JPS6234282A - Molding process simulation system - Google Patents

Molding process simulation system

Info

Publication number
JPS6234282A
JPS6234282A JP60174857A JP17485785A JPS6234282A JP S6234282 A JPS6234282 A JP S6234282A JP 60174857 A JP60174857 A JP 60174857A JP 17485785 A JP17485785 A JP 17485785A JP S6234282 A JPS6234282 A JP S6234282A
Authority
JP
Japan
Prior art keywords
molding
temperature
time
displacement
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60174857A
Other languages
Japanese (ja)
Other versions
JPH0622840B2 (en
Inventor
Terunori Maruyama
丸山 照法
Shinji Sakata
信二 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60174857A priority Critical patent/JPH0622840B2/en
Publication of JPS6234282A publication Critical patent/JPS6234282A/en
Publication of JPH0622840B2 publication Critical patent/JPH0622840B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3835Designing moulds, e.g. using CAD-CAM
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7693Measuring, controlling or regulating using rheological models of the material in the mould, e.g. finite elements method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Processing Or Creating Images (AREA)

Abstract

PURPOSE:To reduce the period and cost for development and design of plastic molded products by selecting the proper conditions with use of a means to calculate the temperature change of a molding material and a means to calculate thermal stress distortion by means of the temperature change of the molding material. CONSTITUTION:For temperature calculation 3, solidifying temperature estimation calculation 6 and thermal stress distortion calculation 11, a time point when the continuation of the molten phase of the resin in a metallic mold is broken within a metallic mold and the thermal stress distortion is analyzed with the temperature distribution of the resin of various time points defined as the initial temperature and the temperature change of cooling processes during which a molded product is set evenly at a room temperature defined as heat load respexctively. Thus it is possible to calculate molding deformation like sink, warp, molding shrinkage, etc. caused in the molding process. As a result, the structure of the metallic mold and the molding conditions can be evaluated and normalized in a short time and with low cost prior to the production of the metallic mold or molding experiments.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は成形材料に熱可塑性樹脂を用いる成形金型設計
用のCADシステムに係り、特に成形品のひけ、そり、
成形収縮などの成形形状歪を算定して成形材料や金型構
造、成形条件の適・不適を評価するグラスチック成形プ
ロセスシミニレ−シランシステムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a CAD system for designing a molding die using a thermoplastic resin as a molding material.
The present invention relates to a plastic molding process similane system that evaluates the suitability or unsuitability of molding materials, mold structures, and molding conditions by calculating molding shape distortion such as molding shrinkage.

(発明の背景) 成形材料に熱可塑性樹脂を用いろ金型設計用のCADシ
ステムに米国GE社(国内代理店、電通国際情報サービ
ス社)が扱っているモールドフロー(以下MOLD  
FLOWと称する)とエムキイ2プ(以下M CA P
 (Mo1d Cool ing AnalyaisP
rogram )と称する)カする。
(Background of the Invention) Moldflow (hereinafter referred to as MOLD) is a CAD system for mold design that uses thermoplastic resin as a molding material and is handled by GE Corporation (domestic distributor, Dentsu International Information Services, Inc.) in the United States.
FLOW) and MK2P (hereinafter referred to as MCAP
(Mo1d Cooling AnalysisP
program).

MOLD  FLOWは、注入−保圧一冷却一離型の各
段階からなる射出成形過程の注入段階の樹脂流動解析を
行なうもので、流動バランスを達成するためや、成形品
の不都合箇所にウェルドラインが生じるのをさけるため
のランナー、ゲート条件を見い出すのに有用である。ま
た、流動不足やパリ発生をさけるための成形品形状(大
きさ、厚さなど)や成形条件(樹脂温度、金型温度、射
出時間、型締力などンを見い出すのに有用である。
MOLD FLOW performs resin flow analysis during the injection stage of the injection molding process, which consists of each stage of injection, pressure holding, cooling, and mold release.It is used to analyze resin flow at the injection stage of the injection molding process, which consists of each stage of injection, pressure holding, cooling, and mold release. This is useful for finding runner and gate conditions to avoid this occurrence. It is also useful for determining the shape of the molded product (size, thickness, etc.) and molding conditions (resin temperature, mold temperature, injection time, mold clamping force, etc.) to avoid insufficient flow and the occurrence of flash.

MCAPは射出成形過程の冷却段階の熱S動解析を行な
うもので、固定型と可動型の熱流バランスを達成したり
、成形サイクルを短縮するための冷却孔の配置や形状を
見い出したり、金型!度を適正に保つための冷媒温度、
流量を見い出すのに有用である。
MCAP performs thermal and S-dynamic analysis of the cooling stage of the injection molding process, and is used to achieve heat flow balance between fixed and movable molds, find the placement and shape of cooling holes to shorten the molding cycle, and improve mold ! Refrigerant temperature to maintain proper temperature,
Useful for finding flow rate.

しかしながら、MOLD  FL、OWは流動性の評価
を行なうものでしかなく、またM CA P l:c 
3S移動の評価を行なうものでしかないため、成形品の
ひけ、そり、成形収縮など成形形状歪に関する製造条件
の評価を行なうことはほとんどできない。
However, MOLD FL, OW only evaluates fluidity, and M CAP l:c
Since it only evaluates 3S movement, it is almost impossible to evaluate manufacturing conditions related to molded shape distortion such as sink marks, warpage, and molding shrinkage of molded products.

また、射出成形品の変形解析に関する先行技術として、
マイケル・ジャッキース;射出成形平板品のアンバラン
ス冷却によるそり変形解析;プラスチックス・エンジニ
ャリング・サイエンス。
In addition, as a prior art regarding deformation analysis of injection molded products,
Michael Jackies; Analysis of warpage due to unbalanced cooling of injection molded flat plate products; Plastics Engineering Science.

22巻4号、ページ241〜247.1982年3月(
Mtehael ST、Jacquas+”An An
alysis of’l’harmal  Warpa
ge  in  InjectionMolded F
lat Parts Due  to Unbalan
cedCooling ″ +Polymer   E
ngineering    、AndScience
、 March、 Vol  、 22 、 、% 4
゜PP241−247(1982))かある。
Volume 22, Issue 4, Pages 241-247. March 1982 (
Mtehael ST, Jacquas+”An An
lysis of'l'harmal Warpa
ge in InjectionMolded F
lat Parts Due to Unbalan
cedCooling ″ +Polymer E
ngineering, AndScience
, March, Vol. 22, ,% 4
PP241-247 (1982)).

この論文の中ではそり変形の解析方法が示されているか
、そり変形を樹脂の固化時点の温度分布とその時点の樹
脂の平均温度の差から計算しているという問題と、ひけ
や成形収縮の解析方法を示していないという問題がある
。成形品の実際の変形を問題にする場合は、固化時点の
樹脂温度分布と室温の差を用いて解析する必要がある。
Is there an analysis method for warpage deformation in this paper?The problem is that warpage deformation is calculated from the difference between the temperature distribution at the time of solidification of the resin and the average temperature of the resin at that time, and the problem of shrinkage and mold shrinkage. The problem is that it does not indicate the analysis method. If the actual deformation of the molded product is a problem, it is necessary to analyze the difference between the resin temperature distribution at the time of solidification and the room temperature.

何故なら固化時点の樹脂温度分布とその時点の平均温度
の差から成形品の変形を解析する限り、成形収縮を解析
することはできなく、またひけやそり九ついても成形品
の品質を解析することはできない。
This is because, as long as the deformation of a molded product is analyzed based on the difference between the resin temperature distribution at the time of solidification and the average temperature at that time, it is not possible to analyze molding shrinkage, and the quality of molded products cannot be analyzed even if sink marks or warpage occur. It is not possible.

また上記の論文では樹脂物性を平均値で扱っており、樹
脂物性の温度や圧力依存性を扱う方法を示していないと
いう問題もある。
Another problem is that the above-mentioned paper treats the resin physical properties as average values, and does not show how to handle the temperature and pressure dependence of the resin physical properties.

以上のように、従来の成形品の変形解析方法では・ひけ
、成形収縮が解析できず、そりについても現実の品質を
解析できないという問題があった。
As described above, conventional methods for analyzing deformation of molded products have problems in that shrinkage and molding shrinkage cannot be analyzed, and warpage cannot be analyzed to determine actual quality.

他方、近年レンズや元ディスク、キャリッジなどの部品
をプラスチック化する要求が強まっている。これらの部
品は0.1μmから数十μmの形状精度を・じ要とする
高精度部品である。これら高精度部品をプラスチック化
する際、成形プロセスに伴うひけ、そり、不均一な成形
収縮などの成形形状歪が常に大きな障害になっており、
成形形状歪を算定し成形材料や金型構造、成形条件の適
・不適を評価するシミュレーシ田ンシステムの必要性が
高まっている。
On the other hand, in recent years there has been an increasing demand for parts such as lenses, original disks, and carriages to be made of plastic. These parts are high-precision parts that require shape accuracy of 0.1 μm to several tens of μm. When converting these high-precision parts into plastic, molding shape distortions such as sink marks, warpage, and uneven molding shrinkage that occur during the molding process are always a major obstacle.
There is an increasing need for a simulation system that calculates mold shape distortion and evaluates the suitability or unsuitability of molding materials, mold structures, and molding conditions.

しかしながら、グラスチックの成形プロセスは高@に加
熱溶融した樹111iを金型に高圧で充填・賦形・冷却
・固化するプロセスであるため、流動と冷却が連室し相
変化を伴なうプロセスである。また成形材料として用い
られろ熱可塑性樹脂の物性は温1「、圧力に大きく依存
する複雑な非線形的性質を有しているため、グラスチッ
クの成形プロセスは解析が最も困雛な現象を有する分野
に属すると言える。
However, the molding process of glasstic is a process in which highly heated and molten wood 111i is filled into a mold under high pressure, shaped, cooled, and solidified, so the process involves a phase change in which flow and cooling occur in parallel chambers. It is. In addition, the physical properties of thermoplastic resins used as molding materials have complex nonlinear properties that are highly dependent on temperature and pressure, so the glass molding process is an area where analysis has the most difficult phenomena. It can be said that it belongs to

このため従来は、一般には・成形プロセスに伴なう成形
形状歪の発生メカニズムはブラックボックスとされ、高
精度部品に限らずプラスチック成形品の形状精度に関す
る製造条件の設定は、経験と勘で金型を製作し、試行錯
誤の繰返しで決定しており高精度部品はど開発・設計に
要する期間や費用が増大する問題があった。
For this reason, in the past, the mechanism by which shape distortion occurred during the molding process was generally regarded as a black box, and the setting of manufacturing conditions related to the shape accuracy of not only high-precision parts but also plastic molded products was based on experience and intuition. Molds are manufactured and decisions are made through repeated trial and error, which increases the time and cost required to develop and design high-precision parts.

