JPS6235464A - Enclosed type secondary cell - Google Patents

Enclosed type secondary cell

Info

Publication number
JPS6235464A
JPS6235464A JP60175081A JP17508185A JPS6235464A JP S6235464 A JPS6235464 A JP S6235464A JP 60175081 A JP60175081 A JP 60175081A JP 17508185 A JP17508185 A JP 17508185A JP S6235464 A JPS6235464 A JP S6235464A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
water
internal pressure
metal body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60175081A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Tajima
善光 田島
Motoo Mori
毛利 元男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60175081A priority Critical patent/JPS6235464A/en
Publication of JPS6235464A publication Critical patent/JPS6235464A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To prevent an internal pressure of a cell from rising when charged at a high rate, by coating metal material having high affinity for oxygen, which is processed by oxidation, with a water-repellent film, and bringing it into contact with a negative electrode. CONSTITUTION:Metal material having high affinity for oxygen is fired and processed by oxidation at high temperature in the air. After it is soaked in suspension of water-repellence treatment agent, it is fired in the air to be coated with the water-repellence treatment agent. This obtained metal material 5 is arranged so as to be brought into contact with a negative electrode 6 in the secondary cell. Thus, under overcharged conditions, oxygen gas is generated on a positive electrode 1, and on the other hand the oxygen gas generated on the positive electrode 1 is absorbed into the metal material 5 on the negative electrode 6, and effectively reduced into water or hydroxyl ion, and therefore an internal pressure of the cell is prevented from rising.

Description

【発明の詳細な説明】 く技術分野〉 本発明は二次電池、特に電解液として水溶液を用いる二
次電池の密閉化技術の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to improvements in sealing technology for secondary batteries, particularly secondary batteries that use an aqueous solution as an electrolyte.

〈従来技術〉 水溶液を電解液とする二次電池は充電により再使用でき
るが、充電末期になると水の電気分解が始まり、正極か
ら酸素ガス、負極から水素ガスが発生するようになる。
<Prior Art> A secondary battery that uses an aqueous solution as an electrolyte can be reused by charging, but at the end of charging, water begins to electrolyze, and oxygen gas is generated from the positive electrode and hydrogen gas is generated from the negative electrode.

さらに充電を続けると、充電電流の殆どがこの電解に使
われるようになる。
If charging continues, most of the charging current will be used for this electrolysis.

従って、二次電池を密閉容器に入れて密閉化すると、電
池の内部圧力が上昇し、破裂を招くことになる。しかし
ながら、二次電池を密閉することが要求され、種々の方
策が採られている。二次電池を密閉化するときには、充
電末期、及び、過充電時に発生するガスを効率よく吸収
し電池の内部圧力が上昇しないようにしなければならな
い。
Therefore, if a secondary battery is placed in an airtight container and sealed, the internal pressure of the battery will increase, leading to an explosion. However, it is required to seal the secondary battery, and various measures have been taken. When sealing a secondary battery, it is necessary to efficiently absorb gas generated at the end of charging and during overcharging to prevent the internal pressure of the battery from increasing.

酸素ガスを効率良く吸収させる手段としては、第三電極
により発生ガスを吸収させる方法、負極により発生ガス
を吸収させる方法などがある。現在、よく実用されてい
る方法は、密閉形ニッケルーカドミウム電池にみられる
負極により酸素ガスを吸収処理させる方法である。この
方法は、電池の正極活物質量を負極のそれよりも少なく
することにより、充電末期にも負極には充電可能となる
よう容量に余裕を持たせておき、負極から水素ガスが発
生しない状況を作り出してお、く。この上うな条件下で
は充電末期になると、(1)式、(2)式の反応が起こ
るようになる。
Examples of means for efficiently absorbing oxygen gas include a method in which the generated gas is absorbed by a third electrode and a method in which the generated gas is absorbed by a negative electrode. Currently, a method commonly used is to absorb oxygen gas using the negative electrode found in sealed nickel-cadmium batteries. In this method, the amount of active material in the positive electrode of the battery is smaller than that in the negative electrode, so that the negative electrode has sufficient capacity so that it can be charged even at the end of charging, and hydrogen gas is not generated from the negative electrode. Please create a . Under these conditions, at the end of charging, the reactions of equations (1) and (2) begin to occur.

