JPS6235408B2 - - Google Patents

Info

Publication number
JPS6235408B2
JPS6235408B2 JP54166851A JP16685179A JPS6235408B2 JP S6235408 B2 JPS6235408 B2 JP S6235408B2 JP 54166851 A JP54166851 A JP 54166851A JP 16685179 A JP16685179 A JP 16685179A JP S6235408 B2 JPS6235408 B2 JP S6235408B2
Authority
JP
Japan
Prior art keywords
fiber
molding
pps
carbon fibers
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54166851A
Other languages
Japanese (ja)
Other versions
JPS5690837A (en
Inventor
Kuniaki Tobukuro
Takeji Nakae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP16685179A priority Critical patent/JPS5690837A/en
Publication of JPS5690837A publication Critical patent/JPS5690837A/en
Publication of JPS6235408B2 publication Critical patent/JPS6235408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は成形性、取扱い性にすぐれ、炭素繊維
による補強効果が大きい炭素繊維強化ポリフエニ
レンサルフアイド系樹脂複合材料(以下PPS―
CFRPという)の成形用繊維コンパウンドに関す
る。 従来、炭素繊維強化プラスチツク(以下CFRP
という)は、卓越した比強度、比弾性率等の機械
的特性により、各種の構造部材に広く使用されて
いる。このCFRPはその構成成分であるマトリツ
クス樹脂の物性、性能に無関係ではなく、たとえ
ばエポキシ樹脂をマトリツクスとするCFRPは炭
素繊維とマトリツクスとの接着性には優れている
が耐薬品性、耐熱性、耐炎性などは不十分であ
り、機械部品のような構造部材としては実用上必
ずしも満足されていない。また、これらの物性が
エポキシ樹脂よりも良好であるポリイミド樹脂は
価格が高く、しかも成形性が悪いという基本的な
欠陥があるのでCFRPのマトリツクスとしては実
用性に乏しい。一方、耐熱性、耐薬品性、耐炎性
に加えて熱可塑性で炭素繊維に対する接着性の良
好なポリフエニレンサルフアイド系樹脂(以下
PPSという)が知られているがこの樹脂は伸びが
小さく、耐衝撃性が低いためにマトリツクス樹脂
としては実用上問題があると云われている。すな
わち、通常炭素繊維等の補強用繊維からなるチヨ
ツプドフアイバーはマトリツクス樹脂と混練さ
れ、次いでエクストルーダーを通して押出しペレ
ツト化し、該ペレツトが複合材料の成形用素材と
して用いられるのであるが、PPSをマトリツクス
とするペレツトはコンポジツド物性、特に耐衝撃
性にすぐれた複合材料(このようなペレツトから
得られる複合材料を一般にCFRTPという)を与
えないのである。また、CFRPにおいては補強繊
維の繊維長が大きいほどCFRP成形品の強度も向
上するがPPSのような熱可塑性樹脂にくらべて粘
度が高く、繊維に対する含浸性に乏しいため、マ
トリツクスが均一に含浸されたコンポジツト物性
の良好な成形品は得難いのが普通である。そこで
このような熱可塑性樹脂をマトリツクスとする場
合には補強繊維の繊維長が1/4インチ以下のでき
るだけ短いものを用い、エクストルーダーでマト
リツクスと混練するが、炭素繊維のように剛直で
脆い繊維は混練時に切断し、得られるペレツト、
特に最終成形品のCFRTPにおける炭素繊維の補
強効果は著しく低下する。 本発明の目的は上記PPSをマトリツクス樹脂と
するCFRP用成形原料、特にPPSの優れた物性、
性能を反映し、かつ繊維長が可及的に長い炭素繊
維が均一に分布し、優れたコンポジツト物性を有
するCFRP成形用素材を提供するにある。 さらに他の目的は炭素繊維の切断が少なく、当
初のカツト長を実質的に保持した炭素繊維からな
り、成形性のみならず炭素繊維とマトリツクス樹
脂(PPS)との親和性、濡れ性のよい成形用繊維
コンパウンドを提供するにある。 このような本発明の目的は前記特許請求の範囲
に記載したように約1/4〜4インチの長さを有す
る複数本の炭素繊維をバインダーとしてPPSおよ
びポリスルホンの少なくとも1種を用いて束状に
集束した繊維コンパウンドにより基本的に達成す
ることができる。 本発明の繊維コンパウンドは繊維長が可及的に
長い、すなわち約1/4〜4インチ、好ましくは1/3
〜3インチの炭素繊維を用いる点に特長があり、
繊維長が1/4インチより短いと従来のPPS―
CFRPにくらべてコンポジツト物性の十分な向上
が期待できないし、一方4インチよりも長くなる
と成形性、特に射出およびトランスフア成形時の
成形性が低下するので好ましくない。 本発明は上記繊維長の炭素繊維を複数本、PPS
およびポリスルホンの少なくとも1種を用いて繊
維を相互に接合し束状に集合した点に大きな特徴
がある。すなわち、該炭素繊維を束状に集束する
PPSおよび/又はポリスルホンは最終製品の
CFRPのマトリツクスの一部を形成するが、
CFRPそのもののマトリツクスとしては量的に著
しく少なく、複数本の炭素繊維を相互に束状に集
束する程度、すなわち通常は繊維重量当り約5〜
35重量%好ましくは10〜30%、さらに好ましくは
10〜20%の範囲量である。 このような繊維コンパウンドはさらに前記バイ
ンダーを用いてシート状、フレーク状、ブロツク
状に結合したものでもよく、特に粉末状乃至粒状
のPPSマトリツクスを配合することにより、この
マトリツクス配合物をそのまま成形して一挙に複
合材料にすることができる。 前記繊維コンパウンドをさらにバインダーを用
いて相互に接合する際には、別に炭素繊維、ガラ
ス繊維、ボロン繊維あるいは公知のポリエステ
ル、ポリアミド等の汎用繊維からなるカツトフア
イバーを混入して一緒に接合し、シート状、フレ
ーク状、ブロツク状にしてもよい。しかしこの場
合には本発明の繊維コンパウンドが重量比で少な
くとも20重量%、好ましくは30重量%以上配合さ
れていないと、得られる複合材料のコンポジツト
特性の向上を十分に期待できない。 また、ポリスルホンをバインダーとして用いる
ときには炭素繊維をポリスルホンで結合して束状
に集束すると同時に粉末状乃至粒状のPPSと該集
束された繊維コンパウンドとをポリスルホンで結
合したものは成形性、コンポジツト物性に格段に
すぐれている。 ここで約1/4〜4インチの長さを有する炭素繊
維の集束本数としては通常1000本以上、好ましく
は1000〜150000本、特に好ましくは3000〜120000
本の範囲にするのがよい。すなわち、炭素繊維の
集束本数が余りに少ないと束状成形用コンパウン
ドの成形コストが高くなり、一方集束本数が余り
多いと成形性の低下、物性低下が大きくなり好ま
しくない。 本発明の繊維コンパウンドの製造法としては、
前述した混練のように炭素繊維を切断する方法で
はなく、所定の繊維長に保つて炭素繊維を相互に
束状に集束することができる方法であればよい。 このような製法としては、たとえば、集束した
炭素繊維の連続糸条を少なくとも300℃、好まし
くは320℃以上に加熱溶融したPPSの融液中に浸
漬したのち、所定繊維長にカツトする方法、炭素
繊維束にPPSの粉末を散布、混合し、300℃以上
に加熱してPPSを融解させ、繊維束を束状に結合
する方法、炭素繊維束をポリスルホンを溶解、又
は分散させた溶液中に浸漬するかあるいは該溶液
又は分散液をスプレーなどで散布したのち乾燥し
て束状に集束し、次いでカツトする方法などがあ
る。 さらにこれらの繊維コンパウンドからなる集合
体は該繊維コンパウンドを単独又は他の補強繊維
と共に一定の厚さに集積した後、バインダーを散
布して結合することにより得られる。さらにこれ
らの繊維コンパウンドにPPSの粉末乃至粒状物を
配合したものは、前記バインダーで束状に結合し
た繊維コンパウンドに粉末又は粒状のPPSを混入
したり、さらに前述のようにバインダー液を散布
して結合させてもよい。 かくして得られる本発明のPPS―CFRP用繊維
コンパウンドは次のような特長を有する。 (1) 圧縮、射出およびトランスフアなど各種成形
法によつてCFRP成形品とすることができ、し
かもこれら成形手段が相違してもCFRPのコン
ポジツト物性がいずれもすぐれている。 (2) CFRP中の炭素繊維の繊維長が長く、しかも
混練を行なつていないので混練によつて切断し
た短繊維が実質的に含まれておらず、相対的に
繊維長分布が均一であるからコンポジツト物
性、特に耐衝撃性の優れたPSS―CFRPが得ら
れる。 (3) 成形時に繊維コンパウンドに配合するPPSの
量、炭素繊維、ボロン繊維、ガラス繊維又は有
機繊維などの種類、量をCFRPの用途、要求特
性に応じて変更、最適化することができ、多品
種、多性能のPPS―CFRPを得ることができ
る。 なお、本発明に用いられるバインダーのPPSお
よびポリスルホンとしては米国フイリツプス・ペ
トロリアムズ社製“ライトン”(一般式
The present invention is a carbon fiber-reinforced polyphenylene sulfide resin composite material (hereinafter referred to as PPS-
