JP3118716B2 - Sealed nickel-zinc battery - Google Patents

Sealed nickel-zinc battery

Info

Publication number
JP3118716B2
JP3118716B2 JP03167554A JP16755491A JP3118716B2 JP 3118716 B2 JP3118716 B2 JP 3118716B2 JP 03167554 A JP03167554 A JP 03167554A JP 16755491 A JP16755491 A JP 16755491A JP 3118716 B2 JP3118716 B2 JP 3118716B2
Authority
JP
Japan
Prior art keywords
battery
zinc
nickel
electrode plate
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03167554A
Other languages
Japanese (ja)
Other versions
JPH04366553A (en
Inventor
安田  秀雄
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP03167554A priority Critical patent/JP3118716B2/en
Publication of JPH04366553A publication Critical patent/JPH04366553A/en
Application granted granted Critical
Publication of JP3118716B2 publication Critical patent/JP3118716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は密閉型ニッケル・亜鉛電
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed nickel-zinc battery.

【0002】[0002]

【従来の技術とその課題】近年、電子機器の発展によっ
て新しい高性能の電池の出現が期待されている。そのう
ち、亜鉛を負極とする電池、例えばアルカリマンガン電
池やニッケル・亜鉛電池の高性能化への要求が強まって
いる。特に、これらの電池は二次電池としての可能性が
あるが、サイクル寿命が短いために、実用化が困難であ
った。その大きな技術的な課題としては、亜鉛のデンド
ライト現象やシェイプチェンジ現象がある。
2. Description of the Related Art In recent years, with the development of electronic devices, the appearance of new high-performance batteries is expected. Among them, there is an increasing demand for higher performance of batteries using zinc as a negative electrode, for example, alkaline manganese batteries and nickel-zinc batteries. In particular, these batteries have the potential to be secondary batteries, but have been difficult to put into practical use due to their short cycle life. Its major technical issues include zinc dendrite phenomena and shape change phenomena.

【0003】これらの課題を克服するための一つの手段
として、導電材として銅粉末やカドミウム粉末を添加し
て電流分布を均一にして、これらの課題を軽減する試み
が提案されている(例えばGS NEWS VOL.49,26(1990) ,
特開平1-315949号)。また、円形あるいは楕円状の微孔
性のセパレータを使用する試みが提案され(特開平1-42
522 号)密閉形電池としての寿命性能の向上がはかられ
ている。しかしながら、亜鉛負極板から、充電時あるい
は放置中に発生する水素ガスを吸収する技術的な手段が
なかったために、ニッケル・カドミウム電池のような信
頼性のある密閉形電池にはなりえなかった。
As one means for overcoming these problems, an attempt has been made to reduce the problems by adding a copper powder or a cadmium powder as a conductive material to make the current distribution uniform (for example, GS). NEWS VOL.49,26 (1990),
JP-A-1-315949). Further, an attempt to use a circular or elliptical microporous separator has been proposed (Japanese Patent Laid-Open No. 1-42).
No. 522) The life performance of sealed batteries is being improved. However, a reliable sealed battery such as a nickel-cadmium battery could not be obtained because there was no technical means for absorbing hydrogen gas generated during charging or standing from the zinc negative electrode plate.

【0004】このように亜鉛電池は、高エネルギー密度
の電池として期待されているものの、現在のところ寿命
性能が充分でないために実用化レベルには、到達してい
ない。
[0004] As described above, zinc batteries are expected to be batteries with high energy density, but have not yet reached a practical level due to insufficient life span performance at present.

【0005】[0005]

【課題を解決するための手段】本発明によるニッケル・
亜鉛電池は、ランタニド元素を含有する水酸化ニッケル
正極板を備えたことを特徴とするものであり、亜鉛負極
板から、充電時あるいは放置中に発生する水素ガスを正
極板で有効に吸収する能力があり、ニッケル・カドミウ
ム電池のような信頼性のある密閉形電池となりうる。
According to the present invention, there is provided a nickel alloy comprising:
The zinc battery is equipped with a nickel hydroxide positive electrode plate containing a lanthanide element, and the ability of the positive electrode plate to effectively absorb hydrogen gas generated during charging or during standing from the zinc negative electrode plate Therefore, a reliable sealed battery such as a nickel-cadmium battery can be obtained.

