーブルは高湿度と放射線という劣化要因
が複合した環境下で用いられることもあり、絶縁
材の難燃化処理もこれに適した方法によらなけれ
ばならない。つまり、難燃剤は不滲出性でしかも
耐湿性に富み、基材となる炭化水素系重合体の耐
放射線性をそこなうものであつてはならない。 以上のような観点から、重合性化合物による炭
化水素系重合体の難燃化について本発明者らは鋭
意検討を重ねた結果、一般式 (式中n=3、4あるいは5) で示されるアクリル酸の臭素置換フエニルエステ
ルが充分な重合反応性を有し、かつ、この重合物
が基材となる炭化水素系重合体中で充分な耐湿性
と難燃性とを付与できる性能を有していることを
見いだした。 一方、上述のような重合性難燃剤はこれらが重
合体となつてはじめて有効な難燃化効果を発揮す
るものであるから、一般に、炭化水素系重合体の
耐放射線性付与剤として常用されるラジカル捕捉
作用の強い酸化防止剤の添加は難燃剤の重合を阻
害し、難燃化効果を低下させるので好ましくな
い。さらに、この重合阻害作用のために未反応の
まま残された重合性の難燃剤は、それらが放射線
環境下におかれると徐々に反応して基材炭化水素
系重合体の放射線劣化を促進するという悪影響を
もたらすことが明らかになつた。この事から重合
性難燃剤と組合せて用いることのできる耐放射線
性付与剤は、該重合性難燃剤の重合を阻害しない
ものでなければならない。 本発明者らは、かかる要請のもとに各種化合物
の放射線反応について基礎的な検討を進めたとこ
ろ、炭化水素系重合体に対してピレンとジアルキ
ルジオチカルバミン酸ニツケルもしくはピレンと
4−ベンゾイルオキシ−2・2・6・6−テトラ
メチルピリジンとの特定範囲の混合物を上記の重
合性難燃剤と共用した場合に、難燃性、耐放射線
性ともに優れた性能を有する電気絶縁性炭化水素
系重合体組成物が得られることを見いだし、本発
明に到達した。 本発明において対象とされる炭化水素系重合体
とはエチレン、プロピレン、ブテン、イソブテ
ン、ブタジエン、イソプレン、スチレン、α−メ
チルスチレン等炭素及び水素からなる単量体を主
成分とする重合体、またはそれらの混合物をい
う。また、本発明でいう重合体は上記単量体の各
種誘導体、アクリル酸及びそのエステル、メタク
リル酸及びそのエステル、弗化ビニル、弗化ビニ
リデン、テトラフルオルエチレン、塩化ビニル、
塩化ビニリデン、臭化ビニル、アクリロニトリ
ル、アクリルアミド、酢酸ビニルなどのビニル系
単量体との共重合体及びこれらと上述の炭化水素
系重合体との混合物も本発明の範囲に属する。 また、前記一般式
The present invention relates to a method for producing a molded article of a flame-retardant and radiation-resistant polymer composition having excellent flame retardancy and radiation resistance. Hydrocarbon polymers, such as polyethylene, polypropylene, ethylene-propylene copolymers,
Polybutadiene, butadiene-styrene copolymers, polystyrene, polyisoprene, and other hydrocarbon polymers are easily flammable, and when deemed necessary for disaster prevention, it is desirable to use them after being subjected to flame-retardant treatment. It is well known that various flame retardants and flame retardant methods have been proposed for this purpose. Examples of flame retardants include organic flame retardants such as chlorine or brominated paraffin, halogen-substituted aliphatic compounds such as chlorinated polyethylene, and halogen-substituted aromatic compounds such as hexapromobenzene and decabromodiphenyl ether. , triphenyl phosphate, tris(2,3-dibromopropyl) phosphate, and many other compounds such as aluminum hydroxide are known as inorganic flame retardants.
Among them, halogen-substituted aromatic compounds such as bromine are known to be thermally stable and highly effective as flame retardants for hydrocarbon polymers. However, in the case of the so-called additive type flame retardant exemplified here, there is no chemical bond between the flame retardant and the polymer. Therefore, during long-term use, the flame retardant properties of the flame retardant polymer molded product often deteriorate because the flame retardant oozes out onto the surface of the molded product or evaporates at high temperatures. Considering that a flame retardant polymer molded product actually encounters a fire, if the flame retardant has a small molecular weight and is additive, it will evaporate from the molded product before the polymer ignites due to flames or heat. Since it volatilizes, a situation arises in which the flame retardant effect is significantly reduced. For this reason, measures such as adding an excessive amount in advance may be taken, but adding a large amount of flame retardant will affect the mechanical properties such as strength and electrical properties such as insulation performance of the flame retardant polymer molded product. This causes a significant decrease in the amount of water. On the other hand, additive flame retardants with high molecular weights, such as chlorinated polyethylene, have been proposed.
In this case, there is little leaching from the resin or volatilization at high temperatures, which occurs with the low molecular weight ones mentioned above. However, these high molecular weight flame retardants are compatible only with resins having very similar molecular structures, and the compatibility between resins with different structures is very poor. Moreover, even if it appears to be mixed on the surface, it is often only dispersed non-uniformly, and the flame retardant effect is also poor. The inventors have previously discovered that flame retardants do not have such drawbacks commonly found in flame retardants, i.e., there is no leaching