正極: 20H−→−Ot+HtO+2e−(1)負極
: Cd(OH)z+ 2 e″″ 、Cd+208−
 (2)すなわち、正極では酸素ガスの発生が、負極で
は水酸化カドミウムの還元が起こることとなる。正極、
負極がそれぞれ(1)式、(2)式に示す様な状態に至
ると、正極で発生した酸素ガスと負極で生成したカドミ
ウムとは比較的容易に(3)式の様な反応を起こす。
Positive electrode: 20H-→-Ot+HtO+2e-(1) Negative electrode: Cd(OH)z+2e″″, Cd+208-
(2) That is, oxygen gas is generated at the positive electrode, and cadmium hydroxide is reduced at the negative electrode. positive electrode,
When the negative electrode reaches the state shown in equations (1) and (2), respectively, the oxygen gas generated at the positive electrode and the cadmium produced at the negative electrode relatively easily cause a reaction as shown in equation (3).

負極: Cd +Ot + Ht O→ca(o H)
t  (3)(3)式による酸素ガスの吸収速度が、(
+)式による酸素ガスの発生速度を上回っている限りに
おいては、酸素ガスの蓄積による電池の内部圧力の上昇
を防ぐことができることとなる。
Negative electrode: Cd + Ot + Ht O → ca (o H)
t (3) The absorption rate of oxygen gas according to equation (3) is (
As long as the rate of generation of oxygen gas exceeds the rate of generation of oxygen gas according to the equation (+), it is possible to prevent the internal pressure of the battery from increasing due to accumulation of oxygen gas.

この方法は、−見極めて合理的な密閉化の方法ではある
が、急速充電のため充電電流を大きく選んだ場合、(1
)式の速度が、(3)式の速度を上回ることとなり、充
電末期から過充電期にわたる期間において電池内部に酸
素ガスの蓄積が起こり、電池の内部圧力の上昇を招いて
しまう。電池の内部圧力の上昇にもかかわらずさらに充
電を続けると、電池を破損してしまうため、その対策と
して、内部圧力の上昇に対応して強じんな耐圧性の優れ
た容器を使用しなければならない。
This method is a reasonable sealing method, but if a large charging current is selected for rapid charging, (1
) will exceed the speed of equation (3), and oxygen gas will accumulate inside the battery during the period from the end of charging to the overcharging period, leading to an increase in the internal pressure of the battery. If you continue to charge the battery even though the internal pressure has increased, the battery will be damaged, so as a countermeasure, you must use a strong and pressure-resistant container that can withstand the increase in internal pressure. No.

〈発明の目的〉 本発明は、以上の様な欠点を持つ従来の密閉形二次電池
の改良を行なうことにより、急速充電にもかかわらず電
池の内部圧力の上昇を起こさない電池の提供を目的とす
る。
<Object of the Invention> The purpose of the present invention is to provide a battery that does not cause an increase in the internal pressure of the battery despite rapid charging, by improving the conventional sealed secondary battery that has the above-mentioned drawbacks. shall be.

〈発明の構成〉 本発明は、上記の目的達成のため、酸・アルカリ等の水
溶液を電解液とする二次電池の負極に撥水処理を施した
親酸素性の高い金属体を接し、この金属体により充電末
期から過充電期にわたった期間に正極より発生する酸素
ガスの還元吸収を行なわせしめることにより、電池の内
部圧力の上昇を防止し、二次電池の密閉化を可能とする
ことを特徴として構成されている。
<Structure of the Invention> In order to achieve the above-mentioned object, the present invention provides a method in which a water-repellent treated highly oxygen-philic metal body is brought into contact with the negative electrode of a secondary battery whose electrolyte is an aqueous solution of acid, alkali, etc. By causing the metal body to reduce and absorb oxygen gas generated from the positive electrode during the period from the end of charging to the overcharging period, it is possible to prevent the internal pressure of the battery from increasing and to seal the secondary battery. It is structured with the following characteristics.

本発明に用いる親酸素性の高い金属としては、希土類元
素、銅族元素、亜鉛族元素、炭素族元素または窒素族元
素、もしくはこれらの金属の合金である。好ましい金属
の例としては、銅、亜鉛、錫、鉛、ビスマス、ランタン
、銀、真鍮等室温で空気による酸化を受は易いものであ
る。これらの金属体は網状、未焼成圧粉体または多孔体
の如き表面積の大きい形態が取られる。この金属体には
、酸素還元用の触媒、助触媒等が担持されていてもよい
The highly oxygen-philic metal used in the present invention is a rare earth element, a copper group element, a zinc group element, a carbon group element, a nitrogen group element, or an alloy of these metals. Examples of preferred metals include copper, zinc, tin, lead, bismuth, lanthanum, silver, brass, etc., which are easily oxidized by air at room temperature. These metal bodies take the form of a large surface area such as a mesh, an unfired compact, or a porous body. A catalyst, co-catalyst, etc. for oxygen reduction may be supported on this metal body.

これらの金属体は酸化処理される。酸化処理は通常空気
中で高温、例えば400℃以上の温度で焼成することに
より行なわれる。もちろん、この方法に限定されず、種
々の公知の方法により酸化処理される。
These metal bodies are oxidized. The oxidation treatment is usually carried out by firing in air at a high temperature, for example, at a temperature of 400° C. or higher. Of course, the oxidation treatment is not limited to this method, and various known methods can be used.

上記金属体は以下に示す如き酸化還元平衡反応を有して
いる。
The above metal body has a redox equilibrium reaction as shown below.

MOx + xe    M + X0H−(4)MO
x + (x−y)e−:  MOy + (x−y)
OH−(5)MOx + 2xH” + 2xe  −
M + xHtO(6)MOx+2(x−y)H” +
2(x−y)e−:  MOy+(x−y)HtO(7
)上記金属の酸化物は撥水処理剤により被覆される。被
覆により、酸・アルカリ等の電解液に直接触れないため
、二次電池内で金属体は安定に存在する。撥水処理剤と
してはポリ四フッ化エチレン樹脂、四フッ化エチレンー
六フッ化プロピレン共重合体、四フッ化エチレンーパー
フルオロアルキルビニルエーテル共重合体、四フッ化エ
チレンーエチレン共重合体樹脂、ポリフッ化塩化エチレ
ン樹脂、ポリフッ化ビニリデン樹脂、ポリフッ化ビニル
、または三フッ化塩化エチレンーエチレン共重合体が挙
げられる。撥水処理は通常上記撥水処理剤の懸濁液中に
金属の酸化物を浸漬し、空気中で焼成されることにより
行なわれる。
MOx + xe M + X0H-(4)MO
x + (x-y)e-: MOy + (x-y)
OH−(5)MOx + 2xH” + 2xe −
M+xHtO(6)MOx+2(x-y)H"+
2(x-y)e-: MOy+(x-y)HtO(7
) The above metal oxide is coated with a water repellent treatment agent. The coating prevents direct contact with electrolytes such as acids and alkalis, so the metal body remains stable within the secondary battery. Water repellent treatment agents include polytetrafluoroethylene resin, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-ethylene copolymer resin, polyfluoroethylene Examples include chlorinated ethylene resin, polyvinylidene fluoride resin, polyvinyl fluoride, or trifluorochlorinated ethylene-ethylene copolymer. Water repellent treatment is usually carried out by immersing a metal oxide in a suspension of the above-mentioned water repellent agent and firing it in air.