【0006】[0006]

【実施例】以下本発明の好適な実施例を用いて説明す
る。 [実施例1]多孔度80%の焼結式ニツケル基板に硝酸ラ
ンタン2 mol%,硝酸コバルト2 mol%を含む5Mの硝
酸ニッケル水溶液を80℃で含浸したのち、80 ℃の5Mの
水酸化ナトリウム水溶液に浸漬する。その後、湯洗・乾
燥して、理論容量が300 mAh、寸法が0.8×14×52(mm)の
正極板を2枚製作した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. Example 1 A sintered nickel substrate having a porosity of 80% was impregnated with a 5M aqueous solution of nickel nitrate containing 2 mol% of lanthanum nitrate and 2 mol% of cobalt nitrate at 80 ° C, and then 5M sodium hydroxide at 80 ° C. Immerse in an aqueous solution. Thereafter, the plate was washed with hot water and dried to produce two positive plates having a theoretical capacity of 300 mAh and dimensions of 0.8 × 14 × 52 (mm).

【0007】つぎに酸化亜鉛粉末80部,金属亜鉛粉末20
部および長さ1 mmのナイロンの短繊維0.2 部を混合す
る。つぎにプロピレングリコール30部を加えて混合し
て、ペースト状にする。さらにポリテトラフルオロエチ
レン粉末の60%水性デイスパージョン溶液3 部を加えて
混練する。
Next, 80 parts of zinc oxide powder and 20 parts of zinc metal powder
Parts and 0.2 parts of 1 mm long nylon staple fibers. Next, 30 parts of propylene glycol is added and mixed to form a paste. Further, 3 parts of a 60% aqueous dispersion solution of polytetrafluoroethylene powder is added and kneaded.

【0008】その後、厚さ0.1 mmの銅のパンチングメタ
ルに加圧ローラーで圧着してから150 ℃で乾燥し、再度
プレスして酸化亜鉛の理論容量が500 mAh で、寸法が0.
7 ×15×52 (mm) の負極板3 枚を製作した。
[0008] Thereafter, it is pressed against a punching metal of copper having a thickness of 0.1 mm with a pressure roller, dried at 150 ° C., and pressed again to obtain a zinc oxide having a theoretical capacity of 500 mAh and a size of 0.3 mm.
Three negative electrode plates of 7 × 15 × 52 (mm) were manufactured.

【0009】つぎに、この正極板を0.12mmのポリアミド
不織布1枚と厚さ25μmのポリエチレン製の微孔性膜1
枚からなるセパレータで包んだのち、ヒートシールし
た。続いて0.12mmのポリアミド不織布1枚で負極板を包
んだのち、正極板と負極板とを交互に積み重ねて極板群
とした。
Next, this positive electrode plate is made of one piece of a 0.12 mm polyamide nonwoven fabric and a 25 μm thick polyethylene microporous membrane 1.
After being wrapped in a single-sheet separator, heat sealing was performed. Subsequently, the negative electrode plate was wrapped with a single 0.12 mm polyamide nonwoven fabric, and the positive electrode plate and the negative electrode plate were alternately stacked to form an electrode plate group.

【0010】この極板群と電解液として酸化亜鉛を飽和
した8.5Mの水酸化カリウム水溶液 2.5mlを用いて公称容
量が 500mAh の合成樹脂電槽を使用した本発明による角
形ニッケル・亜鉛電池(A)を製作した。外形寸法は67
×16.5×8(mm) であり、電池には0.5 Kg/cm2 で作動す
る安全弁を付けている。 [実施例2]水酸化コバルトを2 mol%,水酸化ランタ
ンを2 mol%含む5 μの球状水酸化ニッケル粉末85部と
金属コバルト粉末10部とカーボニルニッケル粉末5 部と
を混合する。つぎに0.2%のカルボキシメチルセルロー
ズ40部を加えて、混合してペースト状態にする。
A prismatic nickel-zinc battery (A) according to the present invention using a synthetic resin battery container having a nominal capacity of 500 mAh using this electrode group and 2.5 ml of an 8.5 M aqueous potassium hydroxide solution saturated with zinc oxide as an electrolytic solution. ). External dimensions are 67
× 16.5 × 8 (mm), and the battery is equipped with a safety valve that operates at 0.5 Kg / cm 2 . Example 2 85 parts of 5 μm spherical nickel hydroxide powder containing 2 mol% of cobalt hydroxide and 2 mol% of lanthanum hydroxide, 10 parts of metal cobalt powder and 5 parts of carbonyl nickel powder are mixed. Next, 40 parts of 0.2% carboxymethyl cellulose is added and mixed to form a paste.

