JPS6234317Y2 - - Google Patents

Info

Publication number
JPS6234317Y2
JPS6234317Y2 JP1980044241U JP4424180U JPS6234317Y2 JP S6234317 Y2 JPS6234317 Y2 JP S6234317Y2 JP 1980044241 U JP1980044241 U JP 1980044241U JP 4424180 U JP4424180 U JP 4424180U JP S6234317 Y2 JPS6234317 Y2 JP S6234317Y2
Authority
JP
Japan
Prior art keywords
pool water
suppression chamber
pressure suppression
water
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980044241U
Other languages
Japanese (ja)
Other versions
JPS56144394U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980044241U priority Critical patent/JPS6234317Y2/ja
Publication of JPS56144394U publication Critical patent/JPS56144394U/ja
Application granted granted Critical
Publication of JPS6234317Y2 publication Critical patent/JPS6234317Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【考案の詳細な説明】 本考案は、圧力抑制室に係り、特に逃し安全弁
作動時に冷却水を積極的に撹拌する事により、冷
却水中に加わる蒸気凝縮荷重を低減するに好適な
圧力抑制室に関するものである。
[Detailed description of the invention] The present invention relates to a pressure suppression chamber, and in particular to a pressure suppression chamber suitable for reducing the steam condensation load applied to cooling water by actively stirring the cooling water when the relief safety valve is activated. It is something.

原子炉格納容器は、第1図に示すように、ドラ
イウエル2と圧力抑制室4とからなつている。原
子炉圧力容器1が、ドライウエル2内に格納され
ている。ドライウエル2からは、ベント管3が圧
力抑制室4内のプール水5中に伸びている。
As shown in FIG. 1, the reactor containment vessel consists of a dry well 2 and a pressure suppression chamber 4. A nuclear reactor pressure vessel 1 is housed within a dry well 2. From the dry well 2, a vent pipe 3 extends into the pool water 5 within the pressure suppression chamber 4.

一方、原子炉圧力容器1からは、主蒸気管6が
伸びており、この主蒸気管6からは主蒸気隔離弁
7の手前で逃し弁8を介して排気管9が設置され
ている。
On the other hand, a main steam pipe 6 extends from the reactor pressure vessel 1, and an exhaust pipe 9 is installed from the main steam pipe 6 via a relief valve 8 before a main steam isolation valve 7.

何らかの原因で主蒸気隔離弁7が閉まり、原子
炉が停止されると、原子炉圧力容器1は完全に隔
離状態となる。このような事態になると、原子炉
圧力容器1内は原子炉の崩壊熱のために圧力が急
上昇するので、逃し弁8が作動して、原子炉圧力
容器1内の蒸気を排気管9を通して圧力抑制室4
内のプール水5中に放出する。
When the main steam isolation valve 7 closes for some reason and the reactor is shut down, the reactor pressure vessel 1 becomes completely isolated. In such a situation, the pressure inside the reactor pressure vessel 1 rises rapidly due to the decay heat of the reactor, so the relief valve 8 is activated and the steam inside the reactor pressure vessel 1 is pumped through the exhaust pipe 9 to reduce the pressure. Suppression room 4
It is released into the pool water 5 inside.

逃し弁8が作動するような事象はいろいろあ
り、各々の事象によつて作動期間も異なるが、事
象によつては断続的に6時間程度にも及ぶ事も考
えられる。
There are various events that cause the relief valve 8 to operate, and the period of operation varies depending on each event, but depending on the event, it is conceivable that the period of operation may extend to about 6 hours intermittently.

以上のような事象に対し、排気管9から放出さ
れる蒸気がプール水5中で凝縮するときに凝縮振
動が発生し、排気管9及びプール水5中の圧力抑
制室4の壁に荷重が作用する。この時、排気管9
の蒸気放出口附近のプール水5の温度が160゜F
(71℃)を越えると、この蒸気凝縮振動は急激に
増加する。
In response to the above phenomenon, condensation vibration occurs when the steam released from the exhaust pipe 9 condenses in the pool water 5, and a load is applied to the exhaust pipe 9 and the wall of the pressure suppression chamber 4 in the pool water 5. act. At this time, exhaust pipe 9
The temperature of the pool water 5 near the steam outlet is 160°F.
(71℃), this vapor condensation oscillation increases rapidly.

一般に、逃し弁8作動時の排気管9放出口附近
は局部的にプール水温が高くなり、対流・拡散に
よつて時間と共に徐々に広がつてゆくが、水深に
よる温度差はなかなか解消されない。
Generally, when the relief valve 8 is activated, the pool water temperature becomes locally high near the outlet of the exhaust pipe 9, and gradually spreads over time due to convection and diffusion, but the temperature difference depending on the water depth is difficult to eliminate.

本考案は、逃し弁作動時のプール水を圧力抑制
室全域にわたつて積極的に撹拌する事により放出
口附近の局部的なプール水温度上昇を回避し、蒸
気凝縮時の振動を低減することを目的とする。
This invention avoids a local pool water temperature rise near the outlet by actively stirring the pool water throughout the pressure suppression chamber when the relief valve is activated, and reduces vibrations during steam condensation. With the goal.

第2図は、本考案の一実施例を示す。本考案
は、プール水5中からプール水5を吸込み、ポン
プ10を介して再びプール水5中に戻す管路11
を有し、特に、放出口12の向きが環状の圧力抑
制室4の円周方向あるいはそれに近い向きとなつ
ており、図中矢印13のようにプール水5全体を
圧力抑制室4の円周方向に回転させる事を特徴と
する。
FIG. 2 shows an embodiment of the present invention. The present invention has a conduit 11 that sucks the pool water 5 from inside the pool water 5 and returns it to the pool water 5 via the pump 10.
In particular, the discharge port 12 is oriented in the circumferential direction of the annular pressure suppression chamber 4 or in a direction close to the circumferential direction, and the entire pool water 5 is directed to the circumference of the pressure suppression chamber 4 as indicated by the arrow 13 in the figure. It is characterized by rotating in the direction.

なお、このとき吸込み口14は放出口13の向
いている方向にあり、その吸込み口14の向きも
放出口12の方向を向いている事が望ましい。
At this time, it is desirable that the suction port 14 is in the direction in which the discharge port 13 faces, and that the suction port 14 is also directed in the direction of the discharge port 12.

逃し弁8が作動し排気管9から蒸気がプール水
5中に放出されると、放出口12附近のプール水
5の温度が局部的に高くなつてゆく。このときポ
ンプ10を作動させるとプール水5は矢印13の
方向圧力抑制室4の円周方向に循環し、放出口1
2周辺のプール水5の温度は局部的に高くなる事
はない。
When the relief valve 8 operates and steam is released into the pool water 5 from the exhaust pipe 9, the temperature of the pool water 5 near the discharge port 12 locally increases. At this time, when the pump 10 is operated, the pool water 5 is circulated in the direction of the arrow 13 in the circumferential direction of the pressure suppression chamber 4, and the discharge port 1
The temperature of the pool water 5 around 2 does not become locally high.

プール水量は逃し弁9が長時間作動しても、全
体の温度が160゜Fを越えないだけ確保されてい
るので、上記のような局部的な温度上昇を回壁す
れば、蒸気凝縮時の振重荷重は大きく低減でき
る。
Even if the relief valve 9 is operated for a long time, the pool water volume is maintained so that the overall temperature does not exceed 160 degrees Fahrenheit. The shaking load can be greatly reduced.

さらに、本系統は、既設の残留熱除去系統等の
ループを利用し、その放出口及び吸込み口の方
向・位置を上記のように設定することによつても
同様の効果が期待できる。
Furthermore, similar effects can be expected in this system by using a loop of an existing residual heat removal system, etc., and setting the direction and position of the discharge port and suction port as described above.

第3図は本考案の他の実施例を示すもので、第
2図の放出口12の部分に相当するところのみを
示した。
FIG. 3 shows another embodiment of the present invention, and only the part corresponding to the outlet 12 in FIG. 2 is shown.

図中には2つのタイプの放出口が示されてい
る。一つは圧力抑制室4の円周方向に直角となる
ようなヘツダ15を設置したもので、このヘツダ
15には穴16が片側にのみあいている。この穴
16から図のように水が吐出されるので、圧力抑
制室4内のプール水5は圧力抑制室4の円周方向
の一方に循環し、温度の拡散が効率的にできる。
Two types of outlets are shown in the figure. One type has a header 15 installed perpendicular to the circumferential direction of the pressure suppression chamber 4, and this header 15 has a hole 16 only on one side. Since water is discharged from this hole 16 as shown in the figure, the pool water 5 in the pressure suppression chamber 4 circulates in one circumferential direction of the pressure suppression chamber 4, and the temperature can be efficiently diffused.

もう一つは、放出口に圧力抑制室4の円周方向
に伸びたヘツダ17を設置し、さらにノズル18
を図のように斜め方向に設置したものである。
The other is to install a header 17 extending in the circumferential direction of the pressure suppression chamber 4 at the discharge port, and further install a nozzle 18.
is installed diagonally as shown in the figure.

これらの他の実施例でも前述の実施例と同様に
大きな効果が期待できる。
These other embodiments can also be expected to have great effects similar to the above-mentioned embodiments.

第4図は、本考案の他の実施例を示すものであ
る。
FIG. 4 shows another embodiment of the present invention.

本実施例では、放出口をノズル19タイプにし
て、さらに大流量のプール水5を駆動できるよう
にジエツトポンプタイプのダクト20を設置した
ものである。
In this embodiment, the discharge port is a nozzle 19 type, and a jet pump type duct 20 is installed so that a large flow of pool water 5 can be driven.

本実施例によつてもプール水5に大きな駆動力
を与える事ができ、前述の実施例と同様に十分な
効果が期待できる。
Also in this embodiment, a large driving force can be applied to the pool water 5, and a sufficient effect can be expected as in the above-mentioned embodiment.

第5図および第6図は、本考案の他の実施例を
示したものである。
FIGS. 5 and 6 show other embodiments of the present invention.

第2図の実施例と異なるのは、圧力抑制室4の
プール水5中に整流板21が同一方向に螺旋状に
設置されている事である。
The difference from the embodiment shown in FIG. 2 is that the current plate 21 is spirally installed in the pool water 5 in the pressure suppression chamber 4 in the same direction.

本実施例によれば、プール水を前記実施例のよ
うに循環させることによつて第6図の矢印22の
ようにプール水5はかき廻わされ、プール水5の
撹拌はより完全に行なわれる。これにより前述の
実施例よりもさらに効率よい効果が期待できる。
According to this embodiment, by circulating the pool water as in the previous embodiment, the pool water 5 is stirred as indicated by the arrow 22 in FIG. 6, and the pool water 5 is more thoroughly stirred. It will be done. As a result, even more efficient effects can be expected than in the above-mentioned embodiments.

第7図も本考案の他の実施例の一つを示したも
のであるが、第5図と違うところは整流板21の
向きが一つおきにたがい違いになつている事であ
る。
FIG. 7 also shows another embodiment of the present invention, but the difference from FIG. 5 is that the direction of every other current plate 21 is different.

本実施例によつても前記の実施例と同様な効果
が期待できる。以上の各実施例によれば、圧力抑
制室4の全域にわたつて、プール水5を循環して
流しつづけ、その流れにより局部昇温プール水を
移動させることで広域にわたつて分散し、プール
水5の昇温防止と温度均一化を圧力抑制室4の全
域にわたつてすみやかに達成する。このことによ
り蒸気凝縮振動の増加を抑制できる。
The same effects as those of the above-mentioned embodiments can be expected from this embodiment as well. According to each of the above embodiments, the pool water 5 is circulated and continues to flow over the entire area of the pressure suppression chamber 4, and by moving the locally heated pool water by the flow, it is dispersed over a wide area and the pool water is To quickly prevent the temperature of water 5 from rising and to equalize the temperature throughout the pressure suppression chamber 4. This makes it possible to suppress an increase in steam condensation vibration.

本考案によれば、逃し弁作動時の排気管及びプ
ール水中壁に加わる蒸気凝縮振動荷重を低減でき
るので、荷重対策としての補強等を特に必要とせ
ず、さらに既設の残留熱除去系統などを駆動力と
して使用すれば、経済的で、安全性の高い原子炉
格納容器を供することができる。
According to the present invention, it is possible to reduce the steam condensation vibration load applied to the exhaust pipe and the underwater pool wall when the relief valve is activated, so there is no need for reinforcement as a countermeasure against the load, and it also drives the existing residual heat removal system. If used as a power source, it is possible to provide an economical and highly safe reactor containment vessel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は沸騰水型原子炉の原子炉格納容器の外
観図、第2図は本考案の好適な一実施例である圧
力抑制室の平面図、第3図、第4図、第5図およ
び第7図は本考案の他の実施例である圧力抑制室
の平面図、第6図は第5図の−断面図であ
る。 1……原子炉圧力容器、2……ドライウエル、
4……圧力抑制室、5……プール水、10……ポ
ンプ、11……管路、12……放出口、14……
吸込み口、21……整流板。
Figure 1 is an external view of the reactor containment vessel of a boiling water reactor, Figure 2 is a plan view of a pressure suppression chamber that is a preferred embodiment of the present invention, Figures 3, 4, and 5. FIG. 7 is a plan view of a pressure suppression chamber according to another embodiment of the present invention, and FIG. 6 is a cross-sectional view taken from FIG. 5. 1...Reactor pressure vessel, 2...Dry well,
4... Pressure suppression chamber, 5... Pool water, 10... Pump, 11... Piping, 12... Outlet, 14...
Suction port, 21... rectifier plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 環状の圧力抑制室内の冷却材中に蒸気を放出す
る排気管を備えた構成において、前記圧力抑制室
内の冷却材中に開口した入口と、前記環状の少な
くとも円周方向への前記冷却材の流れが生じる方
向に開口した前記冷却材中の出口と、前記入口と
前記出口とを連通する流路と、前記流路に備えた
流体駆動力付与手段とから成る圧力抑制室。
A pressure suppression chamber having an inlet opening into the coolant in the pressure suppression chamber, an outlet opening into the coolant in a direction in which the coolant flows in at least the circumferential direction of the annulus, a flow passage connecting the inlet and the outlet, and a fluid driving force imparting means provided in the flow passage.
JP1980044241U 1980-03-31 1980-03-31 Expired JPS6234317Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980044241U JPS6234317Y2 (en) 1980-03-31 1980-03-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980044241U JPS6234317Y2 (en) 1980-03-31 1980-03-31

Publications (2)

Publication Number Publication Date
JPS56144394U JPS56144394U (en) 1981-10-30
JPS6234317Y2 true JPS6234317Y2 (en) 1987-09-01

Family

ID=29639509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980044241U Expired JPS6234317Y2 (en) 1980-03-31 1980-03-31

Country Status (1)

Country Link
JP (1) JPS6234317Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100078A (en) * 1976-02-18 1977-08-22 Toshiba Corp Pressure suppression device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100078A (en) * 1976-02-18 1977-08-22 Toshiba Corp Pressure suppression device

Also Published As

Publication number Publication date
JPS56144394U (en) 1981-10-30

Similar Documents

Publication Publication Date Title
US3371613A (en) Sewage pump or the like
US5169595A (en) Reactor core isolation cooling system
JP2642763B2 (en) Reactor system
US9330796B2 (en) Stable startup system for a nuclear reactor
US5215708A (en) Reactor building assembly and method of operation
JPS6234317Y2 (en)
US3431860A (en) Centrifugal pump of the free surface type
JPS6375594A (en) Natural radiation type container
JPH04157396A (en) Natural cooling type container
JP2899462B2 (en) Recirculation pump system with built-in reactor
JPH0141899B2 (en)
US4078723A (en) Removal of gas from gas/liquid mixtures
JPH0296689A (en) Containment vessel in nuclear reactor
JPS6042436B2 (en) Reactor
JPH0782104B2 (en) Containment vessel
JP2895315B2 (en) Internal pump
JPH0648308B2 (en) Light water cooled reactor
JPH0333695A (en) Containment vessel of nuclear reactor
SU643716A1 (en) Deaeration-feeding plant
JPS5977230A (en) Heat storaging floor panel utilizing solar heat
JPH0692724B2 (en) Reactor isolation cooling system
JPS5816094B2 (en) hot water heating system
JPS5941358Y2 (en) Pump for high temperature liquids
JPS6134042B2 (en)
JPH0354372Y2 (en)