撥水処理剤のコーティングにより、負極と接したときに
も金属体は負極との間に抵抗を介して接触していること
になり、負極とは異なる平衡電位にもかかわらず、(4
)式、(5)式、(6)式、(7)式に示す平衡電位の
ある平衡状態を保つことができる。又、この金属体は、
負極と接しているため充電時には還元電流が、放電時に
は酸化電流が流れることとなる。以上の様に、金属体は
、負極と異なる電位を保つことができ、(4)式、(5
)式、(6)式、(7)式の状態を安定に維持すること
ができろことから、充電末期から過充電期にわたる期間
において発生する酸素ガスを金属体は迅速に吸収し、金
属体を流れる還元電流により水酸イオン、又は、水へと
返すことができる。
Due to the water repellent coating, the metal body is in contact with the negative electrode through a resistance even when it comes into contact with the negative electrode, and even though the metal body is at a different equilibrium potential from the negative electrode, (4
), (5), (6), and (7) can be maintained. Also, this metal body is
Since it is in contact with the negative electrode, a reduction current flows during charging and an oxidation current flows during discharge. As mentioned above, the metal body can maintain a potential different from that of the negative electrode, and formula (4), (5
), (6), and (7) can be stably maintained, the metal body quickly absorbs oxygen gas generated during the period from the end of charge to the overcharge period, and the metal body can be returned to hydroxide ions or water by the reduction current flowing through it.

得られた金属体は二次電池の負極に接触するように配置
される。ここで用いられる二次電池には、アルカリ型二
次電池として、ニッケルーカドミウム電池、ニッケルー
亜鉛電池、ニッケルー水素電池等かあり、又、酸性型二
次電池として鉛電池、固体水素電池等がある。
The obtained metal body is placed in contact with the negative electrode of the secondary battery. The secondary batteries used here include alkaline type secondary batteries such as nickel-cadmium batteries, nickel-zinc batteries, and nickel-hydrogen batteries, and acidic type secondary batteries such as lead batteries and solid hydrogen batteries. .

く効果〉 本発明の二次電池では、過充電状態になると正極では酸
素ガスの発生が起こり、負極では、前記金属体が正極で
発生した酸素ガスを吸収し、式(4)〜(7)により効
率良く水または水酸イオンへと還元するため電池の内部
圧力の上昇が起こらない。
Effects> In the secondary battery of the present invention, when an overcharged state occurs, oxygen gas is generated at the positive electrode, and at the negative electrode, the metal body absorbs the oxygen gas generated at the positive electrode, and formulas (4) to (7) are satisfied. Because it is efficiently reduced to water or hydroxide ions, the internal pressure of the battery does not increase.

本発明を実施例により更に詳細に説明する。The present invention will be explained in more detail with reference to Examples.

〈実施例〉 以下に水素吸蔵合金であるT1Ni合金を負極として用
いたニッケルー水素電池について、金属体として銅ネッ
トを使用した場合を実施例として本発明の詳細な説明す
る。
<Example> Hereinafter, the present invention will be described in detail using a case where a copper net is used as a metal body in a nickel-hydrogen battery using a T1Ni alloy, which is a hydrogen storage alloy, as a negative electrode.

