JPS6238277A - Preparation of radiation cured precoated metal plate - Google Patents

Preparation of radiation cured precoated metal plate

Info

Publication number
JPS6238277A
JPS6238277A JP17490285A JP17490285A JPS6238277A JP S6238277 A JPS6238277 A JP S6238277A JP 17490285 A JP17490285 A JP 17490285A JP 17490285 A JP17490285 A JP 17490285A JP S6238277 A JPS6238277 A JP S6238277A
Authority
JP
Japan
Prior art keywords
film
metal plate
paint
glass transition
coat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17490285A
Other languages
Japanese (ja)
Inventor
Kenichi Masuhara
憲一 増原
Hidetoshi Yamabe
秀敏 山辺
Takao Tomosue
友末 多賀夫
Akihiko Maekita
前北 杲彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP17490285A priority Critical patent/JPS6238277A/en
Publication of JPS6238277A publication Critical patent/JPS6238277A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of a crack, by applying under-coat comprising a thermosetting polyester resin of which the glass transition temp. is within a specific rage prior to applying ionizing radiation curable precoat paint to increase the tensile strength of the under coat film. CONSTITUTION:In preparing a precoated metal plate, a thermosetting polyester resin of which the glass transition temp. is 35-55 deg.C is applied to the pretreated metal plate as under coat. By selecting the glass transition temp. of said range, the tensile force of the under coat film after baking and drying comes to 3-7kg/mm<2>. Radiation curable top-coat such as an unsaturated polyester resin or polyester acrylate is applied to the under-coat film to obtain a precoated metal plate having high close adhesiveness of film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属板表面に電離放射線硬化型塗料を塗装して
、プレコート金属板を製造する際、電離放射線硬化型塗
料塗装前にガラス転移温度が所定の範囲にある熱硬化型
ポリエステル系樹脂の下塗り塗料とすることにより塗膜
密着性を高めたプレコート金属板の製造法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention applies an ionizing radiation-curable paint to the surface of a metal plate to produce a pre-coated metal plate. The present invention relates to a method for producing a precoated metal plate in which the adhesion of the coating film is improved by using a thermosetting polyester resin as an undercoat paint having a temperature within a predetermined range.

(従来技術) 従来プレコート金属板を製造する場合の塗料としては、
熱風加熱硬化型のものを使用する方法が殆どであったが
、近年品質の向上、無公害化、省資源および省エネルギ
ー化などの観点から放射線硬化型塗料の1種である電子
線照射により硬化させる電子線硬化型塗料を使用する方
法が実用化されている。この方法は熱風より高エネルギ
ーである電子線により塗料を硬化させることができるた
め、従来熱風加熱型塗料を使用したのでは得られない高
品質の塗膜にすることができる。例えば従来熱風加熱硬
化型塗料では塗料の配合を種々変えても塗膜の硬度、耐
汚染性、耐溶剤性などの改善には限界があったが、電子
線硬化型塗料を使用して、電子線により硬化させると、
熱風加熱硬化型塗料の場合より高度に架橋反応をさせる
ことがr終るため、塗膜が緻密になり、それらを熱風加
熱型塗料の場合より良好にすることができる。
(Prior art) Conventional paints for manufacturing pre-coated metal plates include:
In most cases, hot air curing was used, but in recent years, in order to improve quality, eliminate pollution, save resources, and save energy, paints have been cured using electron beam irradiation, which is a type of radiation-curable paint. A method using electron beam curable paint has been put into practical use. Since this method can cure the paint using electron beams, which have higher energy than hot air, it is possible to create a high-quality paint film that cannot be obtained by conventional hot air heating type paints. For example, with conventional hot air curing paints, there was a limit to improvements in the hardness, stain resistance, solvent resistance, etc. of the paint film even if the paint composition was changed; however, with electron beam curing paints, When hardened by wire,
Since the crosslinking reaction is carried out to a higher degree than in the case of a hot air heating type paint, the coating film becomes denser and can be made better than in the case of a hot air heating type paint.