【0011】このペーストを厚さが1.2 mmの発泡ニッケ
ル(住友電工製、商品名セルメット)に減圧充填してか
ら、90 ℃で20分乾燥してから加圧して、理論容量が300
mAh、寸法が0.8 ×14×52(mm)の正極板を2 枚製作し
た。
This paste was vacuum-filled into 1.2 mm thick nickel foam (manufactured by Sumitomo Electric Co., Ltd., trade name: Celmet), dried at 90 ° C. for 20 minutes, and then pressurized to give a theoretical capacity of 300 mm.
Two positive electrodes with mAh dimensions of 0.8 × 14 × 52 (mm) were manufactured.

【0012】つぎに酸化亜鉛粉末80部,金属亜鉛粉末20
部および長さ1 mmの塩化ビニルとアクリルニトリルとの
共重合体の短繊維0.2部をプロピレングリコール30部で
混合してペースト状にする。つぎにポリテトラフルオロ
エチレン粉末の60%水性デイスパージョン溶液3 部を加
えて混練する。その後、厚さ0.1 mmの銅のパンチングメ
タルに加圧ローラーで圧着してから150 ℃で乾燥し、再
度プレスして酸化亜鉛の理論容量が500 mAh で、寸法が
0.7 ×15×52(mm)の負極板3 枚を製作した。つぎに、こ
の正極板を0.12mmのポリアミド不織布1 枚と厚さ25μm
のポリエチレン製の微孔性膜1枚からなるセパレータで
包んだのち、ヒートシールした。つづいて0.12mmのポリ
アミド不織布1枚で負極板を包んだのち、正極板と負極
板とを交互に積み重ねて極板群とした。
Next, 80 parts of zinc oxide powder, 20 parts of zinc metal powder
Parts and 0.2 part of a short fiber of a copolymer of vinyl chloride and acrylonitrile having a length of 1 mm are mixed with 30 parts of propylene glycol to form a paste. Next, 3 parts of a 60% aqueous dispersion solution of polytetrafluoroethylene powder is added and kneaded. Then, it is pressed against a 0.1 mm thick copper punching metal with a pressure roller, dried at 150 ° C, pressed again, and the zinc oxide has a theoretical capacity of 500 mAh and a size of 500 mAh.
Three 0.7 × 15 × 52 (mm) negative plates were manufactured. Next, this positive electrode plate was coated with one piece of a 0.12 mm polyamide nonwoven fabric and 25 μm thick.
Was wrapped with a separator consisting of a single polyethylene microporous membrane, and then heat-sealed. Subsequently, the negative electrode plate was wrapped with a single 0.12 mm polyamide nonwoven fabric, and the positive electrode plate and the negative electrode plate were alternately stacked to form an electrode plate group.

【0013】この極板群と電解液として酸化亜鉛を飽和
した8.5 M の水酸化カリウム水溶液2.5 mlを用いて公称
容量が 500mAh の合成樹脂電槽を使用した本発明による
角形ニッケル・亜鉛電池(B)を製作した。外形寸法は
67×16.5×8(mm) であり、電池には0.5 Kg/cm2 で作動
する安全弁を付けている。
A prismatic nickel-zinc battery (B) according to the present invention using the electrode assembly and 2.5 ml of an 8.5 M potassium hydroxide aqueous solution saturated with zinc oxide as an electrolytic solution and a synthetic resin battery container having a nominal capacity of 500 mAh. ). External dimensions are
67 × a 16.5 × 8 (mm), and with a safety valve operating at 0.5 Kg / cm 2 in the battery.

【0014】これらの電池を35℃,0.5Cで6 時間充電し
たのち、同じ温度で2 週間保存してから、同じ電流で1.
40Vまで放電するというサイクル試験をおこなった。1
サイクル目における放電容量を基準とする容量保持率の
サイクル経過にともなう変化を図1に示す。比較のため
に、実施例1において硝酸ランタンを含まない含浸液を
使用した以外は電池(A)と同様にして製作した従来の
電池(C)の場合も合わせて示した。図2には、電池の
重量減少の変化を示す。
After charging these batteries at 35 ° C. and 0.5 C for 6 hours, they were stored at the same temperature for 2 weeks, and then charged at the same current for 1.
A cycle test of discharging to 40V was performed. 1
FIG. 1 shows a change in the capacity retention rate based on the discharge capacity at the cycle with the lapse of the cycle. For comparison, a conventional battery (C) produced in the same manner as the battery (A) except that the impregnating liquid containing no lanthanum nitrate in Example 1 was also shown. FIG. 2 shows the change in weight loss of the battery.