40mesh −0、25tの銅ネットをアルコールで
洗浄した後、空気中650℃で1時間、焼き銅ネットに
酸化銅の層を形成させた。室温まで冷却しf二後、10
0倍希釈したテフロン懸濁液(ダイキン工業株式会社製
: D−1)に浸し、空気中200°Cで1時間焼き、
撥水処理を施した。この銅ネット(5)を第1図に示す
様に負極と接するようにして、正確に容量が50mAh
である酸化ニッケル電極(2)、負極に容量が80mA
hである銅被覆を施したT1Ni電極(4)、セパレー
ターにボリアミド不織布(3)、そして、電解液に6M
 KOH水溶液を用いた電池Aを構成した。尚、図中、
lは正極板、6は負極板、7は電池の内部圧力を測定す
るために設けられた圧力センサー、8は耐圧容器である
After cleaning a 40mesh-0, 25t copper net with alcohol, a layer of copper oxide was formed on the fired copper net at 650° C. for 1 hour in air. After cooling to room temperature and f2, 10
Soaked in 0 times diluted Teflon suspension (manufactured by Daikin Industries, Ltd.: D-1) and baked in air at 200°C for 1 hour.
Water repellent treated. Place this copper net (5) in contact with the negative electrode as shown in Figure 1, so that the capacity is exactly 50mAh.
Nickel oxide electrode (2) with a negative electrode capacity of 80 mA
T1Ni electrode (4) with a copper coating of h, a polyamide nonwoven fabric (3) as a separator, and a 6M electrolyte as a separator.
Battery A was constructed using a KOH aqueous solution. In addition, in the figure,
1 is a positive electrode plate, 6 is a negative electrode plate, 7 is a pressure sensor provided to measure the internal pressure of the battery, and 8 is a pressure container.

く比較例1〉 比較例1として、撥水処理を施さないこと以外は実施例
1と同様である電池Bを構成した。
Comparative Example 1> As Comparative Example 1, a battery B was constructed which was the same as Example 1 except that no water repellent treatment was performed.

〈比較例2〉 比較例2として銅ネットのかわりにニッケルネットを用
いたこと以外は実施例と同様である電池Cを構成した。
<Comparative Example 2> As Comparative Example 2, a battery C was constructed which was the same as the example except that a nickel net was used instead of the copper net.

〈比較例3〉 比較例3として何の処理も施さないニッケルネットを用
いて実施例と同様の電池りを構成した。
<Comparative Example 3> As Comparative Example 3, a battery similar to that of the example was constructed using a nickel net that was not subjected to any treatment.

〈比較例4〉 比較例4として、金属体のないこと以外は実施例と同様
である電池Eを構成した。
<Comparative Example 4> As Comparative Example 4, a battery E was constructed which was the same as the example except that there was no metal body.

本発明における実施例の電池A、及び、lから4までの
比較例における電池B、C,D、Eにっいて1時間充電
率に相当する50mAの充電電流で充電したときの各電
池の充電電圧、及び、内部圧力を第2図に示し、又、5
’OmAで1.5時間充電し、lOmAで1.OVまで
放電する充電、放電サイクルを繰り返したときの充電終
了時の電池の内部圧力変化を第3図に示した。第2図、
及び、第3図より、本発明による電池は、比較例の電池
と比べ、急速充電によっても、電池の内部圧力の上昇が
起こらないことがわかる。
Charging of each battery when charging battery A in the example of the present invention and batteries B, C, D, and E in comparative examples 1 to 4 with a charging current of 50 mA corresponding to a 1-hour charging rate. The voltage and internal pressure are shown in Figure 2, and 5
'Charge at OmA for 1.5 hours, then charge at lOmA for 1.5 hours. FIG. 3 shows the change in internal pressure of the battery at the end of charging when the charging and discharging cycles of discharging to OV were repeated. Figure 2,
Also, from FIG. 3, it can be seen that the battery according to the present invention does not cause an increase in the internal pressure of the battery even when rapidly charged, compared to the battery of the comparative example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、よ、二次電池の断面図である。第2図の実線
は電池A−Eの1時間充電率で充実したときの充電電圧
の変化であり、破線は、内部圧力の変化である。第3図
は、電池A−Eに充電・放電を繰り返したときの充電終
了時の内部圧力のサイクル変化である。 第1図 第2図 t/h 第3図 n/cycle
Figure 1 is a cross-sectional view of a secondary battery. The solid line in Figure 2 shows the change in charging voltage when batteries A-E are fully charged at a 1-hour charging rate, and the broken line shows the change in internal pressure. Figure 3 shows the cycle change in internal pressure at the end of charging when batteries A-E are repeatedly charged and discharged. Figure 1 Figure 2 t/h Figure 3 n/cycle

Claims (1)

【特許請求の範囲】 1、酸化処理した親酸素性の高い金属体に撥水性被膜を
形成し、負極に接触してなる密閉形二次電池。 2、親酸素性の高い金属体が網状または多孔体状を有す
る1項記載の密閉形二次電池。 3、親酸素性の高い金属体が希土類元素、銅族元素、亜
鉛族元素、炭素族元素または窒素族元素に属する金属あ
るいはそれらの合金である第1項記載の密閉形二次電池
[Scope of Claims] 1. A sealed secondary battery formed by forming a water-repellent coating on an oxidized highly oxygen-friendly metal body and contacting the negative electrode. 2. The sealed secondary battery according to item 1, wherein the highly oxygen-philic metal body has a net shape or a porous shape. 3. The sealed secondary battery according to item 1, wherein the highly oxygen-philic metal body is a metal belonging to a rare earth element, a copper group element, a zinc group element, a carbon group element, or a nitrogen group element, or an alloy thereof.
JP60175081A 1985-08-08 1985-08-08 Enclosed type secondary cell Pending JPS6235464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60175081A JPS6235464A (en) 1985-08-08 1985-08-08 Enclosed type secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60175081A JPS6235464A (en) 1985-08-08 1985-08-08 Enclosed type secondary cell

Publications (1)

Publication Number Publication Date
JPS6235464A true JPS6235464A (en) 1987-02-16

Family

ID=15989905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60175081A Pending JPS6235464A (en) 1985-08-08 1985-08-08 Enclosed type secondary cell

Country Status (1)

Country Link
JP (1) JPS6235464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712060A (en) * 1994-08-09 1998-01-27 Aktsionernoe Obschestvo Zakrytogo Tipa "Avtouaz" Alkaline storage cell
JP2013089396A (en) * 2011-10-17 2013-05-13 Konica Minolta Holdings Inc Secondary battery type fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712060A (en) * 1994-08-09 1998-01-27 Aktsionernoe Obschestvo Zakrytogo Tipa "Avtouaz" Alkaline storage cell
JP2013089396A (en) * 2011-10-17 2013-05-13 Konica Minolta Holdings Inc Secondary battery type fuel cell

Similar Documents

Publication Publication Date Title
EP0587973B1 (en) Nickel positive electrode for use in alkaline storage battery and nickel-hydrogen storage battery using the same
EP0354966B1 (en) Alkaline secondary battery and process for its production
JP3056054B2 (en) Zinc secondary battery and zinc electrode
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPWO2002023663A1 (en) Alkaline zinc secondary battery and method of manufacturing the same
US3853624A (en) High energy density iron-nickel battery
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
KR100224464B1 (en) Alkaline secondary battery manufacturing method, alkaline secondary battery positive electrode, alkaline secondary battery, and a method of manufacturing an initially charged alkaline secondary battery
JP5557385B2 (en) Energy storage device with proton as insertion species
JPS6235464A (en) Enclosed type secondary cell
Pavlov et al. Nickel-zinc batteries with long cycle life
JP2009146756A (en) Aqueous lithium ion secondary battery
US3463673A (en) Electrochemical coulometer and method of forming same
US3528855A (en) Hermetically sealed battery and method of making
JP3006371B2 (en) Battery
HU208596B (en) Rechargeable electrochemical cell
JP3118716B2 (en) Sealed nickel-zinc battery
JPH05159779A (en) Nickel hydroxide electrode and alkaline secondary battery with this electrode serving as positive pole
US5955216A (en) Sealed alkaline storage battery
JPS6230285Y2 (en)
KR100790563B1 (en) Structure of electrode group for large capacity nickel/metal hydryde secondary battery
KR19980031966A (en) Active material for zinc electrode and alkaline secondary battery using same
JP2923946B2 (en) Sealed alkaline secondary battery and method of manufacturing the same
JPS62232869A (en) Sealed secondary cell
JP2926288B2 (en) Nickel-cadmium battery