(発明が解決しようとする問題点) しかしながら電子線硬化型塗料は硬化の際硬化反応が常
温で急速に進行して、塗膜が大きく収縮するため、塗膜
に大きな残留応力が生じ、塗膜密着性が劣るものであっ
た。このため電子線硬化型塗料を金属板に直接塗装した
プレコート金属板の場合などは加工すると、塗膜剥離を
起こしやすいものであった。
(Problem to be solved by the invention) However, when curing electron beam curable paints, the curing reaction proceeds rapidly at room temperature and the paint film shrinks significantly, resulting in large residual stress in the paint film. Adhesion was poor. For this reason, in the case of a precoated metal plate in which an electron beam curable paint is directly applied to the metal plate, the paint film tends to peel off when processed.

この塗膜剥離をな(す方法としては、電子線硬化型塗料
を塗装する萌に熱硬化型エポキシ系樹脂の下塗り塗料を
金属板に塗装する方法が提案されているが、エポキシ系
樹脂の塗膜は塗膜硬度が高いため、加工時にクラックが
発生し、外観、耐食性を劣化させるという問題があった
As a method for causing this paint film to peel off, it has been proposed to apply a thermosetting epoxy resin undercoat to the metal plate before applying the electron beam curable paint. Since the film has a high coating hardness, cracks occur during processing, resulting in a problem of deterioration of appearance and corrosion resistance.

(問題点を解決するだめの手段) そこで本発明者らは電子線硬化型塗料を塗装したプレコ
ート金属板の塗膜密着性を改良すべく、鋭意検討した結
果、塗膜のガラス転移温度が特定の範囲になる熱硬化型
ポリエステル系樹脂の塗料を下塗り塗装することにより
下塗り塗膜の抗張力をエポキシ系樹脂塗膜の場合より大
きくして、加工時に上塗り塗膜より加わる応力を支え、
クラックの発生を防止する方法を開発したのである。
(An unsuccessful means to solve the problem) Therefore, the inventors of the present invention conducted intensive studies to improve the adhesion of the paint film on pre-coated metal plates coated with electron beam curable paint, and as a result, the glass transition temperature of the paint film was determined. By applying an undercoat with a thermosetting polyester resin paint that falls within a range of
They developed a method to prevent the occurrence of cracks.

すなわち本発明は金属板表面に塗vc前処理を施した後
、電離放射線硬化型塗料を塗装して、電離放射線を照射
することにより硬化させて、プレコート鋼板を製造する
際、電離放射線硬化型塗料の塗装前に、塗膜のプラス転
移温度が35〜55℃の範囲(こなるポリエステル系樹
脂の熱硬化型下塗り塗料を塗装して、乾燥後の塗膜抗張
力が3〜7kg/■”になるよう焼付乾燥することによ
り塗膜密着性を高めたのである。
That is, in the present invention, after applying VC pretreatment to the surface of a metal plate, an ionizing radiation-curable coating is applied and cured by irradiation with ionizing radiation to produce a pre-coated steel plate. Before painting, apply a thermosetting undercoat of polyester resin with a positive transition temperature of 35 to 55 degrees Celsius, and the tensile strength of the coating after drying is 3 to 7 kg/■''. By baking and drying, the adhesion of the coating was improved.

ここで下塗り塗膜のプラス転移温度および抗張力を上記
のようにしたのは、加工時に上塗り塗膜より加わる応力
を支えることができるようにするとともに、柔軟性があ
るようにするためである。
The reason why the positive transition temperature and tensile strength of the undercoat film are set as described above is to enable it to support the stress applied by the topcoat film during processing and to provide flexibility.

すなわち電子線による放射線硬化型」二塗り塗料の塗膜
は、使用塗料樹脂の不飽和二重結合の密度にもよるが、
熱硬化型塗料の塗膜に比べて架vIl密度が高く、塗膜
硬度は鉛筆硬度で5〜7 Hとなり、抗張力も5 kg
/nm2以上になる。このため下塗り塗膜の抗張力が小
さいと、プレコート金属板加工時に上塗り塗膜に加わる
応力を支えることができず、破断し、クラックが発生す
る。そこでこのクラック発生を防止するには下塗り塗膜
の抗張力を3k。
In other words, the coating film of the two-coat paint, which is radiation-curable using an electron beam, depends on the density of unsaturated double bonds in the paint resin used.
Compared to the coating film of thermosetting paint, the cross-layer density is higher, the coating film hardness is 5 to 7 H in pencil hardness, and the tensile strength is 5 kg.
/nm2 or more. For this reason, if the tensile strength of the undercoat film is low, it will not be able to support the stress applied to the topcoat film during processing of the precoat metal plate, resulting in breakage and cracking. Therefore, to prevent this crack from occurring, the tensile strength of the undercoat film should be 3K.

/艶−2以上にする必要があるからである。一方下塗り
塗膜の抗張力が大きくなりすぎると、塗膜硬度も者しく
天外くなり、塗膜の柔軟性が失われ、加工性が低下して
しまう、この塗膜の柔軟性を保つためには抗張力を7 
kg/mm”以下にする必要があるのである。
This is because it is necessary to set the gloss to -2 or higher. On the other hand, if the tensile strength of the undercoat film becomes too large, the hardness of the paint film will become unrealistic, and the flexibility of the paint film will be lost, reducing workability.In order to maintain the flexibility of this paint film, tensile strength 7
kg/mm" or less.

ところで熱硬化型下塗り塗料の塗膜抗張力は焼付条件に
より若干大きくすることもできるが、塗膜樹脂本来の架
橋密度により決定される割合が大きい。しかも架V4密
度は塗膜樹脂のガラス転移温度と相関関係にあるので、
下塗り塗膜の抗張力を特定の範囲にするには塗m樹脂の
ガラス転移温度がそれに対応するようにする必要がある
。本発明の場合下塗り塗膜の抗張力を3 kg7mm”
以上にするには、塗膜樹脂のガラス転移温度が35℃以
上のものを使用する必要があり、抗張力を7 kg/m
ad2以下にするには、塗膜樹脂のプラス転移温度が5
5℃以下のむのを使用する必要があるのである。
By the way, the coating tensile strength of a thermosetting undercoating paint can be slightly increased depending on the baking conditions, but it is largely determined by the inherent crosslinking density of the coating resin. Moreover, since the V4 density is correlated with the glass transition temperature of the coating resin,
In order to set the tensile strength of the undercoat film within a specific range, it is necessary to set the glass transition temperature of the coating resin to correspond to the tensile strength. In the case of the present invention, the tensile strength of the undercoat film is 3 kg 7 mm.
To achieve this, it is necessary to use a coating resin with a glass transition temperature of 35°C or higher, and a tensile strength of 7 kg/m.
To make the ad2 or less, the plus transition temperature of the coating resin should be 5
It is necessary to use water with a temperature of 5°C or lower.

本発明の場合、ポリエステル系m IJltのうち好ま
しいものとしてはポリエチレンテレフタレート系樹脂を
挙げることができる。なお下塗り塗料は従来の下塗り塗
料のように、通常メツ4ンや尿素のごとき硬化剤を添加
するが、その他必要に応じて防錆顔料(クロム酸亜鉛、
クロム醗ストロンチウム、酸化亜鉛、酸化鉄、亜鉛粉末
など)を添加してもよい、また下塗り塗膜は乾燥塗膜)
γで4〜8μで十分である。
In the case of the present invention, polyethylene terephthalate resins are preferred among polyester resins. The undercoat paint, like conventional undercoat paints, usually has a curing agent such as methane or urea added to it, but may also contain anti-rust pigments (zinc chromate, zinc chromate, etc.) as necessary.
Strontium, zinc oxide, iron oxide, zinc powder, etc.) may be added, and the undercoat film may be a dry film)
γ of 4 to 8 μ is sufficient.

下塗り塗料の次に塗装する上塗り塗料は?31脂に放射
線によりラジカル重合可能なエチレン性不飽和二重結合
を有するものであればよく、例えば、不飽和ポリエステ
ル樹脂、またはポリエステル(メタ)アクリレート、エ
ポキシ(メタ)7クリレート、ポリウレタン(メタ)ア
クリレート、ポリアミド(メタ)アクリレートおよびポ
リオール(メタ)アクリレートなどのオリゴマー、ある
いはエチレングリコール(メタ)アクリレート、トリエ
チレングリコ−ルク(メタ)アクリレート、テトラエチ
レングリコールジ(メタ)アクリレート、トリノナロー
ルプロパントリ(メタ)アクリレートおよびその他の(
メタ)アクリル酸エステル類、さらにはノアリル7タレ
ート、メチレンビスアクリルアミド、トリアクリルイン
シアネート、スチレン、(メタ)アクリロニトリルおよ
び酢酸ビニルなどのモノマーなどがある。
What top coat should be applied after the base coat? No. 31 resin may have ethylenically unsaturated double bonds that can be radically polymerized by radiation, such as unsaturated polyester resins, polyester (meth)acrylates, epoxy (meth)7 acrylates, and polyurethane (meth)acrylates. , oligomers such as polyamide (meth)acrylate and polyol (meth)acrylate, or ethylene glycol (meth)acrylate, triethylene glycol (meth)acrylate, tetraethylene glycol di(meth)acrylate, trinonalolpropane tri(meth)acrylate, etc. ) acrylates and other (
Examples include meth)acrylic acid esters, as well as monomers such as noaryl 7-thalerate, methylene bisacrylamide, triacrylic incyanate, styrene, (meth)acrylonitrile, and vinyl acetate.

この上塗り塗料は乾燥塗膜厚で通常の製品の場合15〜
25μ塗装するが、硬化させる際十分なる電子線(5〜
15 M rad)を照射すれば、塗膜硬度が鉛筆硬度
で5〜7Hになる。
The dry film thickness of this top coat is 15~15 for a normal product.
25μ coating, but sufficient electron beam (5~
15 M rad), the coating film hardness becomes 5-7H in pencil hardness.

本発明に使用する下塗り塗料は他の放射線硬化型上塗り
塗料の場合にも塗膜密着性を高めることができる。例え
ば紫外線に9硬化させる紫外線硬化型上塗り塗料は光重
合開始剤(例えばベンゾインメチルエーテル、ベンゾイ
ンエチルエーテル、ベンゾインイソプロピルエーテル、
ベンゾインブチルエーテル、ベンゾフェノン/第3i&
アミン、ベンジルツメチルケタール、2,2−ジェトキ
シアセト71ノン、α−ヒドロキシイソブチロ7エ/ン
、1,1−ジクロロアセトフェノン、2−クロロチオキ
サントンなどの)を0.1〜5重景%添加して、波長3
0()〜400umの紫外線を照射すれば硬化するよう
になっているが、紫外線の透過力が弱いため、従来顔料
を含まないクリヤー塗膜や膜厚の薄い塗膜を形成する場
合使用される。しかしかかる紫外線硬化型上塗り塗料も
下塗り塗料として、エポキシ系樹脂のものを使用したの
では塗膜密着性が劣るので、本発明のような下塗り塗料
を使用すれば、塗膜密着性を向上させることができる。
The undercoat used in the present invention can also improve the adhesion of other radiation-curable topcoats. For example, an ultraviolet-curable top coat that is cured by ultraviolet light has a photopolymerization initiator (e.g., benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether,
Benzoin butyl ether, benzophenone/3i &
Addition of 0.1 to 5% of amines, benzyl methyl ketal, 2,2-jethoxyaceto71one, α-hydroxyisobutyro7ene, 1,1-dichloroacetophenone, 2-chlorothioxanthone, etc.) Then wavelength 3
It can be cured by irradiation with ultraviolet rays of 0 to 400 um, but because its UV penetration power is weak, it is conventionally used to form clear coatings that do not contain pigments or thin coatings. . However, if an epoxy resin is used as an undercoat in such a UV-curable topcoat, the adhesion of the film will be poor, so if an undercoat like the one of the present invention is used, the adhesion of the film will be improved. I can do it.

本発明によりプレコート金属板を製造する場合には、従
来のプレコート金属板の際と同様に下塗り塗料塗装前に
前処理を施さねばならない。金属板は、種類に合った前
処理を施せば、普通鋼の熱延鋼板、冷延鋼板お上りめっ
!鋼板であってもよく、またステンレス鋼板、アルミニ
ウム鋼板、その他の金属板であってもよい。
When producing a precoated metal sheet according to the invention, a pretreatment must be carried out before applying the undercoat, as in the case of conventional precoated metal sheets. If the metal plate is pretreated according to the type, it can be made into ordinary hot-rolled steel sheet or cold-rolled steel sheet! It may be a steel plate, or may be a stainless steel plate, an aluminum steel plate, or another metal plate.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

(実施例) めっ外付着量が609/輸2の合金化亜鉛めっき鋼板に
クロメート処理を施した後、まず塗膜のプラス転移温度
の異なる熱硬化型下塗り塗料を種々膜厚を変えて塗装し
て、熱風により焼付乾燥した。
(Example) After chromate treatment was applied to an alloyed galvanized steel sheet with a coating weight of 609/m2, first, thermosetting undercoat paints with different positive transition temperatures were applied at various film thicknesses. Then, it was baked and dried with hot air.

次にこれらのプラス転移温度およ1膜厚の異なる下塗り
塗装鋼板に多官能ポリエステルアクリレート40部、ト
リメチロールプロパントリアクリレート 5部、2−ヒ
ドロキシエチルアクリレート15部、酸化チタン 30
部、キシレン 10部からなる電子線硬化型上塗り塗料
を乾燥膜厚で20μになるよう塗装した後、加速電圧1
60KeV、電子流15TaAなる条件で、電子線を1
0Mrad照射し、硬化させた。得られた塗vcw4板
の下塗り塗膜と上塗り塗料塗装後の鉛筆硬度および塗膜
密着性との関係を表1に示す、また下塗り塗膜のみのガ
ラス転移温度(T%)の相異による応力−歪特性をfj
Si図に、さらに下塗り塗膜と上塗り塗膜の複合塗膜の
ガラス転移温度(Tl )の相異による応力−歪特性を
第2図に示す。
Next, 40 parts of polyfunctional polyester acrylate, 5 parts of trimethylolpropane triacrylate, 15 parts of 2-hydroxyethyl acrylate, and 30 parts of titanium oxide were applied to these undercoated steel sheets with different positive transition temperatures and film thicknesses.
After applying an electron beam-curable top coat consisting of 10 parts of xylene to a dry film thickness of 20μ, an accelerating voltage of 1
1 electron beam under the conditions of 60 KeV and 15 TaA electron current.
It was irradiated with 0 Mrad and cured. Table 1 shows the relationship between the undercoat film of the obtained VCW4 board and the pencil hardness and paint film adhesion after application of the topcoat. -Distortion characteristics fj
In addition to the Si diagram, FIG. 2 shows stress-strain characteristics due to differences in glass transition temperature (Tl) of a composite coating film of an undercoat film and a topcoat film.

表1より明らかなようにガラス転移温度が90°Cと高
い従来のエポキシ系下塗り塗膜の場合、塗膜が柔軟でな
いため、加工により塗膜が剥離してしまう。同様にポリ
エステル系樹脂の下塗り塗膜でもガラス転移温度が20
°Cと低いと、塗膜の抗張力が小さいため、加工した場
合上塗り塗膜の応力を支えきれず、破断し、クラックが
発生してしまう。しかるにポリエステル系樹上のr塗り
塗膜のガラス転移温度が35〜55°Cであると、塗膜
の抗張力が、第1図に示すように、3〜7kg/+s瞭
2となり、しかも上塗り塗装しても、#tJ2図のよう
に、伸びも大きく、加工してもクラックが発生しない。
As is clear from Table 1, in the case of a conventional epoxy undercoat film with a high glass transition temperature of 90°C, the film is not flexible and therefore peels off during processing. Similarly, the glass transition temperature of polyester resin undercoat is 20.
If the temperature is as low as °C, the tensile strength of the coating film is small, so when it is processed, it cannot support the stress of the topcoat coating, resulting in breakage and cracking. However, if the glass transition temperature of the R coating film on polyester wood is 35 to 55°C, the tensile strength of the coating film will be 3 to 7 kg/+s 2, as shown in Figure 1. However, as shown in Figure #tJ2, the elongation is large and no cracks occur even when processed.

(効果) 以上のごとく本発明によれば、従来塗膜密着性に問題が
あった放射線硬化型プレコート金属板の塗膜密着性を向
上させることができるので、従来上り高度の加工性を必
要とする用途に使用可能なプレコート金属板を製造する
ことができる。
(Effects) As described above, according to the present invention, it is possible to improve the paint film adhesion of radiation-curable pre-coated metal plates, which have conventionally had problems with paint film adhesion. It is possible to produce a precoated metal sheet that can be used for various purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は実施例におけるプラス転移温度の相異
による塗膜の応力−歪特性を示すもので、第1図は下塗
り塗膜のみの応力−歪特性を、第2図は下塗り塗膜(4
μ)と上塗り塗膜(20μ)の複合塗膜の応力−歪特性
を示すものである。図中)とTyはガラス転移温度であ
る。
Figures 1 and 2 show the stress-strain characteristics of coating films due to differences in positive transition temperature in Examples. Paint film (4
This figure shows the stress-strain characteristics of a composite coating film consisting of a topcoat film (20μ) and a topcoat film (20μ). ) and Ty in the figure are glass transition temperatures.

Claims (1)

【特許請求の範囲】[Claims] 金属板表面に塗装前処理を施した後、電離放射線硬化型
塗料を塗装して、電離放射線を照射することにより硬化
させて、プレコート鋼板を製造する際、電離放射線硬化
型塗料の塗装前に、塗膜のガラス転移温度が35〜55
℃の範囲にあるポリエステル系樹脂の熱硬化型下塗り塗
料を塗装して、乾燥後の塗膜抗張力が3〜7kg/mm
^2になるよう焼付乾燥することを特徴とする放射線硬
化プレコート金属板の製造法。
After pre-painting treatment is applied to the surface of the metal plate, an ionizing radiation-curable paint is applied and cured by irradiation with ionizing radiation to produce a pre-coated steel plate. Glass transition temperature of coating film is 35-55
Apply a thermosetting undercoat of polyester resin in the range of °C, and the tensile strength of the coating after drying is 3 to 7 kg/mm.
A method for producing a radiation-cured precoated metal plate, which is characterized by baking and drying the plate so that the metal plate becomes ^2.
JP17490285A 1985-08-08 1985-08-08 Preparation of radiation cured precoated metal plate Pending JPS6238277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17490285A JPS6238277A (en) 1985-08-08 1985-08-08 Preparation of radiation cured precoated metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17490285A JPS6238277A (en) 1985-08-08 1985-08-08 Preparation of radiation cured precoated metal plate

Publications (1)

Publication Number Publication Date
JPS6238277A true JPS6238277A (en) 1987-02-19

Family

ID=15986688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17490285A Pending JPS6238277A (en) 1985-08-08 1985-08-08 Preparation of radiation cured precoated metal plate

Country Status (1)

Country Link
JP (1) JPS6238277A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485753A (en) * 1987-09-28 1989-03-30 Sumitomo Metal Ind Coated steel plate suitable to adhesive-processing
JP2009073619A (en) * 2007-09-20 2009-04-09 Nec Tokin Corp Reel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5377234A (en) * 1976-12-21 1978-07-08 Kansai Paint Co Ltd Production of precoated metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5377234A (en) * 1976-12-21 1978-07-08 Kansai Paint Co Ltd Production of precoated metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485753A (en) * 1987-09-28 1989-03-30 Sumitomo Metal Ind Coated steel plate suitable to adhesive-processing
JP2009073619A (en) * 2007-09-20 2009-04-09 Nec Tokin Corp Reel

Similar Documents

Publication Publication Date Title
EP0849004A2 (en) Coating substrates
JPH1140833A (en) Laminated film for solar-cell cover
JPS6238277A (en) Preparation of radiation cured precoated metal plate
JPH0235777B2 (en)
JPH0683815B2 (en) Surface treated metal plate
JP2898698B2 (en) Manufacturing method of coated metal plate with radiation-curable paint
JPWO2003061850A1 (en) Coating method
JP2608466B2 (en) Acid-curable coating composition for polyolefin resin
JPH0472592B2 (en)
JP2805880B2 (en) Polyester film coated metal plate
JPH0510989B2 (en)
JPS6349618B2 (en)
JPH1191025A (en) Overlay film
JPH069675B2 (en) Radiation-curable resin coating method
JPS62110782A (en) Production of coated metallic sheet having high brilliancy
JPS59190847A (en) Decorative sheet and manufacture of decorative material
JPS5824190B2 (en) Pre-coated metal
JPS6157076B2 (en)
JPS5986676A (en) Electron beam-curable adhesive composition for laminated metal sheet
JPS6261677A (en) Method for forming cured film
JP3981861B2 (en) Method for forming laminated coating film
US20030198765A1 (en) Process for making a metal-polymer composite having an irradiated and thermally adhered polymer coating
JP2649051B2 (en) Transfer sheet manufacturing method
JP2898693B2 (en) Manufacturing method of pre-coated steel sheet
JP2622707B2 (en) Repainting method for aluminum building materials