【0015】図1より、本発明の電池(A)および
(B)の容量低下は従来の電池(C)よりも少ないこと
がわかる。また、図2の電池の重量減少から、本発明の
電池の密閉性が優れているといえる。その理由は次のよ
うに考えられる。
FIG. 1 shows that the batteries (A) and (B) of the present invention have less capacity reduction than the conventional battery (C). In addition, from the weight reduction of the battery of FIG. 2, it can be said that the battery of the present invention has excellent hermeticity. The reason is considered as follows.

【0016】一般にニツケル・亜鉛電池を充電すると、
亜鉛極の集電体として使用している銅の集電体表面から
局部的に式(1)に示す反応によって水素が発生する。
また、電池の保存中に亜鉛極の金属亜鉛が腐食して、式
(2)の反応によって、同様に水素ガスが発生する。
Generally, when a nickel-zinc battery is charged,
Hydrogen is locally generated from the surface of the copper current collector used as the current collector of the zinc electrode by the reaction represented by the formula (1).
In addition, during storage of the battery, metallic zinc on the zinc electrode is corroded, and hydrogen gas is similarly generated by the reaction of the formula (2).

【0017】 2H2 O+2e- →H2 +2OH- (1) Zn+2H2 O+2OH- →H2 +Zn(OH)4 2- (2) したがって、本発明の電池では亜鉛極から発生する水素
ガスが、電池系外へ放散せずに電池内で吸収されている
ことがわかる。おそらく、負極から発生した水素ガスは
式(3)に示す反応によって正極活物質内に吸収された
ものと考えられる。
2H 2 O + 2e → H 2 + 2OH (1) Zn + 2H 2 O + 2OH → H 2 + Zn (OH) 4 2− (2) Therefore, in the battery of the present invention, hydrogen gas generated from the zinc electrode is generated in the battery system. It can be seen that it is absorbed in the battery without being scattered outside. Probably, it is considered that the hydrogen gas generated from the negative electrode was absorbed into the positive electrode active material by the reaction represented by the formula (3).

【0018】 2NiOOH+H2 →2Ni(OH)2 (3) 一方、従来の電池の場合は、この水素ガスの吸収能力が
低いので、充電時および放置中に発生した水素ガスが放
散し、電解液の減少がおこる。とくに、充電後の放置中
に水素が発生すると、負極の金属亜鉛が減少するので、
放電容量が減少し、その後の充電で正極が過充電され
て、酸素ガスが発生するようになる。この酸素ガスは電
池内部に水素ガスが蓄積すると負極での吸収が困難にな
るので、電池系外へ弁を通して散逸し、電解液の減少が
大きくなったものと推定される。
2NiOOH + H 2 → 2Ni (OH) 2 (3) On the other hand, in the case of the conventional battery, the hydrogen gas absorption capacity is low, so that the hydrogen gas generated during charging and during leaving is diffused, and the Reduction occurs. In particular, if hydrogen is generated during storage after charging, the amount of zinc metal on the negative electrode decreases,
The discharge capacity is reduced, and the positive electrode is overcharged in the subsequent charging, and oxygen gas is generated. If hydrogen gas accumulates inside the battery, it becomes difficult for the negative electrode to absorb the oxygen gas. Therefore, it is estimated that the oxygen gas is dissipated outside the battery system through the valve, and the decrease in the electrolyte is increased.

【0019】つぎに、ランタニド元素として、セリウ
ム、ネオジウム、サマリウム、ユウロピウム、ジスプロ
シウムの硝酸塩を選定して、実施例1の場合と同様にし
て電池を製作し、図1の場合と同様な試験をおこなっ
た。12サイクル目の容量保持率と電池重量減少の値を表
1にまとめて示す。
Next, as lanthanide elements, nitrates of cerium, neodymium, samarium, europium, and dysprosium were selected, a battery was manufactured in the same manner as in Example 1, and the same test as in FIG. 1 was performed. Was. Table 1 summarizes the values of the capacity retention and battery weight loss at the 12th cycle.

【0020】[0020]

【表1】 表から、ランタニド元素を含有した正極板を使用した本
発明の密閉形電池は、従来の電池よりもはるかに、性能
がよいことがわかる。このように、本発明による密閉電
池の性能がすぐれているのは、正極に添加したランタニ
ド元素に活物質の充電生成物であるNi00Hの水素吸
収サイトが増加する機能があるものと推定される。
[Table 1] From the table, it can be seen that the sealed battery of the present invention using the positive electrode plate containing the lanthanide element has much better performance than the conventional battery. As described above, the excellent performance of the sealed battery according to the present invention is presumed to be due to the fact that the lanthanide element added to the positive electrode has a function of increasing the hydrogen absorption sites of Ni00H, which is a charge product of the active material.