Regarding fiber compounds for molding CFRP). Conventionally, carbon fiber reinforced plastic (hereinafter referred to as CFRP)
) is widely used in various structural members due to its excellent mechanical properties such as specific strength and specific modulus. This CFRP is not unrelated to the physical properties and performance of its component matrix resin; for example, CFRP with an epoxy resin matrix has excellent adhesion between carbon fibers and the matrix, but has poor chemical resistance, heat resistance, and flame resistance. Its properties are insufficient, and it is not necessarily satisfied in practical use as a structural member such as a mechanical part. Furthermore, polyimide resins, which have better physical properties than epoxy resins, are expensive and have a basic defect of poor moldability, making them impractical as CFRP matrices. On the other hand, in addition to heat resistance, chemical resistance, and flame resistance, polyphenylene sulfide resin (hereinafter referred to as
PPS) is known, but this resin has low elongation and low impact resistance, so it is said to have practical problems as a matrix resin. That is, chopped fibers made of reinforcing fibers such as carbon fibers are usually kneaded with matrix resin, then extruded through an extruder to form pellets, and the pellets are used as a material for molding composite materials. Pellets used as a matrix do not provide composite materials with excellent composite physical properties, especially impact resistance (composite materials obtained from such pellets are generally referred to as CFRTP). In addition, in CFRP, the strength of the CFRP molded product improves as the fiber length of the reinforcing fibers increases, but compared to thermoplastic resins such as PPS, the viscosity is higher and the impregnability of the fibers is poor, so the matrix cannot be uniformly impregnated. It is usually difficult to obtain molded products with good composite physical properties. Therefore, when such a thermoplastic resin is used as a matrix, reinforcing fibers with a fiber length as short as possible, 1/4 inch or less, are used and kneaded with the matrix in an extruder. is cut during kneading, resulting in pellets,
In particular, the reinforcing effect of carbon fiber in the CFRTP of the final molded product is significantly reduced. The purpose of the present invention is to provide a molding raw material for CFRP using the above-mentioned PPS as a matrix resin, in particular to improve the excellent physical properties of PPS.
It is an object of the present invention to provide a CFRP molding material that reflects performance, has carbon fibers as long as possible, is uniformly distributed, and has excellent composite physical properties. Another purpose is to reduce cutting of carbon fibers, to make carbon fibers that substantially retain their original cut length, and to have good moldability as well as good affinity and wettability between carbon fibers and matrix resin (PPS). To provide textile compounds for The object of the present invention is to form a bundle of carbon fibers having a length of approximately 1/4 to 4 inches using at least one of PPS and polysulfone as a binder, as described in the claims. This can basically be achieved by a fiber compound focused on The fiber compounds of the present invention have fiber lengths as long as possible, i.e., about 1/4 to 4 inches, preferably 1/3
It is characterized by the use of ~3 inch carbon fiber,
Conventional PPS when the fiber length is shorter than 1/4 inch
A sufficient improvement in the physical properties of the composite cannot be expected compared to CFRP, and on the other hand, if the length is longer than 4 inches, the moldability, especially during injection and transfer molding, will deteriorate, which is undesirable. The present invention uses a plurality of carbon fibers having the above fiber length, PPS
A major feature is that the fibers are bonded to each other and assembled into a bundle using at least one of polysulfone and polysulfone. That is, the carbon fibers are collected into a bundle.
PPS and/or polysulfone are
Forms part of the CFRP matrix, but
As for the matrix of CFRP itself, it is extremely small in quantity, and the amount is limited to the extent that multiple carbon fibers are bundled together, that is, usually about 5 to 5 carbon fibers per fiber weight.
35% by weight, preferably 10-30%, more preferably
Amounts range from 10 to 20%. Such a fiber compound may be further bound into a sheet, flake, or block shape using the binder. In particular, by blending a powdery or granular PPS matrix, this matrix mixture can be molded as it is. It can be made into composite materials all at once. When the fiber compounds are further bonded to each other using a binder, cut fibers made of carbon fibers, glass fibers, boron fibers, or known general-purpose fibers such as polyester and polyamide are mixed and bonded together to form a sheet. It may be shaped into flakes, flakes, or blocks. However, in this case, unless the fiber compound of the present invention is blended in an amount of at least 20% by weight, preferably 30% by weight or more, the composite properties of the resulting composite material cannot be expected to be sufficiently improved. In addition, when polysulfone is used as a binder, carbon fibers are bonded with polysulfone and converged into bundles, and at the same time, powdered or granular PPS and the condensed fiber compound are bonded with polysulfone, which significantly improves moldability and physical properties of the composite. Excellent. Here, the number of carbon fibers having a length of about 1/4 to 4 inches is usually 1,000 or more, preferably 1,000 to 150,000, particularly preferably 3,000 to 120,000.
It is better to keep it within the scope of a book. That is, if the number of bundled carbon fibers is too small, the molding cost of the bundle-forming compound will increase, while if the number of bundled carbon fibers is too large, the moldability and physical properties will deteriorate significantly, which is not preferable. The method for producing the fiber compound of the present invention includes:
Instead of a method of cutting the carbon fibers like the above-mentioned kneading, any method that can keep the fiber length at a predetermined value and gather the carbon fibers together into a bundle may be used. Examples of such manufacturing methods include, for example, a method in which a continuous yarn of bundled carbon fibers is immersed in a PPS melt heated to at least 300°C, preferably 320°C or higher, and then cut into a predetermined fiber length; A method of sprinkling and mixing PPS powder on fiber bundles and heating them to over 300℃ to melt the PPS and bonding the fiber bundles into a bundle. Carbon fiber bundles are immersed in a solution in which polysulfone is dissolved or dispersed. Alternatively, the solution or dispersion may be sprayed, dried, bundled, and then cut. Further, an aggregate made of these fiber compounds can be obtained by accumulating the fiber compounds alone or together with other reinforcing fibers to a certain thickness, and then sprinkling and bonding the fiber compounds with a binder. Furthermore, these fiber compounds can be mixed with powder or granular PPS by mixing powder or granular PPS into the fiber compound bound into bundles with the binder, or by sprinkling a binder liquid as described above. They may be combined. The thus obtained fiber compound for PPS-CFRP of the present invention has the following features. (1) CFRP molded products can be made by various molding methods such as compression, injection, and transfer, and even if these molding methods are different, the physical properties of the CFRP composite are excellent. (2) The carbon fibers in CFRP have a long fiber length, and since no kneading is performed, there are virtually no short fibers cut during kneading, and the fiber length distribution is relatively uniform. PSS-CFRP with excellent composite physical properties, especially impact resistance, can be obtained. (3) The amount of PPS added to the fiber compound during molding, the type and amount of carbon fiber, boron fiber, glass fiber, or organic fiber, etc. can be changed and optimized depending on the application and required characteristics of CFRP. It is possible to obtain PPS-CFRP of various types and various performances. The binder PPS and polysulfone used in the present invention are "Ryton" (general formula:

【式】)米国ユニオンカーバイド社製 “ポリスルホン”(一般式 )、米国カーボランダム社製“ポリアリールスル
ホン”(一般式 )、英国インペリアル・ケミカル・インダストリ
ーズ社製“ポリエーテルスルホン”(一般式
[Formula]) “Polysulfone” manufactured by Union Carbide Company (General formula) ), "Polyarylsulfone" manufactured by Carborundum, USA (general formula ), "Polyethersulfone" manufactured by British Imperial Chemical Industries (general formula

【式】)などがある。 以下、実施例により本発明をさらに具体的に説
明する。 実施例 1 ポリアクリルニトリル繊維を焼成して表面処理
して得た炭素繊維“トレカ”T―300,6K糸を10
本合糸した糸を、350℃に加熱された米国フイリ
ツプス・ペトロリアムズ社製ポリフエニレンサル
フアイド“ライトン”V―1の融液中を通して前
記炭素繊維にポリフエニレンサルフアイドを含浸
させた。次に得られたポリフエニレンサルフアイ
ド含浸炭素繊維を、長さ1/16インチから8インチ
の間で任意の長さに切断し、長さの異なる炭素繊
維の束状成形用繊維コンパウンドを得た。なお、
成形用コンパウンドの含有量は炭素繊維の重量当
り20重量%になるように、ポリフエニレンサルフ
アイドの含浸量を調節した。 そこで得られた成形用基材コンパウンドとポリ
フエニレンサルフアイドを繊維の長さ方向がラン
ダムに配向するように平板状の金型に入れ、340
℃でプレス成形して平板状の成形品を作成した。
得られた成形品の曲げ強度とアイゾツト衝撃値
(ノツチ付)を測定した。得られた結果を図1に
まとめた。この結果、繊維長が1/4インチより短
かくなると曲げ強度・衝撃値とも著しく低下し、
高物性のコンポジツトが得られないことがわかつ
た。なお、成形品中の炭素繊維の含有量は50重量
%に調整した。 実施例 2 実施例1で得られた繊維長の異なる束状成形用
コンポジツトとPPS粉末を混合してトランスフア
ー成形並びに射出成形を行なつた。繊維長2イン
チ以下の成形用コンパウンドについては何ら問題
なく成形出来た。4インチ長のものについては射
出成形ではスクリユウへの喰込みに多少問題があ
つたものの、トランスフアー成形では何ら問題は
認められなかつた。しかし、長さ6インチ以上の
ものについてはトランスフアー成形の場合でも繊
維の流動性が著しく悪く満足に成形出来なかつ
た。 実施例 3 “トレカ”T―300 6K糸を長さ1インチに切
断し、厚さが6〜8mmになるようにランダムに配
列させて積重ねた上にPPSとして、“ライトン”
V―1の粉末を均一に散布した。次いで340℃に
加熱してポリフエニレンサルフアイドを溶融させ
た後1Kg/cm2の圧力で加圧して厚さ2〜3mmの成
形用コンパウンドを作成した。なおポリフエニレ
ンサルフアイドの添加量は、成形用コンパウンド
中のWfが50wt%〜95wt%になるように調節して
fの異なる成形用コンパウンドを作成した。 次に各基材のハンドリング性をチエツクしたと
ころ、いずれもハンドリング性は良好であつた。
そこで、束状成形用コンパウンドにPPS粉末添加
してトランスフアー成形により平板状の成形品を
成形した。なお添加したPPS粉末は、最終成形品
中のWfが50%になるように調整した。成形性は
いずれも良好で、得られた成形品の物性も曲げ強
度39〜42Kg/mm2、衝撃値31〜34Kg・cm/cmで、束
状成形用コンパウンド中のPPSの量に関係なくほ
ぼ一定のものが得られた。 実施例 4 実施例1で得られた繊維長2インチの束状成形
用コンパウンド100gとポリフエニレンサルフア
イド粉末40gを均一に混合した後、米国ユニオン
カーバイド社製“ポリスルホン”の塩化メチレン
溶液をスプレーした後加熱乾燥して束状成形用コ
ンパウンドとポリフエニレンサルフアイド粉末が
ポリスルホンで結合された成形用コンパウンドを
得た。なお成形用コンパウンド中のポリスルホン
の比率が12.5重量%になるように調整した。 次に得られた成形用コンパウンドを圧縮成形し
て平板状の成形品を作成し、物性を評価したとこ
ろ、曲げ強度40.8Kg/mm2、アイゾツト衝撃値(ノ
ツチ付)32.6Kg・cm/cmで、良好な成形品が得ら
れた。
[Formula]) etc. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 10 pieces of carbon fiber “Torayka” T-300, 6K yarn obtained by firing and surface treating polyacrylonitrile fiber
The spun yarn was passed through a melt of polyphenylene sulfide "Ryton" V-1 manufactured by Philips Petroleum Corporation of the United States heated to 350° C. to impregnate the carbon fiber with polyphenylene sulfide. Next, the obtained polyphenylene sulfide-impregnated carbon fibers were cut into arbitrary lengths between 1/16 inch and 8 inches to obtain a fiber compound for forming bundles of carbon fibers of different lengths. Ta. In addition,
The amount of polyphenylene sulfide impregnated was adjusted so that the content of the molding compound was 20% by weight based on the weight of the carbon fibers. The molding base compound and polyphenylene sulfide thus obtained were put into a flat mold so that the length direction of the fibers was randomly oriented.
A plate-shaped molded product was produced by press molding at ℃.
The bending strength and Izot impact value (with notches) of the obtained molded product were measured. The results obtained are summarized in Figure 1. As a result, when the fiber length becomes shorter than 1/4 inch, both bending strength and impact value decrease significantly.
It was found that a composite with high physical properties could not be obtained. Note that the content of carbon fiber in the molded product was adjusted to 50% by weight. Example 2 The composite for forming bundles having different fiber lengths obtained in Example 1 and PPS powder were mixed and subjected to transfer molding and injection molding. Molding compounds with fiber lengths of 2 inches or less could be molded without any problems. Regarding the 4-inch length, there was some problem with biting into the screw in injection molding, but no problem was observed in transfer molding. However, in the case of fibers with a length of 6 inches or more, the fluidity of the fibers was extremely poor even in the case of transfer molding, and the molding could not be performed satisfactorily. Example 3 "Trading Card" T-300 6K thread was cut into 1-inch lengths, randomly arranged and stacked to a thickness of 6 to 8 mm, and then "Ryton" was made into PPS.
The powder of V-1 was uniformly spread. Next, the polyphenylene sulfide was melted by heating to 340° C. and then pressed at a pressure of 1 kg/cm 2 to prepare a molding compound with a thickness of 2 to 3 mm. The amount of polyphenylene sulfide added was adjusted so that W f in the molding compound ranged from 50 wt% to 95 wt% to prepare molding compounds with different W f values. Next, the handling properties of each base material were checked, and all were found to have good handling properties.
Therefore, PPS powder was added to the bundle molding compound and a flat plate-shaped product was molded by transfer molding. The added PPS powder was adjusted so that W f in the final molded product was 50%. The moldability was good in all cases, and the physical properties of the obtained molded products were 39 to 42 Kg/mm 2 in bending strength and 31 to 34 Kg cm/cm in impact value, almost regardless of the amount of PPS in the bundle molding compound. I got something certain. Example 4 After uniformly mixing 100 g of the compound for forming bundles with a fiber length of 2 inches obtained in Example 1 and 40 g of polyphenylene sulfide powder, a methylene chloride solution of "Polysulfone" manufactured by Union Carbide Company, USA was sprayed. After that, the mixture was heated and dried to obtain a molding compound in which the bundled molding compound and the polyphenylene sulfide powder were combined with polysulfone. The proportion of polysulfone in the molding compound was adjusted to 12.5% by weight. Next, the obtained molding compound was compression molded to create a flat plate-shaped molded product, and the physical properties were evaluated.The bending strength was 40.8Kg/mm 2 and the Izot impact value (with notches) was 32.6Kg・cm/cm. A good molded product was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明の成形用繊維強化樹脂基材中の炭
素繊維の繊維長と成形品のコンポジツト物性との
関係を示すグラフ、図2は同じく成形用基材中の
炭素繊維の含有量と成形品の衝撃値の関係を示し
たグラフである。
Figure 1 is a graph showing the relationship between the fiber length of carbon fibers in the fiber-reinforced resin base material for molding of the present invention and the composite physical properties of the molded product, and Figure 2 is a graph showing the relationship between the carbon fiber content in the base material for molding and molding. It is a graph showing the relationship between the impact values of products.

Claims (1)

【特許請求の範囲】[Claims] 1 長さが1/4〜4インチ複数本の炭素繊維が、
ポリスルホン系重合体およびポリフエニレンサル
フアイド系重合体から選ばれた少なくとも1種の
バインダーで束状に集束されてなる炭素繊維集束
体と、粉状乃至粒状のポリフエニレンサルフアイ
ド系樹脂を必須成分とするポリフエニレンサルフ
アイド系樹脂複合材料用コンパウンド。
1 Multiple carbon fibers with a length of 1/4 to 4 inches,
Requires a carbon fiber bundle formed into a bundle with at least one binder selected from a polysulfone polymer and a polyphenylene sulfide polymer, and a powdered or granular polyphenylene sulfide resin. Compound for polyphenylene sulfide resin composite materials.
JP16685179A 1979-12-24 1979-12-24 Fiber compound for molding of carbon fiber-reinforced polyphenylene sulfide resin composite material Granted JPS5690837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16685179A JPS5690837A (en) 1979-12-24 1979-12-24 Fiber compound for molding of carbon fiber-reinforced polyphenylene sulfide resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16685179A JPS5690837A (en) 1979-12-24 1979-12-24 Fiber compound for molding of carbon fiber-reinforced polyphenylene sulfide resin composite material

Publications (2)

Publication Number Publication Date
JPS5690837A JPS5690837A (en) 1981-07-23
JPS6235408B2 true JPS6235408B2 (en) 1987-08-01

Family

ID=15838819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16685179A Granted JPS5690837A (en) 1979-12-24 1979-12-24 Fiber compound for molding of carbon fiber-reinforced polyphenylene sulfide resin composite material

Country Status (1)

Country Link
JP (1) JPS5690837A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489129A (en) * 1982-07-22 1984-12-18 Phillips Petroleum Company Polymer-coated reinforcements
JPS60202154A (en) * 1984-03-27 1985-10-12 Asahi Chem Ind Co Ltd Injection-molded thermoplastic resin product
WO1989005373A1 (en) * 1987-11-30 1989-06-15 Mitsui Toatsu Chemicals, Incorporated Resin-coated carbon fibers, heat-resistant resin composition using same, and parts for internal combustion engines
US5223556A (en) * 1989-04-12 1993-06-29 Mitsui Toatsu Chemicals, Incorporated Aromatic polyetherketone resin compositions containing polyetherimide, polysulfone-coated carbon fibers and mechanical component formed therefrom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210907A (en) * 1975-05-30 1977-01-27 Creusot Loire Centrifugal impellers and production method thereof
US4080735A (en) * 1976-10-14 1978-03-28 Phillips Fibers Corporation Scraper blade
JPS5398356A (en) * 1977-02-10 1978-08-28 Asahi Glass Co Ltd Polyphenylene sulfide resin molding material and its production
JPS53106752A (en) * 1977-03-02 1978-09-18 Toho Rayon Co Ltd Reinforcing material and its composition for molding product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210907A (en) * 1975-05-30 1977-01-27 Creusot Loire Centrifugal impellers and production method thereof
US4080735A (en) * 1976-10-14 1978-03-28 Phillips Fibers Corporation Scraper blade
JPS5398356A (en) * 1977-02-10 1978-08-28 Asahi Glass Co Ltd Polyphenylene sulfide resin molding material and its production
JPS53106752A (en) * 1977-03-02 1978-09-18 Toho Rayon Co Ltd Reinforcing material and its composition for molding product

Also Published As

Publication number Publication date
JPS5690837A (en) 1981-07-23

Similar Documents

Publication Publication Date Title
US2877501A (en) Glass-reinforced thermoplastic injection molding compound and injection-molding process employing it
US5866648A (en) Long fiber-reinforced polymer alloy resin composition
WO2005090451A1 (en) Method for preparing long glass fiber-reinforced composition and fabricated articles therefrom
JPH01272656A (en) Polyoxymethylene resin composition and production thereof
JPS6235408B2 (en)
US5641572A (en) Short carbon fiber bundling mass, process for producing the same and fiber-reinforced thermoplastic resin composition
EP2885350A1 (en) High impact long fiber reinforced polyamide compositions
JPH0526642B2 (en)
JP4370652B2 (en) Sizing agent and chopped carbon fiber treated with the sizing agent
KR101952621B1 (en) Fiber reinforced composite material and method of manufacturing the same
JP2757454B2 (en) Short carbon fiber aggregate and fiber-reinforced thermoplastic resin composition obtained by blending the same
JPS6229460B2 (en)
JPS5861149A (en) Reinforced thermoplastic resin composition
KR102483485B1 (en) Long fiber reinforced thermoplastics and molded article fabricated by the same
JP2611299B2 (en) Functionality imparting agent for resin
KR102563871B1 (en) The high-efficiency reinforced thermoplastics comprised of comprise of milled cellulose fibers
JP2783427B2 (en) Carbon fiber / thermoplastic compound
JP2512028B2 (en) Carbon short fiber aggregate and fiber reinforced thermoplastic resin composition using the same
JP6259760B2 (en) Thermoplastic resin molded product manufacturing method and thermoplastic resin molded product
JPH0860550A (en) Mesophase pitch-based carbon fiber chopped strand
JPH0311306B2 (en)
JPH022990B2 (en)
EP3601654B1 (en) Manufacture of composite dispersion based resin-infused random fiber mat
JPH04153007A (en) Carbon fiber reinforced thermoplastic resin composition
JPH0326726A (en) Carbon short fiber aggregate and fiber-reinforced thermoplastic resin composition using same