JPS6239007A - Annealing of heat insulation treated magnetic core - Google Patents

Annealing of heat insulation treated magnetic core

Info

Publication number
JPS6239007A
JPS6239007A JP61189482A JP18948286A JPS6239007A JP S6239007 A JPS6239007 A JP S6239007A JP 61189482 A JP61189482 A JP 61189482A JP 18948286 A JP18948286 A JP 18948286A JP S6239007 A JPS6239007 A JP S6239007A
Authority
JP
Japan
Prior art keywords
annealing
magnetic core
temperature
core
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61189482A
Other languages
Japanese (ja)
Inventor
アクラム・ミュニアー・アブダルーマジード
デービッドソン・エム・ナザシン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Corp
Original Assignee
Allied Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Corp filed Critical Allied Corp
Publication of JPS6239007A publication Critical patent/JPS6239007A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は非晶質合金製コアを焼鈍するための改良法、よ
シ詳細には非晶質合金製コアを急熱処理し、磁気的に焼
鈍し、これによりその磁性を特定の製品用に合わせる方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an improved method for annealing an amorphous alloy core, and more particularly, a method for rapidly annealing an amorphous alloy core and magnetically annealing the amorphous alloy core, thereby improving its magnetic properties. on how to tailor the product for a specific product.

一般の結晶質合金よシも優れた磁性を示す非晶質合金が
開発されている。これらの非晶質合金は巻いて磁気コア
(環状磁気回路に近似する)を形成することができ、磁
気デバイス、例えばトランス、誘導子、無電極螢光灯な
どのコアとして用いるのに好適である。非晶質合金製コ
アを無電極螢光灯用に適合させることについては米国特
許第4.227,120号明細書(ルポルスキーら)に
示されている。非晶質金属製コアは焼鈍されてその磁性
が高められる。一般に焼鈍工程には、結晶化を開始する
ことな(応力を除去するのに十分な温度にコアを熱処理
し、そして磁場の存在下に冷却する工程を含む。この型
の焼鈍法は米国特許第、i、116,728゜4.24
9,969.4,262,233.および4.298.
409号各明細書に示されている。
Amorphous alloys have been developed that exhibit better magnetic properties than general crystalline alloys. These amorphous alloys can be rolled to form a magnetic core (approximating a toroidal magnetic circuit) and are suitable for use as cores in magnetic devices, such as transformers, inductors, electrodeless fluorescent lamps, etc. . Adaptation of amorphous alloy cores for use in electrodeless fluorescent lamps is shown in US Pat. No. 4,227,120 (Lupolsky et al.). The amorphous metal core is annealed to enhance its magnetic properties. The annealing process generally involves heat treating the core to a temperature sufficient to relieve stress without initiating crystallization and cooling in the presence of a magnetic field. This type of annealing process is described in U.S. Pat. , i, 116,728°4.24
9,969.4,262,233. and 4.298.
No. 409 each specification.

一般の焼鈍法に関する主な問題は、加熱工程を行うのに
必要な期間が長いことである。この問題は比較的大型の
コアに関して特にやっかいである。
The main problem with common annealing methods is the long period of time required to perform the heating step. This problem is particularly troublesome for relatively large cores.

コアを焼鈍温度にまで急熱することによりその外部にホ
ットスポットが生じ、これによりコアの磁性が著しく低
下するため、上記の製品用に用いるのには不適当となる
。この問題を軽減するためには、多数の段階的加熱工程
を伴う、手間のかかる方法によってコアの温度を焼鈍温
度にまで高めなければならず、これは時間の浪費であり
かつ費用がかかる。
Rapid heating of the core to annealing temperatures creates hot spots on its exterior, which significantly reduces the magnetic properties of the core, making it unsuitable for use in the above-mentioned products. To alleviate this problem, the temperature of the core must be raised to the annealing temperature by a laborious process involving multiple staged heating steps, which is time consuming and expensive.

本発明は、焼鈍に要する期間を実質的に短縮し、かつそ
の磁性を著しく改良する。磁気コア焼鈍のための改良法
を提供する。一般に磁気コアは非晶質金属リボンを巻い
て外面、内面、上面および底面を形成したものである。
The present invention substantially reduces the time required for annealing and significantly improves its magnetic properties. An improved method for magnetic core annealing is provided. Generally, a magnetic core is an amorphous metal ribbon wound to form an outer surface, an inner surface, a top surface, and a bottom surface.