(発明の目的) 本発明の目的は、成形プロセス九伴なうひけ、そり、成
形収縮などのプラスチック成形品の成形形状歪を算定し
、成形材料や金型構造、成形条件が成形形状歪に与える
影響を、実機の製作に先き立ち評価し、適正条件を選定
してプラスチック成形品の開発・設計に要する期間や費
用を減少しつるプラスチック成形プロセスシミエレーシ
筺ンシステムを提供することにある。
(Objective of the Invention) The purpose of the present invention is to calculate molding shape distortions of plastic molded products such as shrinkage, warping, and molding shrinkage that occur during the molding process, and to determine whether the molding material, mold structure, and molding conditions affect molded shape distortions. Our objective is to provide a plastic molding process shimierashi system that reduces the time and cost required for the development and design of plastic molded products by evaluating the impact of plastic molding prior to manufacturing the actual machine and selecting appropriate conditions. .

(発明のR要) 本発明の1!!!徴は、金型内における樹脂の溶融相の
つながりが断たれる時点を特定し、該時点の樹脂の@度
分布を初期@度とし、成形品が一様に室温になるまでの
冷却過程の温度変化を熱荷重として熱応力歪を解析し、
成形形状歪を算定するようにした点にある。
(R essentials of the invention) 1 of the present invention! ! ! The characteristic is to identify the point at which the connection between the molten phase of the resin in the mold is broken, set the temperature distribution of the resin at that point as the initial temperature, and calculate the cooling process until the molded product uniformly reaches room temperature. Analyzing thermal stress strain using temperature change as thermal load,
The main point is that the molding shape distortion is calculated.

(発明の実施例) 本発明は本発明者らが過去に発我した下記論文における
射出成形品のひけを解析する方法を発展させたものであ
る。
(Embodiments of the Invention) The present invention is a development of the method for analyzing sink marks of injection molded products published in the following paper by the present inventors in the past.

丸山1日部;非晶性高分子材刺を用いた射出成形品のヒ
ゲ現象;高分子論文集;38巻、4号。
Kazube Maruyama; Whisker phenomenon of injection molded products using amorphous polymer material spines; Kobunshi Papers; Vol. 38, No. 4.

275〜278頁、1981年4月 上り論文では射出成形品のヒケ量を算定し、算定値と測
定値が全体としてよく一致することを確認した。
In a paper published on pages 275 to 278, April 1981, the amount of sink marks in injection molded products was calculated, and it was confirmed that the calculated values and measured values were in good agreement as a whole.

次に上記論文罠おける解析方法を発展させた本発明にお
けろ解析方法の概要を説明する。
Next, an outline of the analysis method used in the present invention, which is a development of the analysis method used in the above-mentioned paper, will be explained.

熱可塑性樹脂は高温のときは、流動性のある溶融状態で
あり、温度が少しさがると容易に変形するが流動性を失
なった軟化状11になり、さらに温1fがさがると、軟
化し難く剛い固化状態になる。
Thermoplastic resin is in a fluid and molten state when the temperature is high, and when the temperature drops a little it deforms easily, but it loses its fluidity and becomes a softened state 11, and when the temperature drops further by 1f, it becomes difficult to soften. Becomes a hard solidified state.

熱可塑性樹脂の流動する溶融状態から流動性を失なう軟
化状態への転移温度を表わすものとして流動停止温度が
あり、容易(変形する軟化状態から軟化し難い固化状態
への転移温度を表わすものとして熱変形温度がある。
The flow stop temperature represents the transition temperature of a thermoplastic resin from a flowing molten state to a softened state where it loses fluidity, and a flow stop temperature represents the transition temperature from a softened state where it is easily deformed to a solidified state where it is difficult to soften. There is a heat distortion temperature.

例えば、アクリル樹脂の流動停止温度は約170℃、熱
変形温度は約100℃であり、ポリカーボ樹脂の流動停
止温度は約190℃であり、熱変形温間は約125℃で
ある。
For example, the flow stop temperature of acrylic resin is about 170°C and the heat distortion temperature is about 100°C, and the flow stop temperature of polycarbon resin is about 190°C and the heat distortion temperature is about 125°C.

さて、射出成形過程には、高温で溶融状態の樹脂を金製
の中に注入した後、射出圧力を保持し続ける保圧段階が
ある。圧縮成形過程には、金型内に樹脂を充填した後、
高温の溶融状態もしくは軟化状態の相(以下では溶融状
態もしくは軟化状態の相を共に溶融相と称す)の樹脂を
金型で圧縮する圧縮段階がある。
Now, the injection molding process includes a pressure holding stage in which the injection pressure is maintained after the high temperature molten resin is injected into the metal. During the compression molding process, after filling the mold with resin,
There is a compression step in which the resin in a high temperature molten state or a softened state (hereinafter both the molten state and the softened state are referred to as molten phase) is compressed with a mold.

射出成形の保圧や圧縮成形の圧縮は6却と同時並行して
行なわれるものであり、いずれも樹脂内部の高温溶融相
のつながりを流路として、冷却に伴なう樹脂の体積収縮
を補給するための操作である。冷却による@度低下が生
じていても、樹脂が補給される限り、成形品に収縮が生
じることはない。
Holding pressure in injection molding and compression in compression molding are performed simultaneously and in parallel, and both use the connection of the high-temperature molten phase inside the resin as a flow path to compensate for the volumetric contraction of the resin as it cools. This is an operation to do this. Even if the temperature decreases due to cooling, the molded product will not shrink as long as the resin is replenished.

それ故、樹脂が補給されながら冷却されている、射出成
形の保圧段階や圧縮成形の圧縮段階にある金型内の成形
品は、解析を行なう数理物理モデル上の扱いとしては、
線膨張率ゼロで冷却されているという表現が許される。
Therefore, a molded product in a mold in the pressure holding stage of injection molding or the compression stage of compression molding, where resin is being replenished and cooled, is treated as follows in the mathematical-physical model used for analysis:
It is permissible to say that it is cooled with a coefficient of linear expansion of zero.

熱可塑性樹脂を成形材料に用いる射出成形や圧縮成形で
は、冷却が進みやがて、樹脂内部の溶融性のつながりか
断たれ、そのため冷却罠伴なう体積収縮を補なう樹脂の
補給が速断えろ時点が必ずある。樹脂の補給が速断えた
時点から、前記したひけ、そり、成形収縮などの成形形
状歪が発生し始める。成形プロセスを対象に温度解析し
、その結果を利用して、金型内におけろ樹脂の溶融相の
領域がせばめられて行く経緯を算定することで、金型内
におけろ樹脂の溶融相のつながりが断たれる時点を特定
できる。その時点を特定することで。
In injection molding and compression molding that use thermoplastic resin as a molding material, as cooling progresses, the melting connections within the resin are eventually severed, and this causes a point at which resin replenishment to compensate for the volumetric shrinkage that accompanies cooling traps is quickly cut off. There is always. As soon as the resin supply is quickly cut off, molding shape distortions such as sink marks, warping, and molding shrinkage described above begin to occur. By performing temperature analysis on the molding process and using the results to calculate the process by which the molten phase region of the filtrate resin is narrowed in the mold, the molten phase of the filtrate resin in the mold can be It is possible to identify the point at which the connection is severed. By identifying that point in time.

樹脂の補給が速断え、成形形状歪が発生し出す時点を特
定することかできろ。
Is it possible to identify the point at which the resin supply is quickly cut off and distortion of the molded shape begins to occur?

金型内における樹脂の溶融相のつながりが断たれる時点
を特定し、その時点の樹脂の温度分布を初期温度とし、
成形品が一様に室温になるまでの冷却過檻の温度変化を
熱荷重として熱応力歪解析すると、前記成形形状歪は算
定できろ。ただし、樹脂物性の温度や圧力の依存性は大
きく、無視できないので、樹脂物性の温度や圧力の依存
性を考慮して計算する必要がある。
Identify the point at which the connection between the molten phase of the resin in the mold is broken, and use the temperature distribution of the resin at that point as the initial temperature.
If the temperature change in the cooling cage until the molded product uniformly reaches room temperature is analyzed as a thermal stress strain, the molded shape distortion can be calculated. However, since the dependence of resin physical properties on temperature and pressure is large and cannot be ignored, it is necessary to take into account the dependence of resin physical properties on temperature and pressure in calculations.

次に一第2図および第3図に示す成形プロセスの概念図
を用いて、本発明の詳細な説明する。
Next, the present invention will be explained in detail using the conceptual diagrams of the molding process shown in FIGS. 2 and 3.

第2図は射出成形の成形プロセス、すなわち注入−保圧
一冷却一離型の各段階から成る成形プロセスの説明図で
ある。なお、図中の矢印は圧力の方向又は樹脂の流動方
向を示す。また、溶融相A。
FIG. 2 is an explanatory diagram of the injection molding process, that is, the molding process consisting of the steps of injection, pressure holding, cooling, and mold release. Note that the arrow in the figure indicates the direction of pressure or the direction of resin flow. Also, melt phase A.

A′ と固化相Bの境が固化温度の等温線である。The boundary between A' and solidified phase B is the solidification temperature isotherm.

射出成形の場合、前記した流動停止温度を固化温度と見
なすことができる。
In the case of injection molding, the above-mentioned flow stop temperature can be considered the solidification temperature.

第2図(1)に示す注入段階債の同図(2)に示す保圧
段階では、樹脂内部の高温のm融和Aがゲー)Cにおけ
ろ溶融摺入′とつながっている限り、ゲートにおける射
出圧力により溶融相A 、 A’  内で矢印の方向九
微少な樹脂流動が生じ、冷却に伴う樹脂の体積収縮は溶
融相A 、 A’  のつながりを流路として補給され
ると見なすことができる。
In the pressure holding stage shown in FIG. 2 (2) of the injection stage bond shown in FIG. Due to the injection pressure at , a slight flow of resin occurs within the molten phases A and A' in the direction of the arrow, and the volumetric contraction of the resin due to cooling can be considered to be replenished through the connection of the molten phases A and A' as a flow path. can.

冷却が進むと固化相Bが発達し、第2図(2)のa部が
示すように溶融相のつながりが断たれる。そうすると樹
脂の補給か断たれ、その時点以後のC却でそり、ひけ成
形収縮などの成形形状歪が発生する。
As the cooling progresses, a solidified phase B develops, and the connection between the molten phases is severed, as shown by section a in FIG. 2 (2). When this happens, the supply of resin is cut off, and distortions in the molded shape such as warpage, sink marks, and molding shrinkage occur due to cooling after that point.

したがって、ゲートC近くの厚さより厚さが薄く、内部
が先きに冷却固化するa部では、該a部の内部の最高温
度が固化温fK達する時点まで(金型の固定型りと可動
型Eが同一温度であると見なせる場合は肉厚の中心温度
が固化温度に達する時点まで)、またゲートC周辺より
厚く、内部が遅れて冷却固化するbの部分ではゲートC
の近くにあるA′の内部の最高温度が固化温I!t’に
達する時点まで、温度低下にも係わらず収縮することが
ない。補給が断えろその時点以後の冷却で成形形状歪が
発生する。
Therefore, in section a, which is thinner than the thickness near gate C and whose inside is cooled and solidified first, until the maximum temperature inside section a reaches the solidification temperature fK (fixed mold and movable mold (If E can be considered to be the same temperature, the center temperature of the wall thickness reaches the solidification temperature), and in the part b, which is thicker than the periphery of gate C and where the inside cools and solidifies later, gate C
The maximum temperature inside A' near is the solidification temperature I! Until the time t' is reached, there is no contraction despite the temperature drop. If the supply is cut off, molding shape distortion will occur during cooling after that point.

第3図は圧縮成形の成形プロセス、すなわち充填−圧縮
−冷却一離型の各段階から成る成形プロセスの説明図で
ある。なお、図中の矢印は圧縮用金型Fの移動又は圧縮
方向を示す。圧縮成形の場合、前記した熱変形温度を固
化温度と見なすことができる。
FIG. 3 is an explanatory diagram of the compression molding process, that is, the molding process consisting of each stage of filling, compression, cooling, and mold release. Note that the arrow in the figure indicates the movement or compression direction of the compression mold F. In the case of compression molding, the heat deformation temperature described above can be regarded as the solidification temperature.

第3図(1)に示す充填段階後の同図(2)に示す圧縮
段階では、金型に接すると共に厚さか薄いH部が早く冷
却されやすく、また成形品内部の肉厚中心線G上のすべ
てにおいて溶融相Aがつながっている。このように、肉
厚中心線GとHの交点の近傍に溶融相Aが存在している
限り、冷却に伴なう樹脂の収縮は圧縮用金型Fの圧縮作
用が吸収すると見なすことができろ。したかって、圧縮
成形では最も先きに冷却固化する個所Hの内部の最高温
イが固化温度に達し、溶融相Aとのつながりが断たれる
時点まで、成形品は冷却されて温度低下するにも係わら
ず収縮することがない。
In the compression step shown in FIG. 3 (2) after the filling step shown in FIG. The molten phase A is connected in all of the cases. In this way, as long as the molten phase A exists near the intersection of the wall thickness center lines G and H, it can be assumed that the contraction of the resin due to cooling is absorbed by the compression action of the compression mold F. reactor. Therefore, in compression molding, as the molded product is cooled and the temperature decreases until the highest temperature inside the part H that cools and solidifies first reaches the solidification temperature and the connection with the molten phase A is severed. However, it does not shrink.

先きに冷却固化する個所Hの内部の最高温度が固化温度
になると、該個所Hの樹脂か剛性を有し圧縮用金型Fの
圧縮作用を阻止するので、圧縮用金型Fの圧縮が樹脂の
冷却収縮を吸収することができなくなる。したかって、
その時点以後の冷却で、成形収縮が発生すると見なすこ
とができろ。
When the highest temperature inside the part H that is to be cooled and solidified first reaches the solidification temperature, the resin in that part H has rigidity and blocks the compression action of the compression mold F, so that the compression of the compression mold F is reduced. It becomes impossible to absorb cooling shrinkage of the resin. I wanted to,
It can be assumed that molding shrinkage occurs during cooling after that point.

一般K、材料は冷却もしくは加熱されると材料固有の線
膨張率に従い冷却収縮もしくは加熱膨張し、材料内の温
度分布に対応して変形する。温間変化に伴なう変形や応
力を研究するのが熱応力解析の立場である。
In general, when a material is cooled or heated, it shrinks or expands when it is heated according to its own coefficient of linear expansion, and deforms in response to the temperature distribution within the material. Thermal stress analysis is the study of deformation and stress associated with warm changes.

上記熱応力解析の立場から的記射出成形や圧縮成形の成
形プロセスを整理すると次のように言うことができろ。
If we organize the molding processes of injection molding and compression molding from the standpoint of the above thermal stress analysis, we can say the following.

射出成形の保圧段階や圧縮成形の圧縮段階にある、成形
プロセス中の冷却の始めにあろ金型内の成形品は、冷却
に伴なう変形を生じろことなく、従って線膨張率ゼロで
温度低下し、保圧段階や圧縮段階の後、即ら成形品内部
の溶融相Aのつながりが断たれる時点以後、成形品は樹
脂固有の線膨張率を有して冷却に伴なう変形を生じなが
ら室温一様になるまで温度低下すると言える。
At the beginning of cooling during the molding process, such as during the holding stage of injection molding or the compression stage of compression molding, the molded product in the mold does not undergo deformation due to cooling, and therefore has a coefficient of linear expansion of zero. After the temperature decreases and the pressure holding stage and compression stage are completed, that is, after the molten phase A inside the molded product is disconnected, the molded product has a coefficient of linear expansion unique to the resin and deforms as it cools. It can be said that the temperature decreases until the room temperature becomes uniform while causing

温度低下罠伴なう変形は熱応力怪関係の法則に支配され
る現象であり、熱応力歪方程式によって算定できる現象
である。ひけ、そり、成形収縮など成形形状歪は樹脂の
不均一な温度低下によって発生する現象であり、従って
熱応力歪方程式によって算定できる現象である。
The deformation that accompanies the temperature drop trap is a phenomenon that is governed by the law of thermal-stress relationship, and can be calculated using the thermal-stress-strain equation. Molding shape distortions such as sink marks, warpage, and molding shrinkage are phenomena that occur due to nonuniform temperature drops in the resin, and can therefore be calculated using a thermal stress strain equation.

次に、本発明における樹脂物性の取り扱い方法について
説明する3゜ 樹脂の比熱と熱伝導率、ヤング率、線膨張率の温(依存
性は大きく無視できない。線膨張率九ついては圧力依存
性も大きく無視できない。41膨張率の圧力依存性に対
処することは、線膨*率を樹脂の圧カー比容積−@度デ
ータから算定する際、圧力をパラメータとして比容積−
温間曲線を選定することで対処できる。
Next, we will explain how to handle resin physical properties in the present invention.3゜Resin's specific heat, thermal conductivity, Young's modulus, and coefficient of linear expansion have a large dependence on temperature and cannot be ignored.The coefficient of linear expansion also has a large dependence on pressure. It cannot be ignored. 41 To deal with the pressure dependence of the expansion coefficient, when calculating the linear expansion * coefficient from the pressure Kerr specific volume - @ degree data, the pressure is used as a parameter to calculate the specific volume -
This can be dealt with by selecting a warm curve.

さらに、有限要素法による非定常非線形の温度解析理論
と熱応力歪解析理論を要約し9本発明の成形形状歪解析
方法を明らかにする。
Furthermore, we summarize the unsteady nonlinear temperature analysis theory and thermal stress strain analysis theory using the finite element method, and clarify the forming shape strain analysis method of the present invention.

非定常非線形の熱伝導方程式は下記の(1)式で灸わさ
れる。
The unsteady nonlinear heat conduction equation is expressed by the following equation (1).

ここでTは、温f、空間X、7.t、および時間tの関
数である。Pは密度、Cは比熱、には熱伝導率であり、
p、c、には各々温11”rの関数である。Qは発熱貴
である。
Here, T is temperature f, space X, 7. t, and time t. P is the density, C is the specific heat, and is the thermal conductivity.
p and c are each a function of the temperature 11"r. Q is the exothermic nobility.

(1)式を有限4J!素法により離散化し、ガラ−キン
法により積分した後、系全体の要素につき重ね合せ、さ
らに時間につき差分すると下記の剛性方程式(2)が得
られる。
Expression (1) is finite 4J! After discretization using the elementary method and integration using the Galkin method, the following stiffness equation (2) is obtained by superimposing the elements of the entire system and subtracting them over time.

+(F)  ・・・・ (2) ここで〔K〕=Σ(k)、〔C〕−Σre)、(Fl=
Σ(f)で8は系全体の要素につき広ね介せることを意
味する。また、rk)  は熱伝導マトリックス、 [
C)は声容振マトリックス、(f) は熱流ベクトル。
+ (F) ... (2) Here, [K] = Σ (k), [C] - Σre), (Fl =
In Σ(f), 8 means that it can be spread over the elements of the entire system. Also, rk) is the thermal conduction matrix, [
C) is the voice vibration matrix, and (f) is the heat flow vector.

tは時間、Δtは時間刻み、(φ(t))は、節点温間
ベクトルを示す。
t is time, Δt is a time step, and (φ(t)) is a nodal warm vector.

(2)式における(φ(t))は1−0で初期値として
与えられ既知であるので、逐次(φ(t+Δ1)) を
算出することができろ。熱伝導、’lk、iW[ρ、比
熱Cは温V依存性があるので、各時間ステップにおいて
(2)式中の物性項を修正して(φ(t+Δ1))が収
束するまで繰返し計算することになる。以上のように(
2)式を解くことで、成形グロセスの時間経過罠伴なう
温度変化を算出できる。
Since (φ(t)) in equation (2) is given as an initial value of 1-0 and is known, it is possible to successively calculate (φ(t+Δ1)). Since heat conduction, 'lk, iW[ρ, and specific heat C are dependent on temperature V, the physical property term in equation (2) is corrected at each time step and calculations are repeated until (φ(t+Δ1)) converges. It turns out. As above (
2) By solving the equation, it is possible to calculate the temperature change that accompanies the molding process over time.

非線形の熱応力・歪方程式は、応カー歪式、歪−変位式
、力のつり合いの式から成る。
The nonlinear thermal stress/strain equation consists of a stress-strain equation, a strain-displacement equation, and a force balance equation.

応力−歪式は次式で表わされる。The stress-strain equation is expressed by the following equation.

8−二(σ−ν(σ+σ月十α・T′ X  E  X)’Z ここで、εは歪、σは応力、γはせん断歪、τはせん断
応力、小文字!、7.Zは各座標成分を茨わす。T′は
熱荷重であり、初期時刻tm−+ と熱荷重時刻trr
lの温1je T (tm−、)とTCtrl、)の差
T’=T(t  )=T(t、、)で定義されている。
8-2 (σ-ν (σ + σ month ten α・T' The coordinate components are changed.T' is the thermal load, and the initial time tm-+ and the thermal load time trr
It is defined as the difference T'=T(t)=T(t,,) between the temperature 1je T(tm-,) and TCtrl,).

なお、T(tm−、)とT(tm)  は前記(2)式
の鱗から与えろことができる。さらに、Eはヤング率、
νはポアソン比、Qは線膨張率であり、E、ν。
Incidentally, T(tm-, ) and T(tm) can be given from the scales of equation (2) above. Furthermore, E is Young's modulus,
ν is Poisson's ratio, Q is the coefficient of linear expansion, and E, ν.

aはそれぞれ温度Tの関数である。a is a function of temperature T, respectively.

なお、tyμ、などのY r Z成分も、(3)式と同
様に表わされるか、これらに対する式は省略する。
Note that Y r Z components such as tyμ may also be expressed in the same way as equation (3), or the equations for these may be omitted.

また、以下の式でもy、z成分は省略する。Furthermore, the y and z components are omitted in the following equations as well.

歪−変位式は次式で表わされる。The strain-displacement equation is expressed by the following equation.

ここでurマ、Wはそれぞれ変位のxlylz成分であ
る。
Here, urma and W are the xlylz components of displacement, respectively.

力のつり合いの式は、Xを外力のX成分とすると1次式
で表わすことができろ。
The force balance equation can be expressed as a linear equation, where X is the X component of the external force.

+31 、 +41 、 +51式を増分表示し有限要
素法罠より離散化し、さらに仮想仕事の原理に従って積
分すると、g!素に関する熱応力歪に関する剛性方程式
(6)式か得られる。
Expressions +31, +41, +51 are expressed incrementally, discretized using the finite element trap, and further integrated according to the principle of virtual work, g! The stiffness equation (6) regarding the thermal stress strain regarding the element can be obtained.

〔K〕(Δd)−(Δf、l+lΔf、r)++Δf、
l+(Δr)・・・・・ (6) ここで、(K〕 は弾性剛性マトリックス、(Δd)は
節点変位ベクトル増分、(Δf )は礪械的萌重ベクト
ル、(ΔfT)は熱荷重ベクトルの弾性成分、(Δf)
は物性値の温;W依存から生じる荷重ベクトル、(Δr
)は残差の荷重ベクトルである。
[K](Δd)−(Δf,l+lΔf,r)++Δf,
l+(Δr)... (6) Here, (K) is the elastic stiffness matrix, (Δd) is the nodal displacement vector increment, (Δf) is the mechanical weight vector, and (ΔfT) is the thermal load vector. elastic component, (Δf)
is the temperature of the physical property value; the load vector resulting from W dependence, (Δr
) is the residual weight vector.

要素についての剛性7j8式(6)を全要素につき重ね
合せると系全体の剛性方程式か得られ、これから前記し
た熱荷重T′がもたらす節点変位を算定できる。
By superimposing the stiffness equation (6) for all elements, a stiffness equation for the entire system can be obtained, from which the nodal displacement caused by the thermal load T' described above can be calculated.

ヤング$E、ポアソン比ν、線膨張率αは@度Tの関数
であるので、(6)式を解(際、熱荷重時刻trn の
温度T(t、TI)に対応したE、シ、aを計算して与
える。
Since Young $E, Poisson's ratio ν, and coefficient of linear expansion α are functions of degree T, solve equation (6). Calculate and give a.

前記した応力−歪式(3)における熱衝tT’  は、
初期時刻tm−、と熱荷重時刻tmの温変差T’ =T
(tm)−T(tm−、)であるから、(3)〜(5)
式を有限要素法(より定式化した(6)式を解いて計算
できるのは初期時刻t 1 と熱荷重時刻tm間のlス
テクプの温要変化九対応した変位であり、計算に用いら
れるヤング率E、ポアソン比ν、線膨張$aは熱荷重時
刻t の温度九対応した値でしかない。
The thermal shock tT' in the stress-strain equation (3) above is:
Temperature change difference T' between initial time tm- and thermal load time tm = T
(tm)-T(tm-,), so (3) to (5)
What can be calculated by solving the equation (6) using the finite element method is the displacement corresponding to the temperature change in l step between the initial time t 1 and the thermal load time tm, and the displacement corresponding to The ratio E, Poisson's ratio ν, and linear expansion $a are only values corresponding to the temperature 9 at the thermal load time t.

成形品の成形形状歪を精I「よく算定するには、樹脂の
溶融時点から室温に至る@度軸囲での樹脂物性の大きな
温度依存性をとり込んで計算を行なう必要がある。
In order to accurately calculate the mold shape distortion of a molded product, it is necessary to perform calculations that take into account the large temperature dependence of the resin physical properties around the @ degree axis from the time the resin melts to room temperature.

溶融相のつながりが断たれる時点(すなわち、熱荷重を
与えろ初期時刻)をto、成形品が室温一様になる時点
を1.1  からむ 間におけろn       。
Set the point at which the connection between the molten phases is severed (that is, the initial time at which the thermal load is applied) to to, and the point at which the molded product becomes uniform in room temperature from 1.1 to n.

熱応力解析のmステップ(m=1+2+・・、n )目
の初期時刻をt  、l  熱荷重時刻をt 、熱衝m
−m 重をT’ =T (tm) −T(tm−、)とすると
き、初期時刻と熱荷重時刻をそれぞれ(to+tl) 
 * (tl+tlL・・・(tn・Hotn)  と
するnステップの熱応力歪解析を行ない、計算されたn
ヶの変位を累積することで、前記熱荷重時刻1..1.
、・5・・、tにおける温HT (t、)、T(t2)
+・・・、T(to)  ・室温一様の変化に対応した
ヤング″ME、ポアソン比ν、線膨張率〇の温度依存性
をとり込んで成形品の成形形状歪を算定できる。
The initial time of the m step (m=1+2+...,n) of thermal stress analysis is t, l The thermal load time is t, Thermal shock m
-m When the weight is T' = T (tm) -T (tm-, ), the initial time and heat load time are (to+tl), respectively.
*(tl+tlL...(tn・Hotn)) Perform n-step thermal stress strain analysis, and calculate n
By accumulating the displacements of , the thermal load time 1. .. 1.
, 5..., warm HT at t (t,), T(t2)
+..., T(to) - The molded shape distortion of a molded product can be calculated by incorporating the temperature dependence of Young's ME, Poisson's ratio ν, and linear expansion coefficient 〇 corresponding to uniform changes in room temperature.

以上のことから、成形品の成形形状全を算定するには、
註1f変化を解く温度引算変位と、前記熱応力歪に19
3する系全体の剛性方程式を解く熱応力歪計算変位と、
熱応力歪解析の熱荷重を与えろ初期時刻と熱荷重時刻を
更新するためのステップ時刻更新変位と、変位を累積計
算するための変位累積変位とが必要であると言える。な
お、本実施例では前記したごとく、有限要素法に基づく
解析方法を採用しているので、対象形状が制約されるこ
とは基本的にはない。
From the above, in order to calculate the entire molded shape of a molded product,
Note 1F Temperature subtraction displacement to solve the change and 19 to the thermal stress strain
3. Solve the stiffness equation of the entire system, calculate the thermal stress strain, and
Applying thermal load for thermal stress strain analysis It can be said that step time update displacement for updating the initial time and thermal load time, and cumulative displacement for cumulative calculation of displacement are required. Note that, as described above, this embodiment employs an analysis method based on the finite element method, so there is basically no restriction on the target shape.

次に1本発明の一′、A施例の成形プロセスシミュレー
ションシステムの算出を第1図に示し、第1園を参照し
てその動作を説明する。
Next, calculations of the molding process simulation system according to the first embodiment A of the present invention are shown in FIG. 1, and its operation will be explained with reference to the first example.

図において、14入力装Rであり、該入力R1it1・
は金型や成形品形状を表現する節点座標や節点番号、要
素番号等の形状データと、境界条件や初期条件、成形開
始から成形品が室温一様になるまでの成形プロセス全体
の時間に関する温度解析の全ステップの時間刻み等の@
度解析用入力データと、固化温間推移計算用入力データ
である固化温ばと、拘束条件等の熱応力歪解析用入力デ
ータとを作成し、入力データ記憶変位2に送る。
In the figure, there is a 14-input device R, and the inputs R1it1 and
is shape data such as nodal coordinates, node numbers, and element numbers that express the shape of the mold and molded product, as well as boundary conditions, initial conditions, and temperature related to the entire molding process time from the start of molding until the molded product reaches a uniform room temperature. @ Time increments for all steps of analysis, etc.
Input data for thermal stress analysis, input data for solidification temperature transition calculation, and input data for thermal stress strain analysis such as restraint conditions are created and sent to input data storage displacement 2.

入力データ記憶変位2内の熱応力歪解析用入力データは
熱荷重を与える初期時刻と熱荷重時刻とが欠落している
未完成の入力データである。3は、前記した有限g!素
法による剛性方程式(2)を解く温度計算変位で、入力
データ記憶変位1i12内の形状データおよび温度解析
用入力データを用いて、金製や樹脂の成形プロセス中お
よび離型後室温一様になるまでの各節点毎の温度の時間
変化を算出し、算出結果を温度記憶変位4に送る。。
The input data for thermal stress strain analysis in the input data storage displacement 2 is incomplete input data in which the initial time at which a thermal load is applied and the time at which the thermal load is applied are missing. 3 is the finite g! The temperature calculation displacement solves the stiffness equation (2) using the elementary method, and uses the shape data in the input data storage displacement 1i12 and the input data for temperature analysis to maintain a uniform room temperature during the molding process of metal and resin and after mold release. The temperature change over time for each node is calculated and the calculation result is sent to the temperature storage displacement 4. .

@IF:計げ変位3におけろ温度計算のフローチャート
を第14図に示す。第14図のIでは形状、初期温間、
境界条件、時間刻みを与え、■では計算ステップを1ス
テップ進めろ。■では当ステップの初期111f(又は
前ステップの計算結果の温度)に対応した物性値を、物
性データの温度関数から計算して節点ごとに与えろ。次
いで、■v−おいて熱伝導マ) I+フックス熱流ベク
トルを作成し、■で剛性方程式を解く。■で計算結果を
当ステッグの前回計算の結果と比較する。当ステップの
前回計算の値と今回計算の値の差が、許応差より大きい
場合、■にもどり、物性値を今回の計算値である温度の
値に基づき修正し・再び■〜Vlを実行する。前回計算
の値と今回計算の値の差が許応差内に小さくなり、計算
値が収束するまで■〜■を繰返す。収束したとき、Hに
戻り、時間ステップを次のステップに前進させた後、再
び■〜■の収束計算を行なう。
@IF: A flowchart for temperature calculation at measured displacement 3 is shown in FIG. I in Figure 14 shows the shape, initial temperature,
Give the boundary conditions and time increments, and proceed with the calculation step in ■. In (2), calculate the physical property value corresponding to the initial stage 111f of this step (or the temperature of the calculation result of the previous step) from the temperature function of the physical property data and give it to each node. Next, ■Create the heat conduction vector (I+Fuchs heat flow vector at v-), and solve the stiffness equation in ■. Compare the calculation results with the results of the previous calculation for this Steg in ■. If the difference between the value calculated last time and the value calculated this time in this step is larger than the tolerance, go back to ■, correct the physical property value based on the temperature value that is the calculated value this time, and execute ■ ~ Vl again. . Repeat ■ to ■ until the difference between the value of the previous calculation and the value of the current calculation becomes small within the tolerance and the calculated value converges. When it converges, return to H, advance the time step to the next step, and then perform the convergence calculations ① to ① again.

以上の手順を時間ステップか終了ステツブ時刻に一致す
るまで行なう。各ステップでの収束値が解として■で出
力される。このような手順により、温度記憶変位4内に
は@i「解析の4出結果である時刻ごとの金型や樹脂の
各節点毎の温IWR化か記憶される。5は第1の出力変
位であり温度記憶変位4内の算出結果を等温線や節点温
j「の時間変化図として出力する。
The above procedure is repeated until the time step matches the end step time. The convergence value at each step is output as a solution. Through such a procedure, temperature memory displacement 4 stores the temperature IWR of each node of the mold and resin at each time, which is the 4 output result of analysis. 5 is the first output displacement The calculation results in the temperature storage displacement 4 are output as isothermal lines and a time change diagram of the nodal temperature j'.

6は固化温度推移図に変位直で、入力データ記憶装fi
2内の形状データや固化i度と減電記憶変位4内の時刻
毎の@度情報を用いて、時刻毎の成形品内の固化温度の
座標位置を′JI出して、固化fIA度推移記憶i置装
に送る。
6 indicates the solidification temperature transition chart, and the input data storage device fi
Using the shape data in 2, the solidification i degree, and the @degree information for each time in 4, the coordinate position of the solidification temperature in the molded product at each time is determined by 'JI, and the solidification fIA degree transition is memorized. i Send to the device.

8は第2の出力変位であり、同化温度推移記憶装e7内
の1T出結果を固化温度推移図として出力する。
8 is a second output displacement, and outputs the 1T output result in the assimilation temperature transition storage device e7 as a solidification temperature transition diagram.

第2の出力装[8で出力した固化温度推移図即ち、一枚
の成形品形状の図の上に1時刻ごとの樹脂の固化温度の
座標位置を結んだ線(即ち等温線)を描いた図(後記す
る第6図や第8図)を見ることで、成形品内部で溶融相
の領域が時刻と共に城少する様子が一目して把握でき、
成形品の内部で溶融相のつながりが断たれる時点(熱荷
重を与える初期時刻)toを容易に特定できろ。
The solidification temperature transition diagram outputted in step 8 of the second output device (i.e., a line connecting the coordinate positions of the solidification temperature of the resin at each time point (i.e., an isothermal line) is drawn on the diagram of a single molded product shape. By looking at the figures (Figures 6 and 8, which will be described later), you can understand at a glance how the molten phase area inside the molded product decreases over time.
Easily specify the point at which the connection between the molten phases is broken inside the molded product (the initial time at which a thermal load is applied).

9は熱応力歪解析用入力データを完成するためのステッ
プ時刻作成変位で、1ml化温度推移図を見ることで得
た、成形品内部で溶融相のつながりが断たれる時点t 
と、入力データ記憶装眩2内の成形開始から成形品か室
温一様になるまでの成形プロセス全体の時間に関する温
eM析の全ステップの時間刻みを用いて、成形品内部で
溶融相のつながりが断たれる時点t 以降の前記重度解
析の全ステップの時間刻みデータを熱応力歪%yl析ス
テップ時刻記憶変位17に送る。
9 is the step time creation displacement to complete the input data for thermal stress strain analysis, and is the time t when the connection of the molten phase is severed inside the molded product, which was obtained by looking at the 1ml temperature transition diagram.
And, using the time increments of all steps of thermal eM analysis regarding the time of the entire molding process from the start of molding in the input data storage dazzle 2 until the temperature of the molded product becomes uniform, the connection of the molten phase inside the molded product is determined. The time step data of all the steps of the above-mentioned severity analysis after the time point t when the is cut off is sent to the thermal stress strain %yl analysis step time storage displacement 17.

熱応力歪解析ステップ時刻記憶変位117内の時間刻み
データは後記する第2ステツプ以降の各ステップの熱応
力歪解析の熱荷重を与える初期時刻と熱荷重時刻として
利用される。なお、該熱荷重時刻は上記の方法以外で作
成してもよい。
Thermal stress strain analysis step The time step data in the time memory displacement 117 is used as the initial time and thermal load time for applying the thermal load in the thermal stress strain analysis of each step from the second step onwards, which will be described later. Note that the heat load time may be created by a method other than the above method.

前記処理の後、ステップ時刻作成装#9は、入カデータ
記憶装g12内の未完成の熱応力歪解析用入力データを
呼び出し、該データに成形品内部で溶融相のつながりが
断たれる時点t を第1ステツプ目の熱応力Φ解析の熱
荷重を与える初期時刻として与え、温IJF解析のステ
ップ時刻中t の次のステップ時刻を第1ステツグ目の
熱応力歪解析の熱性11時刻として与えて、第1ステツ
プの熱応力歪解析用入力データを完成して、熱応力歪解
析用人力データ記憶変位1t10に送る。
After the above processing, the step time creation device #9 calls up the unfinished input data for thermal stress strain analysis in the input data storage device g12, and sets the time t at which the connection of the molten phase inside the molded product is broken in the data. is given as the initial time to apply the thermal load for the thermal stress Φ analysis of the first step, and the next step time of t during the step time of the thermal IJF analysis is given as the thermal 11 time of the thermal stress strain analysis of the first step. , the input data for thermal stress strain analysis of the first step is completed and sent to the manual data storage displacement unit 1t10 for thermal stress strain analysis.

ILは前記した有限要素法による熱応力φに(附る剛性
方程式(6)を系全体に対して解<、M応力歪計算変位
で、熱応力歪解析用入力データ記憶変位10内の熱応力
歪解析用入力データと、減電記憶変位4内の温If算出
結果を用いて、熱応力歪解析7i−実行し、1ステツプ
目の熱荷重がもたらす成形品の変位を算出ぐる。
IL is the thermal stress φ obtained by the above-mentioned finite element method (solve the attached stiffness equation (6) for the entire system <, M stress strain calculation displacement, thermal stress strain analysis input data storage displacement 10 Thermal stress strain analysis 7i is executed using the input data for strain analysis and the temperature If calculation result in the reduced voltage memory displacement 4 to calculate the displacement of the molded product caused by the thermal load of the first step.

熱応力歪計算変位11における熱応力歪計算の70−チ
ャートを第15図に示す。第15図のIでは形状、拘束
条件を与え、■では熱荷重を与える初期時刻と熱荷重時
刻を与え、熱荷重を与える初期時刻と熱荷重時刻に対応
した各節点の温度を前記温度記憶変位4円から読み、熱
荷重を与える。
Thermal Stress Strain Calculation A 70-chart of thermal stress strain calculation at displacement 11 is shown in FIG. In I of Fig. 15, the shape and restraint conditions are given, and in (■), the initial time and heat load time are given, and the temperature of each node corresponding to the initial time and heat load time is determined by the temperature memory displacement. Read from 4 yen and apply heat load.

■では熱荷重時刻に対応した物性値を、物性データの温
度関数から計算して節点ごとに与える。次いで、 IV
では剛性マ) IJフックス荷重ベクトルを作成し、■
で剛性方程式を解(。Vlで計算結果である節点ごとの
変位、歪、応力を出力する。
In (2), the physical property value corresponding to the thermal load time is calculated from the temperature function of the physical property data and given to each node. Then, IV
Then, create the IJ Hooks load vector, and
Solve the stiffness equation (. Vl outputs the calculation results of displacement, strain, and stress for each node.

12は前記した、変位を累積計算する変位累積変位で、
変位記憶装+113内に記憶されている前ステップまで
の変位の累積結果を呼び出し、熱応力歪解析装fill
で算出した当ステップの変位を加算した後、変位記憶変
位13に戻す。
12 is the above-mentioned cumulative displacement for cumulatively calculating the displacement;
Call up the cumulative displacement results up to the previous step stored in the displacement storage device +113, and fill the thermal stress strain analysis device.
After adding the displacement of the current step calculated in , the displacement is returned to the displacement memory displacement 13.

14はステップ時刻比較変位で、熱応力歪解析用入力デ
ータ記憶変位10内の熱荷重時刻か終了ステップの時刻
に達しているかどうか比較する。
14 is a step time comparison displacement, which compares whether the thermal load time in the input data storage displacement 10 for thermal stress strain analysis has reached the time of the end step.

15は、前記した熱応力歪解析の熱荷重を与えろ初期時
刻と熱荷重時刻を更新するステップ時刻更新装変位で、
終了ステップ時刻に達していない場合、熱応力歪解析ス
テップ時刻記憶装ht17内の時間刻みデータと熱応力
歪解析用入力データ記憶変位10内の熱応力歪解析用入
力データを呼び出し、初期温度時刻と熱荷重時刻8次の
ステップの時刻に変更した後、熱応力歪解析用入力デー
タ記憶変位tlOVc戻す。
15 is a step time update displacement that updates the initial time and heat load time when applying the heat load in the thermal stress strain analysis described above;
If the end step time has not been reached, the time step data in the thermal stress strain analysis step time memory ht17 and the input data for thermal stress strain analysis in the input data storage displacement 10 for thermal stress strain analysis are called, and the initial temperature time and the input data for thermal stress strain analysis are called. After changing the thermal load time 8 to the time of the next step, the input data storage displacement tlOVc for thermal stress strain analysis is returned.

ステップ時刻比較装[14において熱応力歪解析用入力
データの熱荷重時刻が終了ステップの時刻になるまで、
熱応力歪111痒変位tllで熱応力歪解析を実行して
変位を計算し、変位累積変位112で変位を加痒し、ス
テップ時刻更新変位15で初期源■時刻と熱荷重時刻を
変更する手順を繰返す。
In the step time comparison device [14, until the thermal load time of the input data for thermal stress strain analysis reaches the time of the end step,
Thermal stress strain analysis is executed in the thermal stress strain 111 Itching displacement tll to calculate the displacement, the displacement is increased in the cumulative displacement 112, and the step time update displacement 15 is used to change the initial source ■ time and the thermal load time. Repeat.

ステップ時刻比較変位1114で終了ステップ時刻九違
した後、変位記憶変位13内の累積計算された変位を第
3の出力変位配置6に送る。第3の出力装W116は送
られて来た変位を成形形状歪図として出力する。
After the step time comparison displacement 1114 compares the end step time by nine, the cumulatively calculated displacement in the displacement storage displacement 13 is sent to the third output displacement arrangement 6. The third output device W116 outputs the sent displacement as a forming shape distortion diagram.

次に熱可塑性樹脂を用いたグラスチックレンズの圧縮成
形に、前記本発明の一実施例の成形プロセスシミエレー
シ冒ンシステムを適用したー具体例を説明し、本実施例
の具体的効果を述べる。
Next, we will explain a specific example in which the molding process shimierase system of one embodiment of the present invention was applied to compression molding of a glass lens using thermoplastic resin, and discuss the specific effects of this embodiment. .

以下に示す具体例では、すべて入力形状の左端を中心軸
とする軸対称要素を用いて計算した。第4図は熱変形温
度が100℃のアクリル樹脂を用いた凸レンズ成形金型
の冷却段階の!度分布の計算結果を示し、第5図は第4
因内の凸レンズキャビティ20内の樹脂温度分布の計算
結果を示す。
In the specific examples shown below, all calculations were performed using axisymmetric elements with the left end of the input shape as the central axis. Figure 4 shows the cooling stage of a convex lens mold using acrylic resin with a heat distortion temperature of 100°C! The calculation results of the degree distribution are shown in Figure 5.
The calculation results of the resin temperature distribution inside the convex lens cavity 20 are shown.

第4図に詔いて、21〜24は金を冷却孔を表わす熱伝
達境界を示し、25はキャビティ 20内の樹脂を圧縮
するための圧縮用入れ駒である。
Referring to FIG. 4, reference numerals 21 to 24 indicate heat transfer boundaries representing gold cooling holes, and 25 is a compression piece for compressing the resin within the cavity 20.

第6図は固化温度推移の計算結果を示す。第6図上の各
時刻は成形開始後の経過時間を示す。なお、fl、6図
では固化温度を樹脂の熱変形温度(例えば、PMMA樹
脂の熱変形温+[は 100℃、pc樹脂は 126℃
、PS樹脂は95℃である。)であるとして計算した。
FIG. 6 shows the calculation results of the solidification temperature transition. Each time in FIG. 6 indicates the elapsed time after the start of molding. In addition, in Figure 6, the solidification temperature is the heat distortion temperature of the resin (for example, the heat distortion temperature of PMMA resin + [is 100℃, and the temperature of PC resin is 126℃).
, PS resin is 95°C. ).

第6図廻示す各時刻の固化温贋等温線の外側は熱変形温
度以下で固化状態にあり、固化温間等温線の内側は熱変
形@置以上で溶融もしくは軟化状態にあると考えられろ
It can be considered that the outside of the solidification temperature isotherm at each time shown in Figure 6 is in a solidified state at temperatures below the heat deformation temperature, and the inside of the solidification warm isotherm is in a molten or softened state at temperatures above the heat deformation temperature. .

第6図の固化温度等温線位置の時刻ごとの推移から凸レ
ンズ成形品内部で溶融相の領域か時間と共に減少する様
子がわかり、凸レンズ成形品中光きに冷却固化するのは
レンズ側面26であり、肉厚中心線27上の溶融相のつ
ながりが断たれる時点は 690秒であることがわかる
From the time-dependent changes in the solidification temperature isotherm position in Figure 6, it can be seen that the area of the molten phase inside the convex lens molded product decreases with time, and it is the lens side surface 26 that cools and solidifies most rapidly in the convex lens molded product. , it can be seen that the time point at which the connection of the molten phase on the wall thickness center line 27 is broken is 690 seconds.

690秒時点を熱応力歪解析の第1ステツグの初期時刻
、凸レンズ成形品か室温一様tCなった時点を熱応力歪
解析の最終ステップの熱荷重時刻として計算した凸レン
ズ成形品形状の算定結果を第7図に示す。
The calculation result of the shape of the convex lens molded product is calculated using the time point of 690 seconds as the initial time of the first step of the thermal stress strain analysis, and the time when the temperature of the convex lens molded product reaches a uniform temperature tC as the thermal loading time of the final step of the thermal stress strain analysis. It is shown in FIG.

第7図で点線が金型のレンズ形状で、実線か成形品のレ
ンズ形状である。なお、第7図においては、成形品レン
ズ形状の金型レンズ形状に対する変位を約400倍に誇
張して出力しである。
In FIG. 7, the dotted line is the lens shape of the mold, and the solid line is the lens shape of the molded product. In addition, in FIG. 7, the displacement of the molded product lens shape with respect to the mold lens shape is exaggerated by about 400 times and output.

このことは、例えば、金型上の一点人と、これに対応す
るレンズの成形品上の一点A′との間に)1、図ではA
A’の変位があるが、実際の変位はAA’の約1740
0  であることを示している。
This means, for example, that between one point on the mold and the corresponding point A' on the lens molded product (1), in the figure A
There is a displacement of A', but the actual displacement is about 1740 of AA'
It shows that it is 0.

・17図で実線の形状と点線の形状を比べることで、成
形収縮の楊子がよくわかる。・π7図を見ると凸レンズ
成形品のR(曲率半径)大側の光学面28はR小側の光
学面29より成形収縮が大きく、このため、理想的には
中心軸30に平行であるべき要素の辺、例えば31はR
大側の光学面28に近い程、中心軸30に近ずくように
頌むき、レンズ形状全体にそりが生じている。また、R
小側の成形品の光学面29は金型の光学面29′より曲
単半径が小さくなっているのに対し、R大側の成形品の
光学面28は金型の光学面28′より曲率半径が大きく
なっている。これはR大側の光学面28が中心軸30に
近いほど大きくひけているためである。
・By comparing the shape of the solid line and the shape of the dotted line in Figure 17, you can clearly see the shape of the toothpick due to molding shrinkage. - Looking at the π7 diagram, the optical surface 28 on the larger R (radius of curvature) side of the convex lens molded product has a larger molding shrinkage than the optical surface 29 on the smaller R side, so ideally it should be parallel to the central axis 30. The side of the element, for example 31, is R
The closer the lens is to the large optical surface 28, the closer it is to the central axis 30, and the entire lens shape is warped. Also, R
The optical surface 29 of the molded product on the small side has a smaller radius of curvature than the optical surface 29' of the mold, whereas the optical surface 28 of the molded product on the large R side has a smaller radius of curvature than the optical surface 28' of the mold. The radius is larger. This is because the optical surface 28 on the large-R side is shrunk more as it approaches the central axis 30.

第5図に示したレンズ内の樹脂温度分布を見ろと、R大
側の光学面28′の温度は109.8〜107.7℃で
あり、R小側の光学面29′の温度は101.3〜10
5.5℃ であり、各温度の等濃緑がいずれもR大側の
光学面28′の方に寄っている。またレンズ内部程高温
である。
Looking at the resin temperature distribution in the lens shown in FIG. 5, the temperature of the optical surface 28' on the large radius side is 109.8 to 107.7°C, and the temperature of the optical surface 29' on the small radius side is 101°C. .3-10
5.5° C., and the equally dark green at each temperature is closer to the optical surface 28' on the large radius side. Also, the temperature inside the lens is higher.

第6図に示した固化温健の推移を見ると、固化温jf線
の位置は各時刻で常IcR大側の光学面28′の方に寄
っていて、樹脂の固化状況が光学面の2面28’、  
29’に対してアンバランスに進行していることがわか
る。
Looking at the transition of the solidification temperature shown in FIG. surface 28',
It can be seen that the progress is unbalanced with respect to 29'.

第7図に示したレンズ成形品の成形形状歪は第5図に示
す温度分布や等濃緑の片寄りと第6図に示す固化温度の
推移のアンバランスに対応して生じたものである。等濃
緑の片寄りや固化温度等濃緑のアンバランスが生じた原
因は、第4図に示した金型で、R大側の光学面28′が
形成されている圧縮用入れ駒25内の冷却孔22が、R
小側の光学面29′が形成されている固定型32内の冷
却孔21より径が小さく、また光学面28′と冷却孔2
2間の距離が光学面29′と冷却孔21間の距離より大
になっているためである。
The distortion of the molded shape of the lens molded product shown in FIG. 7 occurs in response to the temperature distribution shown in FIG. 5 and the unevenness of the dark green color, and the imbalance in the transition of the solidification temperature shown in FIG. 6. The cause of the unbalance of the dark green such as the deviation of the dark green and the solidification temperature is due to the cooling inside the compression piece 25 where the optical surface 28' on the large R side is formed in the mold shown in Fig. 4. The hole 22 is R
The diameter is smaller than the cooling hole 21 in the fixed mold 32 in which the small optical surface 29' is formed, and the optical surface 28' and the cooling hole 2
This is because the distance between the optical surface 29' and the cooling hole 21 is larger than the distance between the optical surface 29' and the cooling hole 21.

第4図に示した圧縮用入れ駒25内の冷却孔22の径、
長さ、光学面28′までの最短距離を、固定型32内の
冷却孔21の径、長さ、光学面29′までの最短距離と
各々向じにし、可動型33内の熱伝達境界24の長さ、
光学面28′までの最短距離と、固定型32内の熱伝達
境界23の長さ、光学面29′までの最短距離とを各々
同じにした金型で成形した場合のシミュレーションの算
定結果を第8図および第9図に示す。
The diameter of the cooling hole 22 in the compression piece 25 shown in FIG.
The length and the shortest distance to the optical surface 28' are set opposite to the diameter and length of the cooling hole 21 in the fixed mold 32, and the shortest distance to the optical surface 29', respectively, and the heat transfer boundary 24 in the movable mold 33 is length,
The calculation results of a simulation when molding is performed using a mold in which the shortest distance to the optical surface 28', the length of the heat transfer boundary 23 in the fixed mold 32, and the shortest distance to the optical surface 29' are the same are shown below. Shown in FIGS. 8 and 9.

第8図は固化温度等温線の推移の算定結果を示し、第9
図は凸レンズ成形品形状の算定結果を示す。
Figure 8 shows the calculation results of the transition of the solidification temperature isotherm, and Figure 9
The figure shows the calculation results for the shape of a convex lens molded product.

第8図によれば、固化温度等温線の位置は各時刻で光学
面28’、 29’の二面のいずれの側にも片寄ること
なく、第6図に比べ樹脂の固化状況がパ2ンス艮く進行
していることがわかる。また、第9図によれば光学面 
28.29の二面の成形収縮が同等になり2例えばl!
累の辺31の中心軸30に対する傾きやレンズ形状全体
のそりが減少し。
According to FIG. 8, the position of the solidification temperature isotherm does not shift to either side of the optical surfaces 28' and 29' at each time, and the solidification state of the resin is much faster than that shown in FIG. I can see that things are progressing smoothly. Also, according to Fig. 9, the optical surface
28. The molding shrinkage on the two sides of 29 becomes equal and 2, for example, l!
The inclination of the side 31 of the lens with respect to the central axis 30 and the warpage of the entire lens shape are reduced.

第7図に比べ形状精麿が大幅に改善できていることがわ
かる。この効果は前記した冷却孔の形状や配置を固定型
32側と可動盤33、圧縮用入れ駒25側で同一化した
効果である。
It can be seen that the shape quality has been significantly improved compared to Figure 7. This effect is achieved by making the shape and arrangement of the cooling holes the same on the fixed die 32 side, the movable platen 33, and the compression insert piece 25 side.

さらに、熱変形温度 126℃のポリカーボ樹脂を用い
た凹レンズ成形に本発明を適用したー具体例を示す。第
10図は第11図に示す凹レンズの中心線34上に位置
する節点番号364,382 。
Furthermore, a specific example will be shown in which the present invention is applied to concave lens molding using polycarbonate resin having a heat distortion temperature of 126°C. FIG. 10 shows node numbers 364 and 382 located on the center line 34 of the concave lens shown in FIG. 11.

389 のag変化の算定結果である。第1O図で縦軸
は温a’ (’C)で横軸は時間(秒)を示す。
This is the calculation result of the ag change of 389. In FIG. 1O, the vertical axis shows temperature a'('C) and the horizontal axis shows time (seconds).

一方、第11図は第1θ図に示したような温1「変化を
生じる全型温1fのパターンでの成形条件で成形した凹
レンズの成形品形状の算定結果を示す。
On the other hand, FIG. 11 shows the results of calculation of the shape of a molded product of a concave lens molded under molding conditions in a pattern with a total mold temperature of 1f that causes a temperature change of 1 as shown in FIG. 1θ.

第11図を見ると、凹レンズの外周面35近(の厚肉箇
所にひけe+f+gが生じ、外周面35はR大側の光学
面36側からR小側の光学面37に近づく程、中心軸3
8に寄っている。またレンズ形状全体が外周面35に近
い程、浮き上がるようにそりを生じていることがわかる
Looking at FIG. 11, a sink mark e+f+g occurs near the outer circumferential surface 35 of the concave lens, and as the outer circumferential surface 35 approaches the optical surface 37 on the large-R side to the optical surface 37 on the small-R side, the central axis increases. 3
It's close to 8. It can also be seen that the closer the entire lens shape is to the outer circumferential surface 35, the more warped it appears.

第12図は成形条件を変更し、ポリカーボ樹脂の熱変形
温(126℃近くで、レンズ内の樹脂温度幅をなるべく
減少するような金型@lfパターンの成形条件で圧縮成
形した場合の、凹レンズの肉厚中心線 34上に位置す
る節点番号364 .382゜389 の温度変化の算
定結果を示す。
Figure 12 shows a concave lens when the molding conditions are changed and the concave lens is compression molded using a mold @ lf pattern molding condition that reduces the resin temperature range inside the lens as much as possible, with the heat distortion temperature of the polycarbonate resin (nearly 126°C). The calculation result of the temperature change of node number 364.382°389 located on the wall thickness center line 34 is shown.

第13図は、第12図に示した温度変化を生じる全型温
IWパターンでの成形条件で圧縮成形した場合の成形品
形状の算定結果を示−(。第13図をFfil1図と比
べると、そり ひけ、成形収縮のアンバランスが減少し
、凹レンズの形状fil la’が大幅に改善できてい
る。この効果は、成形条件を変更し、第12図に示した
ように熱変形漏電 126℃近くで樹脂温度を均一化す
るようにした成形条件の効果である。
Figure 13 shows the calculation results of the shape of the molded product when compression molding is performed under the molding conditions of the full mold temperature IW pattern that causes the temperature change shown in Figure 12. , warpage, sink marks, and imbalance in molding shrinkage have been reduced, and the shape of the concave lens has been significantly improved.This effect can be achieved by changing the molding conditions, and as shown in Figure 12, the thermal deformation leakage is reduced to 126°C. This is an effect of molding conditions that equalize the resin temperature nearby.

本実施例では固化風IJ[’推移図を用いて、成形品内
部で溶融相のつながりが断たれる時点、即ち熱応力解析
の第1ステツプ目の初期時刻t。を求めたが、成形品中
最も先きに冷却が進む個所が予め正確に判っており、最
も先きに冷却が進む個所に位置していて、節点@度の時
間変化図上に゛出力する節点の数fe5〜6個程度以下
の少数に予めしぼれろ場合は1節点温度の時間変化図を
用いて、節点のC1度が固化結電に達した時刻を読み取
ることで熱応力解析の第1ステツプ目の初期時刻t。を
求めることかできろ。換言すれば、上記の実施例のよう
に、固化昌IW推移計n変位で時間毎の成形品内の固化
温度の座標位置を算出し、固化風!「推移図を作って初
期時刻t を求めろ必要はない。
In this example, the solidification wind IJ[' transition diagram is used to determine the time point at which the connection of the molten phase is severed inside the molded product, that is, the initial time t of the first step of the thermal stress analysis. was calculated, but the part of the molded product that cools first is known accurately in advance, is located at the part that cools first, and is output on the time change diagram of the node @ degree. If you want to narrow down the number of nodes to a small number (5 to 6 or less) in advance, use the time change diagram of the temperature at one node and read the time when the C1 degree of the node reaches solidification. Initial time t of the step. Can you ask for it? In other words, as in the above embodiment, the coordinate position of the solidification temperature within the molded product is calculated for each time using the solidification change IW transition meter n displacement, and the solidification temperature is determined by the solidification wind! ``There is no need to draw a transition diagram and find the initial time t.

しかしながら、通常成形品中最も先きに冷却が進む個所
を予矧し、かつ節点温度の時間変化図上に出力する必要
のある節点のaを予め5〜6個程度以下の少数にしぼれ
ることはまれである。出力する節点の数が多くなると温
度の時間変化を示す線が重なり合うため、節点温度の時
間変化を読むことがむずかしく、熱応力解析の第1ステ
ツプ目の初期時刻t を求めがたくなる。
However, it is usually necessary to predict in advance the part of the molded product that will cool first, and to narrow down the number of nodes a that need to be output on the nodal temperature time change diagram to a small number, about 5 to 6 or less. is rare. When the number of nodes to be output increases, the lines showing the temporal changes in temperature overlap, making it difficult to read the temporal changes in the nodal temperatures and making it difficult to determine the initial time t of the first step of thermal stress analysis.

それ故、通常熱応力解析の41ステツプ目の初期時刻t
 を求めるには、固1ヒ温度推移図を用いる方がよい。
Therefore, the initial time t of the 41st step of normal thermal stress analysis
In order to find , it is better to use a temperature transition diagram for solids and steel.

(発明の効果) 以上のように1本発明の成形グロセスシミュレーシ舊ン
システムによれば、熱可塑性tfi4脂を用いる成形品
の成形プロセスに伴なう、ひけ、そり、成形収縮などの
成形形状歪を算定することができ、金型製作や成形実験
に先き立ら金型構造や成形条件を短期間、低コストで評
価して適正化することができろという大きな効果があろ
3、 また、これ罠より、従来のように試行@誤的にプラスチ
ック成形品や成形金型の開発・設計を行なう必要がなく
なるので、これらの開発・設計に要する期間や費用を大
幅に減少することができろ。
(Effects of the Invention) As described above, according to the molding growth simulation system of the present invention, shrinkage, warpage, molding shrinkage, etc. that occur during the molding process of molded products using thermoplastic TFI4 resin can be avoided. It is possible to calculate shape distortion, and has the great effect of being able to evaluate and optimize the mold structure and molding conditions in a short period of time and at low cost prior to mold manufacturing and molding experiments3. In addition, this trap eliminates the need to develop and design plastic molded products and molds by trial and error as in the past, so the time and cost required for development and design can be significantly reduced. You can do it.

さらに、本発明の結果、所望の特性を有する成形品を歩
留り良く製造できろようになるという効果がある。
Furthermore, as a result of the present invention, molded products having desired characteristics can be manufactured with good yield.

【図面の簡単な説明】 第1図は本発明の一実施例の成形プロセスシミエレーシ
言ンシステムの算出図、第2図は射出成形プロセスの概
念図、第3図は圧縮成形プロセスの概念図、第4図〜第
9図は本発明の−!′1!施例を凸レンズ成形に適用し
た具体例で、第4図は金型温度分布図、第5図は凸レン
ズキャビディ内の有脂温度分布図、第6図は固化温度推
移図・第7図は凸レンズ成形品形状因、第8図は金型構
造を変更した後の固化温度推移図、第9図は同凸レンズ
成形品形状図を示す。また、第10図〜?R13図は本
発明の−′、A!施例を凹レンズ成形に適用した具体例
で、第10図は凹レンズ内筒点の樹脂温度の変化を示す
図、第11図は凹レンズ成形品形状図、第12図は成形
条件を変更した債の凹レンズ内筒点の樹脂温l「の変化
を示す図、第13図は同凹レンズ成形品形状である 図
を示す。また、渠14図は温1fi1′を算変位の処理
70−、第15図は熱応力歪計算変位の処理フローを示
す。 1・・・入力変位、  2・・・記憶変位戊、  3・
・11計算変位Jt、  4・・・記憶変位、  6・
・・固化風1室推移計算装賀、  10 ・・・記憶長
i&−11・・・♂応力盃計IT K li!、  1
2−4位累9 it W: 変位#、13・・・記ヤ?
変位、  15・ステップ時刻(!新変位d、   1
6 ・・出力変位、  2o・・・凸レンズキャビティ
、   21〜24・・・熱伝達境界(冷〕J孔を表わ
す)、25・・圧縮用入れ駒、 27・・・凸レンズ肉
厚中心線、 30・・・凸レンズ中心軸。 34・・・凹レンズ肉J9中心線、 35・・・凹レン
ズ外周面
[Brief Description of the Drawings] Fig. 1 is a calculation diagram of a molding process shimieling system according to an embodiment of the present invention, Fig. 2 is a conceptual diagram of an injection molding process, and Fig. 3 is a conceptual diagram of a compression molding process. , FIGS. 4 to 9 show -! of the present invention. '1! A specific example in which the example is applied to convex lens molding. Figure 4 is a mold temperature distribution diagram, Figure 5 is a fat temperature distribution diagram in the convex lens cavity, Figure 6 is a solidification temperature transition diagram, and Figure 7 is a diagram of solidification temperature transition. Figure 8 shows the change in solidification temperature after changing the mold structure, and Figure 9 shows the shape of the convex lens molded product. Also, Figure 10~? R13 figure is -', A! of the present invention. This is a specific example in which the example is applied to concave lens molding. Figure 10 shows the change in resin temperature at the inner cylinder point of the concave lens, Figure 11 shows the shape of the concave lens molded product, and Figure 12 shows the shape of the bond with changed molding conditions. Figure 13 shows the change in the resin temperature l' at the inner cylinder point of the concave lens. Figure 14 shows the temperature 1fi1' and the displacement process 70-, Figure 15 shows the processing flow of thermal stress strain calculation displacement. 1... Input displacement, 2... Memory displacement 戊, 3.
・11 Calculated displacement Jt, 4... Memory displacement, 6.
...Solidification wind 1 chamber transition calculation Soga, 10 ...Memory length i & -11...♂ Stress cup meter IT K li! , 1
2nd-4th place 9 it W: Displacement #, 13... record ya?
Displacement, 15 Step time (!New displacement d, 1
6... Output displacement, 2o... Convex lens cavity, 21-24... Heat transfer boundary (represents cold J hole), 25... Compression piece, 27... Convex lens thickness center line, 30 ...Convex lens center axis. 34...Concave lens thickness J9 center line, 35...Concave lens outer peripheral surface