or volatilization of flame retardants from formulated compositions, and good compatibility with a wide range of polymers. We proposed a new flame retardant method using polymerizable phosphoric acid esters as a new flame retardant method for hydrocarbon polymers, which shows that effective flame retardant effects can be obtained even when used in small amounts. However, in the flame retardant hydrocarbon polymer composition obtained by this flame retardant method, the polymerizable phosphate ester flame retardant blended into the composition is However, a new problem has arisen in that when a molded article of the composition is used under conditions of high humidity, its flame retardancy decreases due to a hydrolysis reaction. Incidentally, in recent years, power generation using light water-cooled nuclear reactors has become widespread, and there is a strong demand for improving the fire resistance of electric wires and cables used around the reactor in order to ensure safety. Around the reactor,
Electric wires and cables are sometimes used in environments where there are multiple deterioration factors such as high humidity and radiation, and the flame retardant treatment of insulation materials must be done in a manner suitable for this environment. In other words, the flame retardant must be non-leaching, highly moisture resistant, and must not impair the radiation resistance of the base hydrocarbon polymer. From the above points of view, the present inventors have conducted intensive studies on making flame retardant hydrocarbon polymers using polymerizable compounds, and as a result, the general formula The brominated phenyl ester of acrylic acid represented by (in the formula, n = 3, 4 or 5) has sufficient polymerization reactivity, and this polymer is sufficient in the hydrocarbon polymer that serves as the base material. The inventors have discovered that the material has the ability to provide excellent moisture resistance and flame retardancy. On the other hand, polymerizable flame retardants such as those mentioned above exhibit an effective flame retardant effect only when they are turned into polymers, so they are generally used as radiation resistance imparting agents for hydrocarbon polymers. Addition of an antioxidant with a strong radical scavenging effect is not preferable because it inhibits the polymerization of the flame retardant and reduces the flame retardant effect. Furthermore, due to this polymerization inhibiting effect, the polymerizable flame retardants left unreacted will gradually react when exposed to a radiation environment, promoting radiation deterioration of the base hydrocarbon polymer. It has been shown that this has an adverse effect. For this reason, a radiation resistance imparting agent that can be used in combination with a polymerizable flame retardant must not inhibit the polymerization of the polymerizable flame retardant. Based on this request, the present inventors conducted basic studies on the radiation reactions of various compounds, and found that pyrene and nickel dialkyl diothicarbamate or pyrene and 4-benzoyloxy -Electrically insulating hydrocarbon type that has excellent performance in both flame retardancy and radiation resistance when a mixture with 2,2,6,6-tetramethylpyridine in a specific range is used together with the above polymerizable flame retardant. It has been discovered that a polymer composition can be obtained, and the present invention has been achieved. The hydrocarbon polymers targeted by the present invention are polymers whose main component is a monomer consisting of carbon and hydrogen, such as ethylene, propylene, butene, isobutene, butadiene, isoprene, styrene, α-methylstyrene, or A mixture of these. In addition, the polymers referred to in the present invention include various derivatives of the above monomers, acrylic acid and its esters, methacrylic acid and its esters, vinyl fluoride, vinylidene fluoride, tetrafluoroethylene, vinyl chloride,
Copolymers with vinyl monomers such as vinylidene chloride, vinyl bromide, acrylonitrile, acrylamide, vinyl acetate, and mixtures of these with the above-mentioned hydrocarbon polymers also belong to the scope of the present invention. In addition, the general formula

【式】 (式中n=3、4あるいは5)で示される重合性
難燃剤の具体例としては臭素が2・3・4−、
2・3・5−、2・3・6、2・4・6−あるい
は3・4・5−の位置に入つたトリブロモフエニ
ルアクリレート、2・3・4・5−あるいは2・
3・5・6−位置に入つたテトラブロムフエニル
アクリレートおよびペンタブロムフエニルアクリ
レートがあげられる。 併用される耐放射線性付与剤であるピレン、ジ
アルキルジチオカルバミン酸ニツケルおよび4−
ベンゾイルオキシ−2・2・6・6−テトラメチ
ルピペリジンは市販のものをそのまま用いること
ができる。また、ジアルキルジチオカルバミン酸
ニツケルのアルキルとしてはエチル、n−ブチル
等が例示される。 ここにおいて炭化水素系重合体に対する前記難
燃剤の添加量は対象となる炭化水素系重合体の種
類と必要とされる難燃度によるが、重合体100重
量部に対して難燃剤5〜60重量部用いられる。し
かし、該難燃剤は難燃化効果が大きいことから著
しく過剰な添加は必要とせず一般には10〜30重量
部程度の添加で十分である。 なお、本発明においては添加した難燃剤中の臭
素原子1に対し三酸化アンチモンをアンチモン原
子量で1/2〜1/3倍量併用すると難燃性が一段と助
長され好ましいものである。 一方、重合性難燃剤と併用する前記耐放射線性
付与剤の添加量は、少量過ぎる場合は効果が小さ
く、多量の添加は組成物の難燃性の低下をまねく
ので、一般には炭化水素系重合体100重量部に対
して0.5〜20重量部とされる。また、該耐放射線
性付与剤であるピレンとジアルキルジチオカルバ
ミン酸ニツケルあるは、4−ベンゾイルオキシ−
2・2・6・6−テトラメチルピペリジンとの混
合割合は重量比で1:2から1:0.1の範囲で用
いるのが最も効果的である。 本発明による難燃性耐放射線性重合体組成物成
形体を得るには、まず炭化水素系重合体と重合性
難燃剤および耐放射線性付与剤を種々の公知の方
法、例えば、粒状、粉状、フレーク状、ブロツク
状重合体に対して粉状または粒状の難燃剤を添加
し、ミキサーにて混合し、ホツトロール、ブラベ
ンダー等により混練すればよい。しかる後に、所
望の成形手段により、成形後配合した重合性難燃
剤を所望の手段により重合せしめるのであるが、
この重合せしめる手段としては、例えば、組成物
の成形直前に該組成物中にラジカル発生剤を添加
し成形と同時に加熱重合させる。あるいは組成物
の成型後、賦形された成形体に電離性放射線を照
射して重合させる等の方法がある。成形前に照射
すると、その炭化水素系重合体に架橋が生じ、そ
の後の組成物の成形が困難となるので、好ましく
はない。 本発明にて用いる難燃組成物中には増量剤、可
塑剤、染料、顔料、熱安定剤、帯電防止剤、滑剤
及びその類似物質のような成分を配合することも
可能である。 なお本発明にていう組成物成形体とは何ら特定
の形状のものを意味するものでなく、例えばシー
ト、フイルム、電線又はケーブル等における絶縁
体層、シース層、その他種々の賦形物を指称する
ものである。 以下に、実施例を示すが、ここでは難燃性の表
示方法として、酸素指数を採用した。この値の測
定方法はJIS K7201又はASTM D2863−70に規格
下されており、これらによれば高分子材料の酸素
指数は試料の燃焼時間が3分以上継続して燃焼す
るか、または燃焼長さが50mm以上燃え続けるのに
必要な最低の酸素濃度から求められる。 なお、以下の各例においてすべての部及び%は
特に断らない限り重量による。 実施例1〜2、比較例1〜2 エチレンプロピレンゴム(EPDM)100部に対
し、亜鉛華5部、イオウ0.5部、ステアリン酸1
部、ポリ(2・2・4−トリメチル−1・2ジヒ
ドロキリノン)1.5部、三酸化アンチモン10部、
タルク100部、重合性難燃剤として2・4・6−
トリブロモフエニルアクリレート(実施例1)又
はペンタブロモフエニルアクリレート(実施例
2)30部、耐放射線性付与剤としてピレン5部、
ジブチルジチオカルバミン酸ニツケル2部を120
℃の二本ロール上にて、エチレンプロピレンゴム
に混入させ、その後、ロール温度を室温に下げ
て、ラジカル発生剤としてジクミルパーオキサイ
ド3部およびジ−t−ブチルパーオキサイド6部
を混入した。この混合物を、175℃、30分間、100
Kg/cm2で厚さ3mmあるいは2mmのシートに圧縮成
形した。得られた厚さ3mmのシートから、巾6.5
mm、長さ150mmの細片を切り出し各試料の酸素指
数を測定した。また、厚さ2mmのシートからは
JIS3号ダンベルを打抜き、室温、空気中に、5×
105rad/hrの線量率でγ線を照射したのち、得ら
れた各試料について引張試験法(20℃、引張速度
500mm/min)により耐放射線性を測定した。得
られた結果を表1に示した。同表中の比較例1は
重合性難燃剤の代りにデカブロムジフエニルエー
テルを実施例1と同じ臭素含量となるように加
え、かつ、耐放射線性付与剤を添加しない場合の
結果である。 本発明の方法によれば高い酸素指数と優れた耐
放射線性を有する難燃性組成物成形体が得られる
ことがわかる。 なお、比較例2としてデカブロムジフエニルエ
ーテルと実施例1および2で用いたものと同じ組
成の耐放射線性付与剤を添加した場合、酸素指数
が2・4・5で充分な難燃性を有する組成物成形
体は得られなかつた。
[Formula] Specific examples of polymerizable flame retardants represented by (in the formula, n = 3, 4 or 5) include bromine, 2, 3, 4-,
Tribromophenyl acrylate in the 2, 3, 5-, 2, 3, 6, 2, 4, 6- or 3, 4, 5- position, 2, 3, 4, 5- or 2,
Mention may be made of tetrabromphenyl acrylate and pentabromphenyl acrylate in the 3, 5, and 6 positions. Pyrene, nickel dialkyldithiocarbamate and 4-
Commercially available benzoyloxy-2,2,6,6-tetramethylpiperidine can be used as is. Further, examples of the alkyl of nickel dialkyldithiocarbamate include ethyl, n-butyl, and the like. The amount of the flame retardant added to the hydrocarbon polymer depends on the type of hydrocarbon polymer and the required degree of flame retardancy, but 5 to 60 parts by weight of the flame retardant is added to 100 parts by weight of the polymer. part is used. However, since the flame retardant has a large flame retardant effect, it is not necessary to add a significantly excessive amount, and in general, addition of about 10 to 30 parts by weight is sufficient. In the present invention, it is preferable to use antimony trioxide in an amount of 1/2 to 1/3 times the antimony atomic weight per 1 bromine atom in the added flame retardant, as this further promotes flame retardancy. On the other hand, if the amount of the radiation resistance imparting agent used in combination with the polymerizable flame retardant is too small, the effect will be small, and if it is added in a large amount, the flame retardance of the composition will decrease. The amount is 0.5 to 20 parts by weight per 100 parts by weight of the combined product. In addition, the radiation resistance imparting agent pyrene and nickel dialkyldithiocarbamate or 4-benzoyloxy-
The most effective mixing ratio with 2,2,6,6-tetramethylpiperidine is in the range of 1:2 to 1:0.1 by weight. In order to obtain the flame-retardant and radiation-resistant polymer composition molded article according to the present invention, first, a hydrocarbon polymer, a polymerizable flame retardant, and a radiation resistance imparting agent are mixed by various known methods, for example, in the form of granules, powders, etc. A powder or granular flame retardant may be added to a polymer in the form of flakes or blocks, mixed in a mixer, and kneaded using a hot roll, Brabender, or the like. Thereafter, the polymerizable flame retardant blended after molding is polymerized by a desired molding method.
As a means for this polymerization, for example, a radical generator is added to the composition immediately before the composition is molded, and the radical generator is heated and polymerized at the same time as the molding. Alternatively, after molding the composition, there is a method of irradiating the shaped molded article with ionizing radiation to polymerize it. Irradiation before molding is not preferred because crosslinking occurs in the hydrocarbon polymer, making subsequent molding of the composition difficult. Ingredients such as fillers, plasticizers, dyes, pigments, heat stabilizers, antistatic agents, lubricants and similar substances can also be incorporated into the flame retardant composition used in the present invention. In addition, the composition molded article as used in the present invention does not mean a specific shape at all, but refers to, for example, an insulator layer, a sheath layer, and other various excipients in sheets, films, electric wires, cables, etc. It is something. Examples are shown below, in which oxygen index was adopted as a method of indicating flame retardancy. The method for measuring this value is standardized in JIS K7201 or ASTM D2863-70, and according to these, the oxygen index of a polymer material is measured if the sample burns continuously for 3 minutes or more, or if the combustion length It is calculated from the minimum oxygen concentration required for the flame to continue burning for more than 50 mm. In the following examples, all parts and percentages are by weight unless otherwise specified. Examples 1-2, Comparative Examples 1-2 5 parts of zinc white, 0.5 part of sulfur, 1 part of stearic acid to 100 parts of ethylene propylene rubber (EPDM)
parts, poly(2,2,4-trimethyl-1,2 dihydroquilinone) 1.5 parts, antimony trioxide 10 parts,
100 parts of talc, 2, 4, 6- as a polymeric flame retardant
30 parts of tribromophenyl acrylate (Example 1) or pentabromophenyl acrylate (Example 2), 5 parts of pyrene as a radiation resistance imparting agent,
120 parts of nickel dibutyldithiocarbamate
The mixture was mixed into ethylene propylene rubber on two rolls at .degree. C., and then the roll temperature was lowered to room temperature, and 3 parts of dicumyl peroxide and 6 parts of di-t-butyl peroxide were mixed as radical generators. This mixture was heated at 175°C for 30 minutes at 100°C.
It was compression molded into a sheet with a thickness of 3 mm or 2 mm at kg/cm 2 . From the obtained 3mm thick sheet, width 6.5
A strip of 150 mm in length was cut out and the oxygen index of each sample was measured. Also, from a sheet with a thickness of 2 mm,
Punch out JIS No. 3 dumbbells and place them in the air at room temperature 5x
After irradiating with gamma rays at a dose rate of 10 5 rad/hr, each sample obtained was subjected to a tensile test method (20℃, tensile rate
500mm/min) to measure radiation resistance. The results obtained are shown in Table 1. Comparative Example 1 in the same table shows the results when decabromodiphenyl ether was added instead of the polymerizable flame retardant so that the bromine content was the same as in Example 1, and no radiation resistance imparting agent was added. It can be seen that according to the method of the present invention, a flame-retardant composition molded article having a high oxygen index and excellent radiation resistance can be obtained. In addition, as Comparative Example 2, when decabrom diphenyl ether and a radiation resistance imparting agent having the same composition as that used in Examples 1 and 2 were added, sufficient flame retardance was obtained with an oxygen index of 2, 4, and 5. No molded article of the composition was obtained.

【表】 実施例 3〜4 実施例1および2において、耐放射線性付与剤
としてピレン5部、2・2・6・6−テトラメチ
ルピペリジン2部を用いた外は実施例1と同様に
して試料シートを得、各試料について酸素指数お
よび耐放射線性試験を行なつた。得られた結果を
表2にまとめた。
[Table] Examples 3 to 4 In Examples 1 and 2, the same procedure as in Example 1 was used except that 5 parts of pyrene and 2 parts of 2,2,6,6-tetramethylpiperidine were used as radiation resistance imparting agents. Sample sheets were obtained, and oxygen index and radiation resistance tests were conducted on each sample. The results obtained are summarized in Table 2.

【表】 上表から明らかな如く実施例1および2と同様
の優れた難燃耐放射線性重合体組成物成形体が得
られることがわかる。 実施例 5 ポリエチレン(PE)100部に対し、ステアリン
酸鉛0.5部、パラフインワツクス0.5部、ポリ
(2・2・4−トリメチル−1・2ジヒドロキノ
リン)0.5部、三酸化アンチモン10部、デクロラ
ンプラス25 15部、重合性難燃剤としてペンタブ
ロムフエニルアクレート20部、耐放射線性付与剤
としてピレン5部、ジブチルジチオカルバミン酸
ニツケル2部を110℃の二本ロール上でポリエチ
レンに混入させ、その後さらに、ラジカル発生剤
としてジクミルパーオキサイド3部を混入した。
この混和物を160℃、30分間、100Kg/cm2で厚さ3
mmのシートに圧縮成型した。このシートから巾65
mm、長さ150mmの細片を切り出した。これらの試
料の酸素指数の測定および耐放射線性試験を行な
つた。得られた結果を表3に示す。
[Table] As is clear from the above table, it can be seen that excellent flame-retardant and radiation-resistant polymer composition molded articles similar to those of Examples 1 and 2 were obtained. Example 5 For 100 parts of polyethylene (PE), 0.5 parts of lead stearate, 0.5 parts of paraffin wax, 0.5 parts of poly(2,2,4-trimethyl-1,2 dihydroquinoline), 10 parts of antimony trioxide, 15 parts of Lorane Plus 25, 20 parts of pentabromophenylacrate as a polymerizable flame retardant, 5 parts of pyrene as a radiation resistance imparting agent, and 2 parts of nickel dibutyldithiocarbamate were mixed into polyethylene on two rolls at 110°C. Thereafter, 3 parts of dicumyl peroxide was further mixed in as a radical generator.
This mixture was heated at 160℃ for 30 minutes to a thickness of 3 cm at 100Kg/ cm2.
It was compression molded into a sheet of mm. Width 65 from this sheet
mm, and 150 mm long strips were cut out. These samples were subjected to oxygen index measurements and radiation resistance tests. The results obtained are shown in Table 3.

【表】 含臭素難燃剤としてデカブロムジフエニルエー
テルを用いた比較例との対比から明らかなよう
に、本発明の方法によれば、難燃性、耐放射線性
に優れた組成物成形体が得られることがわかる。 実施例 6 実施例5において、耐放射線性付与剤をピレン
5部、2・2、6・6−テトラメチルピペリジン
2部としたときの酸素指数値および耐放射線性試
験の結果を表4に示した。
[Table] As is clear from the comparison with a comparative example using decabrom diphenyl ether as a bromine-containing flame retardant, according to the method of the present invention, a molded composition with excellent flame retardancy and radiation resistance can be obtained. You can see what you can get. Example 6 In Example 5, the oxygen index value and the results of the radiation resistance test when the radiation resistance imparting agent was 5 parts of pyrene and 2 parts of 2,2,6,6-tetramethylpiperidine are shown in Table 4. Ta.

【表】 表3に示した比較例との対比から明らかなよう
に、本発明の方法によれば、難燃性、耐放射線性
ともに優れた組成物成形体が得られることがわか
る。 実施例 7 実施例5において、炭化水素系熱可塑性重合体
をエチレン−酢酸ビニル共重合体(EVA、酢酸
ビニル含量15wt%)としたときの酸素指数値お
よび耐放射線性試験の結果を表5に示した。
[Table] As is clear from the comparison with the comparative example shown in Table 3, it can be seen that according to the method of the present invention, a molded composition having excellent flame retardancy and radiation resistance can be obtained. Example 7 In Example 5, the oxygen index value and radiation resistance test results when the hydrocarbon thermoplastic polymer was ethylene-vinyl acetate copolymer (EVA, vinyl acetate content 15 wt%) are shown in Table 5. Indicated.

【表】 含臭素難燃剤としてデカブロムジフエニルエー
テルを用いた比較例との対比から明らかなよう
に、本発明の方法によれば、難燃性、耐放射線性
に優れた組成物成形体が得られることがわかる。 実施例 8 実施例1、2、3、5および比較例1の各組成
物をロールで混練後、各々の組成物を2mm2の断面
積を持つ軟銅撚線上に厚みが8mmとなるように押
出機により押出被覆後、蒸気缶中160℃で30分間
加硫して絶縁電線を得た。 次に、而して得られた各々の絶縁電線につい
て、絶縁抵抗、交流耐電圧試験、IPCEA垂直燃
焼試験、200Mrad照射後の自己径巻付による耐放
射線性試験を行つて得られた結果を表6に示す。 表から明らかな如く、本発明方法によれば、優
れた特性を有する絶縁電線が得られるものであ
る。
[Table] As is clear from the comparison with a comparative example using decabrom diphenyl ether as a bromine-containing flame retardant, according to the method of the present invention, a molded composition with excellent flame retardancy and radiation resistance can be obtained. You can see what you can get. Example 8 After kneading each composition of Examples 1, 2, 3, 5 and Comparative Example 1 with a roll, each composition was extruded onto an annealed copper stranded wire having a cross-sectional area of 2 mm 2 to a thickness of 8 mm. After extrusion coating using a machine, the wire was vulcanized at 160°C for 30 minutes in a steam can to obtain an insulated wire. Next, we conducted insulation resistance, AC withstanding voltage tests, IPCEA vertical combustion tests, and radiation resistance tests by self-diameter winding after 200 Mrad irradiation on each of the obtained insulated wires, and the results obtained are listed below. 6. As is clear from the table, according to the method of the present invention, an insulated wire with excellent properties can be obtained.

【表】 以上、説明した如く、本発明方法によれば優れ
た難燃特性及び耐放射線特性を具備した炭化水素
系重合体組成物成形体が得られるものであり、そ
の工業的価値は極めて大きいものである。
[Table] As explained above, according to the method of the present invention, a molded article of a hydrocarbon polymer composition having excellent flame retardant properties and radiation resistance properties can be obtained, and its industrial value is extremely large. It is something.

Claims (1)