コアは第1温度に加熱され、この温度にあらかじめ選ば
れた期間保持され、次いで第2温度に冷却される。改良
点は、加熱工程の前にコアの内面および外面を断熱処理
する工程からなる。
The core is heated to a first temperature, held at this temperature for a preselected period of time, and then cooled to a second temperature. The improvement consists of insulating the inner and outer surfaces of the core before the heating step.

加熱工程の前にコアの内面および外面を断熱処理するこ
とによって、実質的により大型のコアを経済的な信頼性
のある方法で焼鈍し得ることを見出した。熱は上面およ
び底面から金属通路に沿ってコアの内部へ伝達され、一
方、コアの内面および外面への熱の伝達は実質的に減少
する。加熱工程が速度決定工程であるので、全体的な処
理時間および生産費は最小限に抑えられる。一般の段階
的加熱工程は除かれ、その結果処理工程数が減少し、焼
鈍処理の信頼性が高まる。コアは高度に均一に加熱され
、実質的な温度変動がない。もしこれがあるならば機械
的変形、熱応力、およびホットスポットが生じるであろ
う。有利な点は、本発明方法により製造された磁気コア
が高い磁性を示すことである(すなわち誘導1.40テ
スラおよび周波数60 HzにおいてAC鉄損は約0.
16〜0.25W/Kf、励磁力は約0.25〜0.4
5 VA/Kg、および保磁力は約1.1〜1,5A/
mである)。従って本発明により焼鈍された磁気コアは
誘導子、トランスおよび無電極螢光灯用として特に好適
である。
It has been discovered that substantially larger cores can be annealed in an economically reliable manner by thermally treating the inner and outer surfaces of the core prior to the heating step. Heat is transferred from the top and bottom surfaces into the interior of the core along the metal passages, while heat transfer to the inner and outer surfaces of the core is substantially reduced. Since the heating step is a rate determining step, overall processing time and production costs are minimized. The common staged heating steps are eliminated, resulting in a reduced number of process steps and increased reliability of the annealing process. The core is highly uniformly heated, with no substantial temperature fluctuations. If this were present, mechanical deformations, thermal stresses, and hot spots would occur. An advantage is that the magnetic cores produced by the method of the invention exhibit high magnetic properties (i.e., at an induction of 1.40 Tesla and a frequency of 60 Hz, AC iron losses are approximately 0.0.
16~0.25W/Kf, excitation force is about 0.25~0.4
5 VA/Kg, and the coercive force is approximately 1.1-1.5A/
m). Magnetic cores annealed according to the invention are therefore particularly suitable for use in inductors, transformers and electrodeless fluorescent lamps.

以下の詳細な記述および添伺の図面を参照すると、本発
明はよシ良(理解され、他の利点も明らかになるであろ
う。
The present invention will be better understood, and other advantages will become apparent, upon reference to the following detailed description and accompanying drawings.

第1図は一般の焼鈍法により焼鈍された磁気コアの時間
一温度プロフィルを示すプロットである。
FIG. 1 is a plot showing the time-temperature profile of a magnetic core annealed by a conventional annealing method.

第2図は本発明の焼鈍法により焼鈍された磁気コアの時
間一温度プロフィルを示すプロットである。
FIG. 2 is a plot showing the time-temperature profile of a magnetic core annealed by the annealing method of the present invention.

本発明の非晶質合金は溶融金属を約り06℃/秒の速度
で急冷してガラス質物質を薄いリボンまたは線材の形で
直接に生成させることにより製造される。一般にリボン
の厚さは約20〜30μmであり、リボンの幅は約25
〜100順である。磁気コアは非晶質リボンを巻いて、
外面、内面、上面および底面を形成したものである。内
面はコアの体潰中心(centroia )と実質的に
同軸に伸びる中心開口を定める。さらに上面および底面
はそれぞれその内面および外面から形成される各円筒面
に対し実質的に垂直な各平面内にある。
The amorphous alloys of this invention are produced by quenching molten metal at a rate of about 0.6° C./sec to directly form a glassy material in the form of a thin ribbon or wire. Generally, the thickness of the ribbon is about 20-30 μm, and the width of the ribbon is about 25 μm.
~100 order. The magnetic core is wrapped with an amorphous ribbon,
It has an outer surface, an inner surface, a top surface, and a bottom surface. The inner surface defines a central aperture extending substantially coaxially with the centroia of the core. Additionally, the top and bottom surfaces lie in respective planes substantially perpendicular to respective cylindrical surfaces formed from the inner and outer surfaces thereof, respectively.