Claims (2)

【特許請求の範囲】[Claims] (1)射出成形法や圧縮成形法で用いる成形材料、金型
構造、成形条件等を評価する成形プロセスシミュレーシ
ョンシステムにおいて、少くとも、成形材料の温度変化
を算出する第1の手段と、該第1の手段から算出された
成形材料中の溶融もしくは軟化状態の相のつながりが断
たれる時点から成形品が室温一様になるまでに至る成形
材料の温度変化を用いて熱応力歪を算定する第2の手段
と、該第2の手段の演算で設定する初期時刻と熱荷重時
刻を更新する第3の手段と、前記第2の手段から算出さ
れる変位を累積する第4の手段を具備し、前記第2の手
段から算出される変位を繰返し累積して、成形品のひけ
、そり、成形収縮などの成形形状歪を算定するようにし
たことを特徴とする成形プロセスシミュレーションシス
テム。
(1) In a molding process simulation system that evaluates molding materials, mold structures, molding conditions, etc. used in injection molding methods and compression molding methods, at least a first means for calculating the temperature change of the molding material; Calculate thermal stress strain using the temperature change of the molding material calculated from the method of 1 from the time when the connection between the phases in the molten or softened state in the molding material is severed until the molded product becomes uniform at room temperature. It comprises a second means, a third means for updating the initial time and thermal load time set by the calculation of the second means, and a fourth means for accumulating the displacement calculated from the second means. A molding process simulation system characterized in that the displacement calculated from the second means is repeatedly accumulated to calculate molding shape distortions such as sink marks, warpage, molding shrinkage, etc. of the molded product.
(2)射出成形法や圧縮成形法で用いる成形材料、金型
構造、成形条件等を評価する成形プロセスシミュレーシ
ョンシステムにおいて、少くとも、成形材料の温度変化
を算出する第1の手段と、該第1の手段から算出された
温度の変化を用いて成形材料中の溶融もしくは軟化状態
の相の領域の変化を算出する第5の手段と、該第5の手
段から算出された成形材料中の溶融もしくは軟化状態の
相のつながりが断たれる時点から成形品が室温一様にな
るまでの、前記第1の手段から算出された成形材料の温
度変化を用いて熱応力歪を算定する第2の手段と、該第
2の手段の計算で設定する初期時刻と熱荷重時刻を更新
する第3の手段と、前記第2の手段から算出される変位
を累積する第4の手段を具備し、前記第2の手段から算
出される変位を繰返し累積して、成形品のひけ、そり、
成形収縮などの成形形状歪を算定するようにしたことを
特徴とする成形プロセスシミュレーションシステム。
(2) In a molding process simulation system that evaluates molding materials, mold structures, molding conditions, etc. used in injection molding methods and compression molding methods, at least a first means for calculating the temperature change of the molding material; a fifth means for calculating a change in a region of a molten or softened phase in the molding material using the change in temperature calculated from the first means; and a molten state in the molding material calculated from the fifth means. Alternatively, a second method is to calculate the thermal stress strain using the temperature change of the molding material calculated from the first method from the time when the connection between the phases in the softened state is severed until the molded product becomes uniform in room temperature. means, third means for updating the initial time and thermal load time set by the calculation of the second means, and fourth means for accumulating the displacement calculated from the second means, The displacement calculated from the second means is repeatedly accumulated to eliminate sink marks, warpage, and
A molding process simulation system characterized by calculating molding shape distortion such as molding shrinkage.
JP60174857A 1985-08-08 1985-08-08 Molding process simulation system Expired - Lifetime JPH0622840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60174857A JPH0622840B2 (en) 1985-08-08 1985-08-08 Molding process simulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60174857A JPH0622840B2 (en) 1985-08-08 1985-08-08 Molding process simulation system

Publications (2)

Publication Number Publication Date
JPS6234282A true JPS6234282A (en) 1987-02-14
JPH0622840B2 JPH0622840B2 (en) 1994-03-30

Family

ID=15985866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60174857A Expired - Lifetime JPH0622840B2 (en) 1985-08-08 1985-08-08 Molding process simulation system

Country Status (1)

Country Link
JP (1) JPH0622840B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467319A (en) * 1987-09-08 1989-03-14 Toshiba Machine Co Ltd Evaluation method for fluid analysis in molding of molten material
JPS6467320A (en) * 1987-09-08 1989-03-14 Toshiba Machine Co Ltd Evaluation method for fluid analysis in molding of molten material
JPS6467322A (en) * 1987-09-08 1989-03-14 Toshiba Machine Co Ltd Evaluation method for fluid analysis in molding of molten material
JPS6467323A (en) * 1987-09-08 1989-03-14 Toshiba Machine Co Ltd Evaluation method for fluid analysis in molding of molten material
WO2002034499A1 (en) * 2000-10-27 2002-05-02 General Electric Company Method of predicting optimal injection molding cycle time
JP2006001184A (en) * 2004-06-18 2006-01-05 Hoya Corp Method for designing molding tool, molding tool and optical lens
JP2007141046A (en) * 2005-11-21 2007-06-07 Toyo Seikan Kaisha Ltd Molding analysis method and molding analysis device
JP2009233882A (en) * 2008-03-26 2009-10-15 Polyplastics Co Void generation prediction method of resin molded article
JP2012056250A (en) * 2010-09-10 2012-03-22 Polyplastics Co Method of determining raw material composition or manufacturing condition
JP2012152964A (en) * 2011-01-24 2012-08-16 Sharp Corp Device and method for predicting amount of deformation, program, and recording medium
WO2016157335A1 (en) * 2015-03-27 2016-10-06 株式会社日立製作所 Resin flow analysis method for electronic component, heat transmission analysis method, heat stress analysis metho, and apparatus therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467319A (en) * 1987-09-08 1989-03-14 Toshiba Machine Co Ltd Evaluation method for fluid analysis in molding of molten material
JPS6467320A (en) * 1987-09-08 1989-03-14 Toshiba Machine Co Ltd Evaluation method for fluid analysis in molding of molten material
JPS6467322A (en) * 1987-09-08 1989-03-14 Toshiba Machine Co Ltd Evaluation method for fluid analysis in molding of molten material
JPS6467323A (en) * 1987-09-08 1989-03-14 Toshiba Machine Co Ltd Evaluation method for fluid analysis in molding of molten material
JPH0469849B2 (en) * 1987-09-08 1992-11-09 Toshiba Machine Co Ltd
JPH0469852B2 (en) * 1987-09-08 1992-11-09 Toshiba Machine Co Ltd
JPH0469850B2 (en) * 1987-09-08 1992-11-09 Toshiba Machine Co Ltd
JPH0469851B2 (en) * 1987-09-08 1992-11-09 Toshiba Machine Co Ltd
WO2002034499A1 (en) * 2000-10-27 2002-05-02 General Electric Company Method of predicting optimal injection molding cycle time
JP2006001184A (en) * 2004-06-18 2006-01-05 Hoya Corp Method for designing molding tool, molding tool and optical lens
JP2007141046A (en) * 2005-11-21 2007-06-07 Toyo Seikan Kaisha Ltd Molding analysis method and molding analysis device
JP4715462B2 (en) * 2005-11-21 2011-07-06 東洋製罐株式会社 Molding analysis method and molding analysis apparatus
JP2009233882A (en) * 2008-03-26 2009-10-15 Polyplastics Co Void generation prediction method of resin molded article
JP2012056250A (en) * 2010-09-10 2012-03-22 Polyplastics Co Method of determining raw material composition or manufacturing condition
JP2012152964A (en) * 2011-01-24 2012-08-16 Sharp Corp Device and method for predicting amount of deformation, program, and recording medium
WO2016157335A1 (en) * 2015-03-27 2016-10-06 株式会社日立製作所 Resin flow analysis method for electronic component, heat transmission analysis method, heat stress analysis metho, and apparatus therefor

Also Published As

Publication number Publication date
JPH0622840B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
Huang et al. The effective factors in the warpage problem of an injection-molded part with a thin shell feature
Choi et al. Prediction of shrinkage and warpage in consideration of residual stress in integrated simulation of injection molding
EP0844057B1 (en) Mold designing method and apparatus
JPS6234282A (en) Molding process simulation system
KR100886992B1 (en) Injection molding simulation apparatus and method of injection molding simulation
Kim et al. Residual stress distributions and their influence on post-manufacturing deformation of injection-molded plastic parts
Sun et al. The application of modified PVT data on the warpage prediction of injection molded part
Fu et al. A method to predict early-ejected plastic part air-cooling behavior towards quality mold design and less molding cycle time
Chen et al. Determination of process parameters based on cavity pressure characteristics to enhance quality uniformity in injection molding
CN101544043B (en) Injection molding process analysis method
Wu et al. The influence of cavity deformation on the shrinkage and warpage of an injection-molded part
Jin et al. Analysis and design for reducing residual stress and distortion after ejection of injection molded part with metal-insert
CN101691058A (en) Void generation prediction method of resin molded article
JP2004160700A (en) Simulation apparatus for injection molding process and method for estimating shape precision
Mustafa et al. 3‐D nonisothermal flow simulation model for injected pultrusion processes
JP6420881B1 (en) Compression molding analysis system, compression molding analysis method, and compression molding analysis program
JP2001293748A (en) Injection molding process simulation apparatus and shape accuracy estimating method
JP7262986B2 (en) Injection mold, injection mold manufacturing method, injection molding machine, and resin molded product manufacturing method
Li et al. Modelling and simulation of residual stress and warpage in injection moulding
McFarland et al. Production and analysis of injection molded micro‐optic components
JPH02258229A (en) Method and apparatus for simulating molding process
Zhang et al. Three-dimensional numerical simulation for plastic injection-compression molding
JP2001205683A (en) Apparatus and method for simulating injection molding process, and storage medium
Kleindel et al. The elastic mold deformation during the filling and packing stage of the injection molding process
JP2003011199A (en) Device for simulating injection molding process and method for predicting shape precision