【0021】なお、実施例1で、セパレータとして従来
のセロファンを使用した電池についても、同様な試験を
おこなったが、微孔性膜を使用したものの方が性能はす
ぐれていた。
In Example 1, a similar test was conducted for a battery using a conventional cellophane as a separator, but the performance using a microporous membrane was better.

【0022】[0022]

【発明の効果】以上述べたように、本発明の密閉形電池
はランタニド元素を正極活物質に含むことにより、充電
あるいは電池の放置中におけて負極から発生する水素ガ
スを正極活物資に効率よく吸収できるために、長寿命
で、信頼性の高い電池となる。
As described above, the sealed battery of the present invention contains the lanthanide element in the positive electrode active material, thereby efficiently converting the hydrogen gas generated from the negative electrode during charging or leaving the battery into the positive electrode active material. Because it can be absorbed well, the battery has a long life and high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の密閉形電池と従来の電池の充放電サイ
クルにともなう容量保持率を比較した図。
FIG. 1 is a diagram comparing the capacity retention ratio of a sealed battery according to the present invention and a conventional battery with charge / discharge cycles.

【図2】本発明の密閉形電池と従来の電池の充放電サイ
クルにともなう重量減少量を比較した図。
FIG. 2 is a graph comparing the weight loss of a sealed battery according to the present invention and a conventional battery with charge / discharge cycles.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ランタニド元素を含有する水酸化ニッケル
正極板を備えた密閉型ニッケル・亜鉛電池。
1. A sealed nickel-zinc battery provided with a nickel hydroxide positive electrode plate containing a lanthanide element.
【請求項2】ランタニド元素および水酸化コバルトを含
有する水酸化ニッケル正極板を備えた密閉型ニッケル・
亜鉛電池。
2. A hermetically sealed nickel alloy comprising a nickel hydroxide positive plate containing a lanthanide element and cobalt hydroxide.
Zinc battery.
JP03167554A 1991-06-11 1991-06-11 Sealed nickel-zinc battery Expired - Fee Related JP3118716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03167554A JP3118716B2 (en) 1991-06-11 1991-06-11 Sealed nickel-zinc battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03167554A JP3118716B2 (en) 1991-06-11 1991-06-11 Sealed nickel-zinc battery

Publications (2)

Publication Number Publication Date
JPH04366553A JPH04366553A (en) 1992-12-18
JP3118716B2 true JP3118716B2 (en) 2000-12-18

Family

ID=15851879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03167554A Expired - Fee Related JP3118716B2 (en) 1991-06-11 1991-06-11 Sealed nickel-zinc battery

Country Status (1)

Country Link
JP (1) JP3118716B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253954C (en) * 1995-09-28 2006-04-26 株式会社汤浅 Hydrogen storage electrode, nickel electrode and alkaline storage battery
US6492062B1 (en) 2000-08-04 2002-12-10 The Gillette Company Primary alkaline battery including nickel oxyhydroxide
US6740451B2 (en) 2001-12-20 2004-05-25 The Gillette Company Gold additive for a cathode including nickel oxyhydroxide for an alkaline battery
US7081319B2 (en) 2002-03-04 2006-07-25 The Gillette Company Preparation of nickel oxyhydroxide

Also Published As

Publication number Publication date
JPH04366553A (en) 1992-12-18

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JP3097347B2 (en) Nickel-metal hydride battery
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP2001143745A (en) Nickel hydrogen storage battery
US20050019657A1 (en) Nickel-hydrogen cell
JP3118716B2 (en) Sealed nickel-zinc battery
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JPH11162468A (en) Alkaline secondary battery
US6924062B2 (en) Nickel-metal hydride storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
US6926998B2 (en) Nickel-metal hydride storage battery
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2926732B2 (en) Alkaline secondary battery
JPH05159779A (en) Nickel hydroxide electrode and alkaline secondary battery with this electrode serving as positive pole
JP2923946B2 (en) Sealed alkaline secondary battery and method of manufacturing the same
JP2926288B2 (en) Nickel-cadmium battery
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2000030702A (en) Nickel-hydrogen secondary battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH0963635A (en) Alkaline secondary battery
JP3573885B2 (en) Method for producing nickel hydroxide active material for alkaline storage battery and alkaline storage battery
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3412162B2 (en) Alkaline storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees