JPH0311306B2 - - Google Patents

Info

Publication number
JPH0311306B2
JPH0311306B2 JP59272035A JP27203584A JPH0311306B2 JP H0311306 B2 JPH0311306 B2 JP H0311306B2 JP 59272035 A JP59272035 A JP 59272035A JP 27203584 A JP27203584 A JP 27203584A JP H0311306 B2 JPH0311306 B2 JP H0311306B2
Authority
JP
Japan
Prior art keywords
strength
silane coupling
coupling agent
glass fibers
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59272035A
Other languages
Japanese (ja)
Other versions
JPS61151261A (en
Inventor
Tamotsu Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP27203584A priority Critical patent/JPS61151261A/en
Publication of JPS61151261A publication Critical patent/JPS61151261A/en
Publication of JPH0311306B2 publication Critical patent/JPH0311306B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、機械的特性に極めてすぐれ、成形性
が良好なフエノール樹脂成形材料の製造方法に関
するものである。 〔従来技術〕 一般にフエノール樹脂成形材料には充填剤とし
て、木粉パルプ等の有機物・炭酸カルシウム・マ
イカ・クレー・アスベスト・ガラス繊維等の無機
物を単独あるいは併用して使用されている。最
近、自動車に用いられている各種金属部品の軽量
化、一体化を図るため、プラスチツクスへの切替
検討がなされており、特に、機械的強度、耐熱
性、寸法安定性を要求される部品に対しては、主
にガラス繊維をベースにしたフエノール樹脂成形
材料が用いられてきた。 しかしながら、部品によつては、熱時強度や耐
衝撃強度等の点で問題があつた為、適用機種の拡
大が図れなかつた。 ガラス繊維にレジンをヘンシエルミキサー、ス
ーパーミキサー等により、含浸させてなるガラス
チツプ材が市販されているが、この材料は衝撃強
度は強いが静的強度(曲げ強さ・引張強さ・圧縮
強さ)が弱く、又、耐熱性に問題があるものであ
る。又、熱ロール等で製造したガラス繊維ベース
の材料は、逆に耐熱性は良いが、衝撃強度が弱く
かつ静的強度も不十分で一部の部品にのみしか適
用できないものであつた。 〔発明の目的〕 本発明はかかる欠点を解消すべく、換言すると
耐熱性、衝撃強度、静的強度、成形性にすぐれた
材料を得んがため、鋭意研究を重ねた結果、予め
シランカツプリング剤で処理された市販のガラス
繊維に、更にシランカツプリング剤を添加後加熱
処理したガラス繊維を用いる事により樹脂との密
着力が飛躍的に向上する事を見出し、更に該ガラ
ス繊維とフエノールレジン・無機粉末充填剤・硬
化剤・顔料等との混合物を低剪断の混練機により
混練する事により、機械強度に極めてすぐれ、成
形性の良い材料を得る事ができたものである。 〔発明の構成〕 本発明は、シランカツプリング剤により表面処
理されたガラス繊維に対し、更に1〜3重量%の
シランカツプリング剤を添加後、80〜180℃で1
〜5時間加熱処理して得られる該ガラス繊維とフ
エノール樹脂、無機粉末充填材、硬化剤、顔料等
を均一混合後、二軸押出機またはコニーダにより
混練してなることを特徴とするフエノール樹脂成
形材料の製造方法である。 本発明に用いるフエノールレジンは、固形のレ
ジンであれば、レゾールでもノボラツクでも良
い、又この変性したものでも使用する事も可能で
ある。 次にガララス繊維であるが、一般に市販されて
いるチヨツプドストランドであれば、いずれも使
用可能であるが、製造時の作業性、得られた材料
の成形性から、繊維長は1〜6mmのものが好まし
い。 ここで、市販のガラス繊維は、シランカツプリ
ング剤を含む収束剤で処理されたガラスチヨツプ
ドストランドである。シランカツプリング剤の付
着量は通常0.05〜0.1%程度である。 尚、ガラス繊維の配合量は、全量に対し20〜70
重量%が望ましい。20%重量%以下では十分な補
強効果が得られず、又70重量%以上では、材料化
した場合材料のカサバリが大きくなり、成形性が
悪くなる問題がある。 又、ガラス繊維を処理する場合のシランカツプ
リング剤の添加量は、ガラス繊維に対し1〜3重
量%が望ましい。1重量%以下では強度の向上効
果が少なく、3重量%を越えると、逆にレジン/
ガラス繊維間の密着性が低下する傾向にあり十分
な強度が得られない。 シランカツプリング剤で処理したガラス繊維の
加熱乾燥条件は温度は80〜180℃が望ましく、時
間は1〜5時間が適当である。温度が80℃以下で
はガラス繊維表面とレジン、カカツプリング剤間
に於ける脱アルコール反応による結合の速度が遅
い事により十分な密着効果が得られないため、低
い強度のものしか得られないと考えている。 又、180℃以上ではシランカツプリング剤その
ものが分解してしまうため好ましくない。尚、シ
ランカツプリング剤の種類は、アミノシラン系の
ものが適当であり、エポキシシラン、アクリルシ
ラン、ビニルシラン系のものは、樹脂との親和性
が低く、十分な強度が得られない。 無機粉末充填剤はガラス繊維のみで材料化した
場合のカサバリが大きくなる事を防止する為に添
加するもので、量は2〜10重量%である。ここで
用いられる無機粉末は、マイカ、アスベスト、炭
カル等を用いることができる。 材料化の方法は、樹脂、充填材、添加剤等のブ
レンド物を二軸押出機またはコニーダを利用し
て、加熱溶融混練した後、ペレツト化あるいは冷
却後粉砕して材料化する。 上述の如く得た成形材料を通常の成形方法で加
熱加圧し硬化させて得た成形品はすぐれた耐熱
性、静的機械強度、衝撃強度を有するものであ
る。 〔発明の効果〕 本発明方法に従い得られたフエノール樹脂成形
材料は、従来の材料に比べ、機械的強度に極めて
優れており、且つ熱時の強度低下も小さく、また
寸法安定性も良い。従来は、衝撃強度を上げるた
めには補強材として長繊維のガラスを用いヘンシ
エルミキサー、スーパーミキサー等を用いて製造
した材料は静的強度が極めて低く耐熱性が劣る欠
点があつたが、本発明により得られたフエノール
樹脂成形材料は、このような欠点が除かれるた
め、強度的バランスに優れており、信頼性の高い
成形材料である。 〔実施例〕 以下、本発明を実施例にもとづいて説明する。 実施例1,2,3は本法に従い、処理を行なつ
たガラス繊維を配合し、低剪断の混練機によつて
混練したものである。 比較例1は、本法に従い処理を行なつたガラス
繊維を配合し、高剪断の熱ロールによつて混練し
たものである。 また、比較例2は、本法によるガラス繊維の処
理を行なわずに、低剪断混練を行なつたもの、比
較例3は、同、高剪断の混練によるものである。
これらの配合処方及び結果を第1表に示す。 本発明により、ガラス繊維にシランカツプリン
グ剤を添加し、加熱乾燥処理を行ない、二軸押出
機またはコニーダによる低剪断混練により得られ
た材料は機械的強度に極めて優れている事が分
る。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a phenolic resin molding material that has extremely excellent mechanical properties and good moldability. [Prior Art] In general, phenolic resin molding materials contain, as fillers, organic substances such as wood pulp, and inorganic substances such as calcium carbonate, mica, clay, asbestos, and glass fiber, either alone or in combination. Recently, in order to reduce the weight and integrate various metal parts used in automobiles, switching to plastics has been considered, especially for parts that require mechanical strength, heat resistance, and dimensional stability. For this purpose, phenolic resin molding materials mainly based on glass fibers have been used. However, some parts had problems in terms of heat strength, impact resistance, etc., so it was not possible to expand the range of applicable models. Glass chips made by impregnating glass fiber with resin using a Henschel mixer, super mixer, etc. are commercially available, but this material has high impact strength but low static strength (flexural strength, tensile strength, compressive strength). ) is weak, and there are also problems with heat resistance. On the other hand, glass fiber-based materials manufactured using hot rolls or the like have good heat resistance, but have low impact strength and insufficient static strength, and can only be applied to certain parts. [Object of the Invention] In order to eliminate such drawbacks, in other words, the present invention has conducted intensive research in order to obtain a material with excellent heat resistance, impact strength, static strength, and moldability. We discovered that by adding a silane coupling agent to commercially available glass fibers that had been treated with a silane coupling agent and then using heat-treated glass fibers, the adhesion with the resin was dramatically improved.・By kneading a mixture of inorganic powder filler, curing agent, pigment, etc. using a low-shear kneading machine, it was possible to obtain a material with extremely high mechanical strength and good moldability. [Structure of the Invention] The present invention is directed to the addition of 1 to 3% by weight of a silane coupling agent to glass fibers that have been surface-treated with a silane coupling agent, and then heated at 80 to 180°C.
A phenolic resin molding characterized in that the glass fiber obtained by heat treatment for ~5 hours is uniformly mixed with a phenolic resin, an inorganic powder filler, a curing agent, a pigment, etc., and then kneaded using a twin-screw extruder or co-kneader. This is a method of manufacturing the material. The phenol resin used in the present invention may be a resol or a novolac as long as it is a solid resin, and modified versions of these resins may also be used. Next, regarding glass fibers, any commercially available chopped strands can be used, but due to the workability during manufacturing and the moldability of the obtained material, the fiber length should be between 1 and 2. Preferably, the diameter is 6 mm. Here, the commercially available glass fibers are glass chopped strands treated with a sizing agent containing a silane coupling agent. The amount of silane coupling agent deposited is usually about 0.05 to 0.1%. The amount of glass fiber blended is 20 to 70% of the total amount.
% by weight is preferred. If it is less than 20% by weight, a sufficient reinforcing effect cannot be obtained, and if it is more than 70% by weight, there is a problem that when it is made into a material, the bulk of the material becomes large and the moldability becomes poor. Further, when treating glass fibers, the amount of silane coupling agent added is preferably 1 to 3% by weight based on the glass fibers. If it is less than 1% by weight, there is little effect of improving the strength, and if it exceeds 3% by weight, the resin/
Adhesion between glass fibers tends to decrease and sufficient strength cannot be obtained. The heat drying conditions for glass fibers treated with a silane coupling agent are preferably 80 to 180 DEG C. and 1 to 5 hours. We believe that if the temperature is below 80℃, the speed of bonding due to the dealcoholization reaction between the glass fiber surface, resin, and springing agent will be slow, and sufficient adhesion will not be achieved, resulting in only low strength. There is. Further, if the temperature is 180°C or higher, the silane coupling agent itself will decompose, which is not preferable. As for the type of silane coupling agent, aminosilane-based ones are suitable; epoxy silane, acrylic silane, and vinyl silane-based ones have low affinity with resins and cannot provide sufficient strength. The inorganic powder filler is added to prevent the bulk from increasing when the material is made of only glass fiber, and the amount is 2 to 10% by weight. As the inorganic powder used here, mica, asbestos, charcoal, etc. can be used. The material is produced by heating, melting and kneading a blend of resin, filler, additives, etc. using a twin-screw extruder or co-kneader, and then pelletizing or cooling and pulverizing the material. A molded article obtained by heating and pressurizing and curing the molding material obtained as described above by a conventional molding method has excellent heat resistance, static mechanical strength, and impact strength. [Effects of the Invention] The phenolic resin molding material obtained according to the method of the present invention has extremely superior mechanical strength compared to conventional materials, has a small decrease in strength when heated, and has good dimensional stability. Conventionally, to increase impact strength, materials manufactured using long fiber glass as a reinforcing material using Henschel mixers, super mixers, etc. had the disadvantage of extremely low static strength and poor heat resistance. The phenolic resin molding material obtained by the present invention is free of these drawbacks, and therefore has excellent strength balance and is a highly reliable molding material. [Examples] The present invention will be described below based on Examples. In Examples 1, 2, and 3, glass fibers treated according to the present method were blended and kneaded using a low-shear kneader. In Comparative Example 1, glass fibers treated according to the present method were blended and kneaded using high shear hot rolls. Further, in Comparative Example 2, low-shear kneading was performed without processing the glass fibers according to the present method, and in Comparative Example 3, the same high-shear kneading was performed.
These formulations and results are shown in Table 1. According to the present invention, the material obtained by adding a silane coupling agent to glass fibers, subjecting them to heat drying treatment, and kneading them with low shear using a twin-screw extruder or co-kneader is found to have extremely excellent mechanical strength. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 シランカツプリング剤により表面処理を施さ
れたガラス繊維に対して更に1〜3重量%のシラ
ンカツプリング剤を添加後80〜180℃で1〜5時
間加熱処理して得られる該ガラス繊維とフエノー
ル樹脂、無機粉末充填剤、硬化剤、顔料等を混合
後、二軸押出機またはコニーダにより混練する事
を特徴とするフエノール樹脂成形材料の製造方
法。
1 Glass fibers whose surface has been surface-treated with a silane coupling agent are further added with 1 to 3% by weight of a silane coupling agent, and then heat-treated at 80 to 180°C for 1 to 5 hours. A method for producing a phenolic resin molding material, which comprises mixing a phenolic resin, an inorganic powder filler, a curing agent, a pigment, etc., and then kneading the mixture using a twin-screw extruder or a co-kneader.
JP27203584A 1984-12-25 1984-12-25 Production of phenolic resin molding material Granted JPS61151261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27203584A JPS61151261A (en) 1984-12-25 1984-12-25 Production of phenolic resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27203584A JPS61151261A (en) 1984-12-25 1984-12-25 Production of phenolic resin molding material

Publications (2)

Publication Number Publication Date
JPS61151261A JPS61151261A (en) 1986-07-09
JPH0311306B2 true JPH0311306B2 (en) 1991-02-15

Family

ID=17508215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27203584A Granted JPS61151261A (en) 1984-12-25 1984-12-25 Production of phenolic resin molding material

Country Status (1)

Country Link
JP (1) JPS61151261A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122339A (en) * 1987-11-05 1989-05-15 Mitsubishi Electric Corp Commutator for starting motor
JP2887345B2 (en) * 1988-07-07 1999-04-26 三菱瓦斯化学株式会社 Thermoplastic resin composition
KR100441217B1 (en) * 2001-07-11 2004-07-22 한장희 High heat resistance PMC composite using inorganic filler treated with coupling agent and Process for manufacturing the same
JP5561067B2 (en) * 2010-09-28 2014-07-30 住友ベークライト株式会社 Interfacial strengthened glass filler and phenolic resin molding material
CN112778704B (en) * 2021-02-24 2022-12-09 汕头市骏码凯撒有限公司 Epoxy molding compound with efficient continuous heat conducting network and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682840A (en) * 1979-12-08 1981-07-06 Matsushita Electric Works Ltd Phenolic resin molding compound
JPS58109552A (en) * 1981-12-23 1983-06-29 Matsushita Electric Works Ltd Phenolic resin molding material
JPS5945346A (en) * 1982-09-09 1984-03-14 Matsushita Electric Works Ltd Preparation of molding material of phenol resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682840A (en) * 1979-12-08 1981-07-06 Matsushita Electric Works Ltd Phenolic resin molding compound
JPS58109552A (en) * 1981-12-23 1983-06-29 Matsushita Electric Works Ltd Phenolic resin molding material
JPS5945346A (en) * 1982-09-09 1984-03-14 Matsushita Electric Works Ltd Preparation of molding material of phenol resin

Also Published As

Publication number Publication date
JPS61151261A (en) 1986-07-09

Similar Documents

Publication Publication Date Title
EP0319589B1 (en) Thermoplastic composite material reinforced with hemp fibers
JPH0311306B2 (en)
JPH10279777A (en) Flaky phenolic resin molding material containing carbon fiber and its production
JPH039952A (en) Thermoplastic resin composition
JPH0140061B2 (en)
JPS58109552A (en) Phenolic resin molding material
JPH11166101A (en) Manufacture of glass-fiber containing phenolic resin molding material
JP2002321231A (en) Method for manufacturing artificial marble
JPH0611492B2 (en) Method for producing phenolic resin molding material
JPH03167248A (en) Phenol resin molding material
JP3045211B2 (en) Injection molding diallyl phthalate resin molding material
JPS5811543A (en) Phenolic resin molding material
JPH1036631A (en) Granular carbon-fiber-containing phenol resin molding material and molded product thereof
JPS5811544A (en) Phenolic resin molding material
JPH0260959A (en) Polycarbonate resin composition
JPS60101140A (en) Phenolic resin molding material
JPH0349935B2 (en)
JPS63225647A (en) Phenolic resin molding material
JP3718988B2 (en) Resin composition
JPH0257584B2 (en)
JPH04106158A (en) Resin composition
JPH06322232A (en) Phenolic resin molding material
JPH06192435A (en) Phenol resin molding material and its production
JPH0376731A (en) Production of fiber-reinforced foamed resin article
JPH09169029A (en) Phenol resin molding material and production thereof