本発明は、焼鈍に必要な期間を実質的に短縮し、かつコ
アの磁性を著しく改良する、磁気コア焼鈍のための改良
法を提供するものであり、その際改良点は焼鈍処理の加
熱部分を開始する前にコアの内面および外面を断熱処理
することからなる。断熱処理はさらに、熱伝導度約0.
03〜0.14 W/m’cおよび線収縮約1〜3%(
500℃まで)を合わせもつ断熱体を選ぶことからなる
。組立断熱体、または構成部品から手工製造されたもの
であって、上記基準を満たすものを用いることも本発明
の範囲に含まれる。断熱体が選ばれると、これをラッピ
ング、塗装、流延および浸漬よりなる群から選ばれる方
法によシ内面および外面に施す。
The present invention provides an improved method for magnetic core annealing that substantially reduces the period required for annealing and significantly improves the magnetic properties of the core, the improvement being in the heated portion of the annealing process. It consists of insulating the inner and outer surfaces of the core before starting. The heat insulation treatment also has a thermal conductivity of about 0.
03-0.14 W/m'c and linear shrinkage approximately 1-3% (
This consists of selecting an insulator that has a temperature of up to 500℃). It is also within the scope of the present invention to use assembled insulators or those manually manufactured from component parts that meet the above criteria. Once the insulation is selected, it is applied to the interior and exterior surfaces by a method selected from the group consisting of wrapping, painting, casting and dipping.

断熱体のラッピングは一般の装置および手順を採用して
低い経費で容易に行うことができる。従って断熱体をコ
アに施すための好ましい方法はラッピングである。一般
に断熱体はその厚さの寸法がコアの外面から半径方向に
外側へ、かつ内面から半径方向に内側へ広がり、約25
〜75m+となるように施される。
Wrapping of insulation can be easily accomplished at low cost using common equipment and procedures. Therefore, the preferred method for applying insulation to the core is wrapping. Typically, the insulation has a thickness dimension extending radially outward from the outer surface of the core and radially inward from the inner surface of the core, approximately 25 mm in thickness.
~75m+.

本発明によれば、コアの磁性を焼鈍により高めることが
できる。焼鈍処理は一般に、コアを急速に第1温度に加
熱し、この温度にあらかじめ選ばれた期間保持すること
よシなる。これは材料から応力をすべて除くのに十分で
あるが、結晶化を開始するのに必要なものよシは低い。
According to the present invention, the magnetism of the core can be increased by annealing. The annealing process generally consists of rapidly heating the core to a first temperature and holding it at this temperature for a preselected period of time. This is sufficient to remove all stress from the material, but less than that required to initiate crystallization.

好ましくはコアを収容したオープンを、選ばれた特定の
非晶質合金の第1温度よシも100〜160℃高いピー
クオープン温度にまでまず急熱する。コアがその焼鈍温
度に近づくのに伴ってオープン温度を低下させ、コアの
温度に一致させる(第2図参照)。この方法によシ、コ
アの熱処理に必要な時間が実質的に短縮される。次いで
コアを約0.1〜b分の冷却速度で約200〜25℃の
第2温度に冷却する。第1温度は一般に約325〜40
0℃であシ、選ばれた特定の非晶質合金のキュリ一温度
よりも低いが、第2温度は通常は周囲温度である。好ま
しくは少なくとも加熱工程、きわめて好ましくは加熱工
程および冷却工程のそれぞれを磁場の存在下で行う。そ
の方向は、その個々の製品の用途に応じてコアの縦軸に
平行かまたは直角の何れであってもよい。特定の合金、
例えば本質的にC066Fe4N1BS1 およびFe
76.85Or2B16.IS’4.8C0,25より
なる群から選ばれる貰子からなる組成をもつものは磁場
の存在下で焼鈍して、前記のように磁性を実質的に改良
することができる。
Preferably, the opening containing the core is first rapidly heated to a peak opening temperature of 100-160° C. above the first temperature of the particular amorphous alloy chosen. As the core approaches its annealing temperature, the open temperature is lowered to match the core temperature (see Figure 2). This method substantially reduces the time required to heat treat the core. The core is then cooled to a second temperature of about 200-25° C. at a cooling rate of about 0.1-b minutes. The first temperature is generally about 325-40
The second temperature is typically at ambient temperature, although it may be 0° C., below the Curie temperature of the particular amorphous alloy chosen. Preferably, at least the heating step, very preferably each of the heating step and the cooling step, is carried out in the presence of a magnetic field. The direction may be either parallel or perpendicular to the longitudinal axis of the core depending on the particular product application. certain alloys,
For example essentially C066Fe4N1BS1 and Fe
76.85Or2B16. Those having a composition consisting of a magnet selected from the group consisting of IS'4.8C0,25 can be annealed in the presence of a magnetic field to substantially improve the magnetic properties as described above.

磁気コアの製法は、全面積の一定の割合が空気であるも
のであり、これはらせんに巻いたリボンの各層間にトラ
ップされている。従って、金属は優れた熱の導体であり
、一方気体は熱の不良導体であることも十分に確立され
ている。金属および空気についての熱伝導度値(k)は
それぞれ50.2Jsm(c)  および0.024J
8m(c)−1および0.024J8m(c)  であ
る。従って断熱処理されていないコアのリボンの各層間
にトラップされた空気はリボンの厚さに沿って中心へ向
かう熱流(H)を妨げる作用をする。
The method of manufacturing the magnetic core is such that a certain percentage of the total area is air, which is trapped between each layer of the spirally wound ribbon. Therefore, it is also well established that metals are good conductors of heat, while gases are poor conductors of heat. Thermal conductivity values (k) for metal and air are 50.2 Jsm (c) and 0.024 J, respectively.
8m(c)-1 and 0.024J8m(c). Air trapped between the layers of the uninsulated core ribbon thus acts to impede heat flow (H) toward the center along the thickness of the ribbon.

式中にはその材料の熱伝導度であり、Aはその材料の断
面積であり、T2−TIは2点間の温度差であり、dは
その2点間の距離である。この熱伝導の乏しさのため、
コアの外側部分にホットスポットが生じ、これによシそ
の磁性が著しく損われるので、これはトランス、誘導子
、無電極螢光灯などに用いるのには不適当となる。さら
に、断熱処理されていない試料コアにつき400℃で行
った熱伝導試験にjlす、加熱、工程および冷却工程の
双方(ておいてリボ〉・幅を横切る熱伝導度の方がリボ
ンの厚さを横切る熱気導度、i囃)も20倍以上大きい
ことがわかった。加熱ユニ程の前に内面おj二び外面ヤ
断熱し、一方向時に上面および底面(li、露出させて
おく、;、と(先。しり、実質的により大きなコアを経
済的に信頼性をも−)て焼鈍1−2うることを見出し、
た。
where is the thermal conductivity of the material, A is the cross-sectional area of the material, T2-TI is the temperature difference between two points, and d is the distance between the two points. Due to this poor heat conduction,
Hot spots occur in the outer part of the core, which significantly impairs its magnetic properties, making it unsuitable for use in transformers, inductors, electrodeless fluorescent lamps, etc. Furthermore, thermal conductivity tests conducted at 400°C on uninsulated sample cores show that the thermal conductivity across the width of the ribbon is higher than that of the ribbon during both the heating, process, and cooling processes. It was also found that the thermal conductivity across the area (i-hayashi) was more than 20 times greater. The inner and outer surfaces are insulated before the heating process, leaving the top and bottom surfaces (li, exposed) and (end) substantially larger and more reliable in one direction. It was also found that annealing 1-2 can be achieved by
Ta.

これは熱が上面おj、び底面から全属路に沿ってコアの
内部へ伝達され、一方コアの内面および外面への熱の伝
達速度は実質」−低下1〜ているからである1、加熱]
、和が速度lp宇工程でと)るの−、’、1,2:体的
な処理時間および生、産費が少なくなる。一般に行われ
る段階的な加だシ]:程が除かね、その詰!P処理工程
数が少なくなり、焼鈍処理の信頼性が高−烹ろ。
This is because heat is transferred from the top and bottom surfaces into the interior of the core along all internal paths, while the rate of heat transfer to the inner and outer surfaces of the core is substantially reduced. heating]
, the sum is reduced by the speed lp process) -,',1,2: The physical processing time and production cost are reduced. [Generally performed step-by-step addition]: It's time to remove it, that's it! The number of P treatment steps is reduced, and the reliability of annealing treatment is high.

コアは実質的な温度の変動なしに高度に均一に加熱され
るn温度の変動があると機械的変形、熱応力およびホッ
トスポットを生じるであろ′)。有利(ては本発明方法
に、y: リ製造さ′i1.た磁気コア61高い磁性を
示ず(1,40テスラの誘導および60 [bの周波数
におIハて、AC鉄損は約0.16へ−0,25W、/
’にゾ、励磁力1tt約0.25〜0.45VA7%、
保磁カバ約1.1−1.6 A、−%mである)。従っ
て本発明に従って焼鈍された磁気コアは訪導子、トラン
ス、および無電極螢光灯に用いるのに特に好適である。
The core is heated highly uniformly without substantial temperature fluctuations (temperature fluctuations would result in mechanical deformations, thermal stresses, and hot spots). Advantageously, the method of the present invention has the advantage that the magnetic core 61 produced by the present invention does not exhibit high magnetic properties (with an induction of 1,40 Tesla and a frequency of 60 [b), the AC iron loss is approximately to 0.16-0,25W,/
'nizo, excitation force 1tt approx. 0.25-0.45VA7%,
coercive cover is approximately 1.1-1.6 A, -% m). Magnetic cores annealed in accordance with the present invention are therefore particularly suitable for use in conductors, transformers, and electrodeless fluorescent lamps.

以下の各側は本発明をよシ十分に理解するためて提示さ
れる。本発明の原理および実際を説明するために示、各
れた個々の手法、条件、材料および報告さjq−たデー
タは例示であシ、本発明の範囲を限定するものと解すべ
きでない。
The following sections are presented for a better understanding of the invention. The specific techniques, conditions, materials and data presented and described for the purpose of illustrating the principles and practice of the invention are illustrative only and should not be construed as limiting the scope of the invention.

例 公称組成Fe 73B 1331−gをもつメトグラス
(Me tglas 。
Example Metglas with nominal composition Fe 73B 1331-g.

登録商標) 2605 S−205−2O關の合金リボ
ンをらゼんに巻く、二とにより、環状磁気回路型試験試
料を作成1−な。名種試験試料の平均内径および平均外
径はそれぞれ172闘および377肩であシ、平均型5
′55 hgであった。高温マグネット線をコアの縦軸
に平行に6回巻きつけ、焼鈍の目的のために)300Δ
/mの磁場ン与えた。幾つかの試料は鹿法により断熱処
理を施さず(で焼鈍され、−万能のもの一1本発明方法
により断熱処理を施して焼鈍?誉れだ。試ト1は不活性
ガス雰囲気下(c置かg、加熱工程および冷却工程期間
中、5ooA/mの磁場を与えた状態でそれぞれの焼鈍
温度に加熱された。
(Registered Trademark) 2605 S-205-2O A ring-shaped magnetic circuit type test sample was prepared by winding the alloy ribbon in a spiral. The average inner diameter and average outer diameter of the masterpiece test specimens were 172 mm and 377 mm, respectively, and the average type 5
'55 hg. High temperature magnetic wire is wrapped 6 times parallel to the longitudinal axis of the core, for annealing purposes) 300Δ
A magnetic field of /m was applied. Some samples were annealed without adiabatic treatment by the Deer method, and annealed with adiabatic treatment by the method of the present invention. g. During the heating and cooling steps, the specimens were heated to their respective annealing temperatures with a magnetic field of 5ooA/m applied.

試料を平均速度1.5℃/分で200℃にまで冷却した
The samples were cooled to 200°C at an average rate of 1.5°C/min.

一般の焼鈍法によりv8鋪された試料および本発明方法
により焼鈍された試料についての時間一温度プロフィル
をそれぞれ第1図および第:2図にプロットする。焼鈍
工程期間中の温度変化を監視するために、熱電対を必ず
各コアの中心2.、および外面から5防のところ1に置
いた。第1図に示すように、常法により焼鈍された各コ
ア゛の中心の温度はその外面1の温度と実質的に異なる
。コアを本発明方法(/′Cより焼鈍した場合、第2図
に示すように中心2と外表1の温度差が小さくなる。そ
の結果、第2図に示す時間一温度プロフィルを示すコア
は実質的に短縮された期間内に焼鈍1〜で著L2く改良
された磁性を得ることができる。
The time-temperature profiles for samples annealed by the conventional annealing method and by the method of the present invention are plotted in Figures 1 and 2, respectively. Be sure to place a thermocouple in the center of each core 2.0 to monitor temperature changes during the annealing process. , and placed 1 at 5 defenses from the outside. As shown in FIG. 1, the temperature at the center of each conventionally annealed core is substantially different from the temperature at its outer surface 1. When the core is annealed by the method of the present invention (/'C), the temperature difference between the center 2 and the outer surface 1 becomes smaller as shown in FIG. 2.As a result, the core exhibiting the time-temperature profile shown in FIG. Magnetism significantly improved by L2 can be obtained during annealing 1 to 1 within a significantly shortened period.

これらの試料の磁性、すなわち保磁力(7′ンイア/m
)、A、 C,鉄損(ワット/Kq)、および励磁力(
ボルドーアンへ?ア/〜)を1.40テスラの誘導」6
j二び60 It:の周f′数で測定した。一般の焼鈍
処理を施された試別’i6 J:び本発明方法により焼
鈍された試別についての磁性値をそれぞれ表1および■
に示す。
The magnetism of these samples, that is, the coercive force (7'nia/m
), A, C, iron loss (Watt/Kq), and excitation force (
To Bordeaux? A/~) to 1.40 tesla induction''6
It was measured by the circumferential f' number of j2 and 60 It:. The magnetic values of specimen 'i6 J: which was subjected to general annealing treatment and specimen which was annealed by the method of the present invention are shown in Tables 1 and 2, respectively.
Shown below.

表  1 1  メトグラス   内径172    57260
5 S=2   外径383 2  メトグラス   内径172    56260
5 s −2外径380 :う55    10    1.8  0.24  
0.39370    10     !、8  0.
24  0.36*  200工〕K冷却 表  ■ 本発明の範囲内 1  メトグラス   内径I72    53260
5 S−2外径375 2  メトグラス   内径172    54260
5 S−2外径375 3  メ(・グラス   内径172   56260
53−2   外径378 4  メトグラス   内径172    55260
5S−2外径378 340   6.5    1.4   (1240,
443506,51,10,160,29 3606,51,30,190,36 3706,51,60,220,4J 米 200℃に冷却 次いで更に3種の試別コアを断熱処理せずに1但j−急
熱処理により焼鈍1〜、それらの磁性値を1.40テス
ラの誘導および60 Hzの周波数で測定した。
Table 1 1 Metoglas Inner diameter 172 57260
5 S=2 Outer diameter 383 2 Metoglas Inner diameter 172 56260
5 s -2 outer diameter 380: 55 10 1.8 0.24
0.39370 10! , 8 0.
24 0.36* 200 work] K cooling table ■ Within the scope of the present invention 1 Metoglas Inner diameter I72 53260
5 S-2 outer diameter 375 2 Metoglas inner diameter 172 54260
5 S-2 Outer diameter 375 3 Glass Inner diameter 172 56260
53-2 Outer diameter 378 4 Metoglas Inner diameter 172 55260
5S-2 outer diameter 378 340 6.5 1.4 (1240,
443506, 51, 10, 160, 29 3606, 51, 30, 190, 36 3706, 51, 60, 220, 4J U.S. Cooled to 200°C, then further tested three types of cores without heat insulation treatment. After annealing by rapid heat treatment, their magnetic values were measured at an induction of 1.40 Tesla and a frequency of 60 Hz.

こ九らの急速焼鈍した、断熱処理なしのコアの磁性を表
■に示す。
The magnetic properties of the rapidly annealed cores without heat insulation treatment are shown in Table 3.

表  ■ 本発明の範囲外 J  メトグラス   内径 172    5426
05 S−2外径373 2  メトグラス    内径       5426
05S=2   外径373 3  メトグラス    内径 172    562
605 s−2外径382 3506゜5     1.9  0.36  0.4
9360   6.5     2.1  0.37 
 0.55360    6、5     2.2  
0.32  0.77米200℃に冷却 表■のコアと対比して、表■のコアは高い保磁力および
高い磁気損失を示した。
Table ■ Outside the scope of the present invention J Metoglas Inner diameter 172 5426
05 S-2 Outer diameter 373 2 Metoglas Inner diameter 5426
05S=2 Outer diameter 373 3 Metoglas Inner diameter 172 562
605 s-2 outer diameter 382 3506°5 1.9 0.36 0.4
9360 6.5 2.1 0.37
0.55360 6, 5 2.2
0.32 0.77 Cooled to 200° C. In contrast to the core in Table 2, the core in Table 2 exhibited higher coercive force and higher magnetic loss.

以上本発明をかなり詳細に説明したが、このような詳述
に固執する必要はなく、当業者には更に変更および修正
が自明であplこれらばすべて特許請求の範囲に記載の
本発明の範囲に含まれる。
Although the present invention has been described in considerable detail, it is not necessary to adhere to such detailed description, and further changes and modifications will be apparent to those skilled in the art, all of which fall within the scope of the invention as set forth in the claims. include.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般の焼鈍法により焼鈍された磁気コアの時間
一温度プロフィルを示すプロットである。 第2図は本発明の焼鈍法によシ焼鈍された磁気コアの時
間一温度プロフィルを示すプロットである。 温、鼻 0c !”ヨー ″ヨ3
FIG. 1 is a plot showing the time-temperature profile of a magnetic core annealed by a conventional annealing method. FIG. 2 is a plot showing the time-temperature profile of a magnetic core annealed by the annealing method of the present invention. Warm, nose 0c! "Yo" Yo3

Claims (10)

【特許請求の範囲】[Claims] (1)改良点が コアの内面および外面を加熱工程の前に断熱処理する 工程からなる、非晶質金属リボンを巻いて外面、内面、
上面および底面を形成した磁気コアを第1温度に加熱し
、この温度にあらかじめ定められた期間保持し、次いで
第2温度に冷却することよりなる磁気コアの焼鈍法。
(1) The improvement consists of a step of insulating the inner and outer surfaces of the core before the heating process.
A method of annealing a magnetic core comprising heating the magnetic core, which has formed a top and bottom surface, to a first temperature, holding this temperature for a predetermined period of time, and then cooling to a second temperature.
(2)断熱工程が内面および外面に断熱体を接着して実
質的にその全表面を被覆することよりなる、特許請求の
範囲第1項に記載の磁気コアの焼鈍法。
(2) The method of annealing a magnetic core according to claim 1, wherein the heat insulation step comprises bonding a heat insulator to the inner and outer surfaces to cover substantially the entire surface thereof.
(3)断熱工程が (a)熱伝導度約0.03〜0.14W/m℃および線
収縮約1〜3%を500℃に至るまで合わせもつ断熱体
を形成し; (b)この断熱体を内面および外面に施し; (c)この断熱体をその厚さの寸法がコアの外面から半
径方向に外側へ、かつ内面から半径方向に内側へ広がり
、約25〜75mmとなるように付着させることよりな
る、特許請求の範囲第2項に記載の磁気コアの焼鈍法。
(3) The insulation process (a) forms an insulator having a thermal conductivity of about 0.03 to 0.14 W/m°C and a linear shrinkage of about 1 to 3% up to 500°C; (b) this insulation (c) deposit the insulation in such a way that its thickness extends radially outward from the outer surface of the core and radially inward from the inner surface, and is about 25 to 75 mm; A method of annealing a magnetic core according to claim 2, which comprises:
(4)断熱体を施す工程が塗装、流延、浸漬およびラッ
ピングよりなる群から選ばれる、特許請求の範囲第3項
に記載の磁気コアの焼鈍法。
(4) The method of annealing a magnetic core according to claim 3, wherein the step of applying the heat insulator is selected from the group consisting of painting, casting, dipping, and wrapping.
(5)Ac鉄損約0.16〜0.25W/kg、励磁力
約0.25〜0.45VA/kg、および保磁力約1.
1〜1.6A/mを誘導1.4テスラおよび周波数60
Hzにおいてもつ、特許請求の範囲第1項に記載の方法
により焼鈍された、電磁デバイス用磁気コア。
(5) Ac iron loss of approximately 0.16 to 0.25 W/kg, excitation force of approximately 0.25 to 0.45 VA/kg, and coercive force of approximately 1.
Induction 1-1.6A/m 1.4 Tesla and frequency 60
A magnetic core for an electromagnetic device, annealed by the method according to claim 1, having annealing at Hz.
(6)断熱体を施す工程がラッピングからなる、特許請
求の範囲第3項に記載の磁気コアの製法。
(6) The method for manufacturing a magnetic core according to claim 3, wherein the step of applying the heat insulator comprises wrapping.
(7)コアを第1温度よりも約100〜160℃高いピ
ークオープン温度をもつオープン内で加熱し、コアが第
1温度に近づき、その約15〜45℃の範囲内にあると
きピーク温度を第1温度に低下させる、特許請求の範囲
第1項に記載の磁気コアの焼鈍法。
(7) Heat the core in an open chamber with a peak open temperature approximately 100 to 160°C higher than the first temperature, and set the peak temperature when the core approaches the first temperature and is within the range of approximately 15 to 45°C. A method of annealing a magnetic core according to claim 1, wherein the magnetic core is lowered to a first temperature.
(8)加熱工程が磁場の不在下で行われる、特許請求の
範囲第1項に記載の磁気コアの焼鈍法。
(8) The method of annealing a magnetic core according to claim 1, wherein the heating step is performed in the absence of a magnetic field.
(9)リボンが本質的にCo_6_6Fe_4Ni_1
B_1_4Si_1_5およびFe_7_6_._8_
5Cr_2B_1_6_._1Si_4_._8C_0
_._2_5よりなる群から選ばれる組成をもつ、特許
請求の範囲第1項に記載の磁気コアの焼鈍法。
(9) The ribbon is essentially Co_6_6Fe_4Ni_1
B_1_4Si_1_5 and Fe_7_6_. _8_
5Cr_2B_1_6_. _1Si_4_. _8C_0
_. The method of annealing a magnetic core according to claim 1, having a composition selected from the group consisting of _2_5.
(10)内面がコアの体積中心(centroid)と
実質的に同軸で伸びる中心開口を定め、上面および底面
がそれぞれ外面と内面から形成される各円筒面に実質的
に直角な平面内にある、特許請求の範囲第1項に記載の
磁気コアの焼鈍法。
(10) defining a central aperture whose inner surface extends substantially coaxially with the centroid of the core, and whose top and bottom surfaces lie in a plane substantially perpendicular to each cylindrical surface formed by the outer and inner surfaces, respectively; A method of annealing a magnetic core according to claim 1.
JP61189482A 1985-08-12 1986-08-12 Annealing of heat insulation treated magnetic core Pending JPS6239007A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US76408285A 1985-08-12 1985-08-12
US764082 1985-08-12

Publications (1)

Publication Number Publication Date
JPS6239007A true JPS6239007A (en) 1987-02-20

Family

ID=25069631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189482A Pending JPS6239007A (en) 1985-08-12 1986-08-12 Annealing of heat insulation treated magnetic core

Country Status (3)

Country Link
JP (1) JPS6239007A (en)
KR (1) KR910009495B1 (en)
CA (1) CA1271395A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6910724B2 (en) 2001-09-27 2005-06-28 Newfrey Llc Footrest plate
US7062990B2 (en) 2001-09-28 2006-06-20 Newfrey Llc Footrest plate and footrest plate mounting assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116750A (en) * 1980-12-29 1982-07-20 Allied Chem Amorphous metal alloy having excellent ac magnetic property
JPS6140016A (en) * 1984-07-31 1986-02-26 Toshiba Corp Manufacture of core

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116750A (en) * 1980-12-29 1982-07-20 Allied Chem Amorphous metal alloy having excellent ac magnetic property
JPS6140016A (en) * 1984-07-31 1986-02-26 Toshiba Corp Manufacture of core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6910724B2 (en) 2001-09-27 2005-06-28 Newfrey Llc Footrest plate
US7062990B2 (en) 2001-09-28 2006-06-20 Newfrey Llc Footrest plate and footrest plate mounting assembly

Also Published As

Publication number Publication date
CA1271395A (en) 1990-07-10
KR870002287A (en) 1987-03-30
KR910009495B1 (en) 1991-11-19

Similar Documents

Publication Publication Date Title
US1857215A (en) Electrical induction apparatus
US5535990A (en) Apparatus for annealing/magnetic annealing amorphous metal in a fluidized bed
US2385332A (en) Production of silicon steel sheet stock having insulative surfaces
CA1200469A (en) Dynamic annealing method for optimizing the magnetic properties of amorphous metals
US4482402A (en) Dynamic annealing method for optimizing the magnetic properties of amorphous metals
JPH032932B2 (en)
JPS6239007A (en) Annealing of heat insulation treated magnetic core
JPH03500668A (en) Iron-based amorphous magnetic alloy containing cobalt
US4877464A (en) Rapid magnetic annealing of amorphous metal in molten tin
CN112831641B (en) Heat treatment method for preparing nanocrystalline magnetic core
JP2662561B2 (en) Rapid magnetic annealing of amorphous metal using molten tin
Taub A new method for stress relieving amorphous alloys to improve magnetic properties
US4726855A (en) Method of annealing a core
KR960006020B1 (en) Method and device heat treatment of amorphous alloy
JPH07122097B2 (en) Partial adiabatic annealing method for amorphous alloys
JP2009016701A (en) Method of manufacturing soft magnetic member
US1966496A (en) Method of treating metals
JPS61179507A (en) Manufacture of iron core
Escobar et al. Soft‐magnetic properties of amorphous tapes after dynamic current annealing
Luborsky et al. Engineering magnetic properties of Fe-Ni-B amorphous alloys
JPS6396252A (en) Heat treatment of toroidal amorphous magnetic core
JPS6360264A (en) Production of amorphous co alloy
JP2003500851A (en) Superconducting coil
JPS61198611A (en) Manufacture of transformer with amorphous alloy thin band core
JPS61281405A (en) Manufacture of jumet wire