【特許請求の範囲】 1 炭化水素系重合体100重量部に対してピレン
とジアルキルジチオカルバミン酸ニツケルもしく
は4−ベンゾイルオキシ−2・2・6・6−テト
ラメチルピペリジンの重合比が1:2〜1:0.1
の範囲の混合物0.5〜20重量部および一般式 (式中n=3、4または5)によつて表わされる
重合性難燃剤を5〜60重量部配合したことを特徴
とする組成物を所望の賦形体となしたのち、該賦
形体中の重合性難燃剤を重合せしめる処理を施こ
すことを特徴とする難燃耐放射線性重合体組成物
成形体の製造方法。
[Scope of Claims] 1. The polymerization ratio of pyrene and nickel dialkyldithiocarbamate or 4-benzoyloxy-2,2,6,6-tetramethylpiperidine to 100 parts by weight of the hydrocarbon polymer is 1:2 to 1. :0.1
Mixtures ranging from 0.5 to 20 parts by weight and general formula After forming a composition characterized by blending 5 to 60 parts by weight of a polymerizable flame retardant represented by the formula (wherein n=3, 4 or 5) into a desired excipient, 1. A method for producing a flame-retardant, radiation-resistant polymer composition molded article, which comprises performing a treatment of polymerizing a polymerizable flame retardant.
JP14672378A 1978-11-28 1978-11-28 Preparation of molded article of flame-retardant and radiation-resistant polymer composition Granted JPS5573710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14672378A JPS5573710A (en) 1978-11-28 1978-11-28 Preparation of molded article of flame-retardant and radiation-resistant polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14672378A JPS5573710A (en) 1978-11-28 1978-11-28 Preparation of molded article of flame-retardant and radiation-resistant polymer composition

Publications (2)

Publication Number Publication Date
JPS5573710A JPS5573710A (en) 1980-06-03
JPS6239161B2 true JPS6239161B2 (en) 1987-08-21

Family

ID=15414094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14672378A Granted JPS5573710A (en) 1978-11-28 1978-11-28 Preparation of molded article of flame-retardant and radiation-resistant polymer composition

Country Status (1)

Country Link
JP (1) JPS5573710A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196605A (en) * 1984-10-18 1986-05-15 マナック株式会社 Incombustible electric insulation composition
JPS62267360A (en) * 1986-05-16 1987-11-20 Oouchi Shinko Kagaku Kogyo Kk Light-resistant stabilized polymer colored composition
JPH01297444A (en) * 1988-05-25 1989-11-30 Mitsubishi Petrochem Co Ltd Ozone-resistant polyolefin molded body
JP5163263B2 (en) * 2008-05-01 2013-03-13 日立電線株式会社 Radiation-resistant sheath material and radiation-resistant cable

Also Published As

Publication number Publication date
JPS5573710A (en) 1980-06-03

Similar Documents

Publication Publication Date Title
US20100086268A1 (en) Fire Resistant Thermoplastic or Thermoset Compositions Containing an Intumescent Specialty Chemical
US3860676A (en) Flame retardant compositions
JP2655996B2 (en) Cross-linked flame-retardant resin composition and cross-linked flame-retardant insulated wire using the same
JP3358228B2 (en) Resin composition and insulated wire and insulated tube therefrom
US5539052A (en) Crosslinked thermoplastic elastomers
EP0035279B1 (en) Compositions of alkylene-alkyl acrylate copolymers having improved flame retardant properties
JPS6239161B2 (en)
JPS6140256B2 (en)
JP2648874B2 (en) Heat-resistant polyolefin composition
JP2681195B2 (en) Flame retardant polyolefin composition
KR20100078823A (en) Inorganic and melamine-based polyolefin flame retardant composition containing nanoclay
JP2869809B2 (en) Flame retardant resin composition
JPH03197539A (en) Flame-retardant resin composition
WO1986004595A1 (en) Polyolefin composition
RU2369931C1 (en) Electric insulating self-extinguishing composition
JPS625938B2 (en)
JPH0573135B2 (en)
JPH0995562A (en) Flame-retardant cross-linkable polyolefin composition and flame-retardant electric wire
JPS6010024Y2 (en) Flame-retardant cross-linked polyethylene composition insulated wire
JPH0726017B2 (en) Flame retardant composition
JPH0995563A (en) Flame-retardant heat-resistant resin composition
SU604859A1 (en) Self-stopping composition based on homo -or copolymers of olefins or their mixtures
JPH02251552A (en) Flame-retardant resin composition
JPS6034978B2 (en) Method for manufacturing flame-retardant polyolefin molded body
JPS6166736A (en) Flame-retardant polyolefin composition