JPS6233826A - Production of high-strength and high-modulus carbon fiber - Google Patents

Production of high-strength and high-modulus carbon fiber

Info

Publication number
JPS6233826A
JPS6233826A JP17236385A JP17236385A JPS6233826A JP S6233826 A JPS6233826 A JP S6233826A JP 17236385 A JP17236385 A JP 17236385A JP 17236385 A JP17236385 A JP 17236385A JP S6233826 A JPS6233826 A JP S6233826A
Authority
JP
Japan
Prior art keywords
fibers
strength
inert gas
elongation
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17236385A
Other languages
Japanese (ja)
Inventor
Yutaka Haga
芳賀 裕
Toru Kuroki
徹 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP17236385A priority Critical patent/JPS6233826A/en
Publication of JPS6233826A publication Critical patent/JPS6233826A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain carbon fibers having a high strength and high modulus with little fluff, by carbonizing flameproofed fibers obtained by heat-treating polyacrylonitrile (PAN) based fibers in an oxidizing atmosphere under specific conditions. CONSTITUTION:Polyacrylonitrile based fibers are heat-treated in an oxidizing atmosphere at 200-350 deg.C to give flameproofed fibers without mutual adhesion of fibers, which are then pretreated in an inert gas atmosphere at 400-800 deg.C and 0-15% extension ratio, treated in an inert gas atmosphere at 900-1,200 deg.C and -2-8% extension ratio and then treated in an inert gas atmosphere at 1,250-1,450 deg.C and 0-4% extension ratio. In the process, the fibers are treated in an inert gas atmosphere containing a halogen within 900-1,200 deg.C and/or 1,250-1,450 deg.C temperature regions, preferably for >=10sec.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高強度・高弾性の炭素繊維を製造する方法に
関するもので、特にポリアクリロニトリル系繊維から新
規な高強度・高弾性の炭素繊維を製造する方法に関する
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing high-strength, high-modulus carbon fibers, and particularly relates to a method for producing high-strength, high-modulus carbon fibers from polyacrylonitrile fibers. Relating to a method of manufacturing.

〔従来の技術〕[Conventional technology]

炭素繊維は、その優れた強度・弾性率から、各種複合材
料の強化繊維として、航空宇宙用途、工業用材料、スポ
ーツ・レジャー用品等に使用されている。しかし、その
強度・弾性率は未だ充分とは言えず、特に航空宇宙分野
の一次構造材及び、−gス?−ツ・レジャー用品等では
更に高強度・高弾性の炭素繊維の開発が望まれている。
Due to its excellent strength and modulus of elasticity, carbon fiber is used as a reinforcing fiber in various composite materials, in aerospace applications, industrial materials, sports and leisure goods, etc. However, its strength and elastic modulus are still not sufficient, especially for primary structural materials in the aerospace field. - There is a desire for the development of carbon fibers with even higher strength and higher elasticity for leisure goods and the like.

近年、特にこれらの要求に対し炭素繊維の特性も多様化
しており、強度500 ky/m2以上、弾性率24t
on/m2の高強度・高伸度炭素繊維、あるいは高強度
で弾性率30 ton/w2の高弾性・高伸度の炭素繊
維が主流になると指摘されている。本発明は、特に高強
度・高弾性炭素繊維に関するものであるが、従来技術で
は、高強度と高弾性を同時に満足する炭素繊維を得るの
は困難な状況にある。それは、一般に知られているよう
に、炭素NLmの強度は、最高温度1000〜1500
℃の処理で最高値が得られ、それ以上の温度では低下す
る一方で、弾性率は、処理温度の上昇とともに増加する
ことによる。最近上記問題を克服し、高強度・高弾性の
炭素繊維を製造する方法が提案されている0例えば、特
開昭60−88127.特開昭60−88128゜特開
昭60−88129は、0.1〜1.1デニールの細い
ポリアクリロニトリル繊維を用い、耐炎化工程の伸長、
及び炭素化工程の伸長によって、繊径1〜6μ、ストラ
ンド強度が430kg/lll112以上、弾性率28
 ton、/m2以上の高強度、高弾性炭素繊維を得よ
うとするものであるが、1.17’ニール以下の繊度を
有するIリアクロニトリル繊維を用いることが不可欠と
なっている。更に、ストランド弾性率30 ton/R
2を得るには、少なくとも1450℃以上の最高処理温
度を必要とし、又、耐炎化及び炭素化を含めた合計伸長
率は25〜4(lにもなる。これらの条件は、我々の検
討では製造コストの増加を招き、高価な炭素繊維は、よ
り高価となシ、汎用化・用途拡大を妨げる要因となる。
In recent years, the properties of carbon fiber have become increasingly diverse, especially in response to these demands.
It has been pointed out that high strength and high elongation carbon fibers with on/m2 or high strength and high elasticity and high elongation carbon fibers with an elastic modulus of 30 ton/w2 will become mainstream. The present invention particularly relates to high-strength and high-modulus carbon fibers, but with conventional techniques, it is difficult to obtain carbon fibers that simultaneously satisfy high strength and high modulus. As is generally known, the strength of carbon NLm is the maximum temperature of 1000-1500
This is due to the fact that the modulus increases with increasing treatment temperature, while the highest value is obtained with treatment at 0.degree. C. and decreases at higher temperatures. Recently, methods have been proposed for overcoming the above problems and manufacturing carbon fibers with high strength and high elasticity. JP-A No. 60-88128 and JP-A No. 60-88129 use thin polyacrylonitrile fibers of 0.1 to 1.1 deniers, elongation in the flame-retardant process,
And by elongation in the carbonization process, the fiber diameter is 1 to 6 μ, the strand strength is 430 kg/lll112 or more, and the elastic modulus is 28.
In order to obtain high-strength, high-elasticity carbon fibers of ton,/m2 or more, it is essential to use I-lyacronitrile fibers having a fineness of 1.17' neel or less. Furthermore, the strand elastic modulus is 30 ton/R
2 requires a maximum treatment temperature of at least 1450°C or higher, and the total elongation rate including flame resistance and carbonization is 25 to 4 (l). This causes an increase in manufacturing costs, and expensive carbon fibers become more expensive, which is a factor that hinders generalization and expansion of applications.

その理由は、!a繊度化により、ポリアクリロニトリル
繊維、及び炭素繊維の生産量が低下し、製造コストが増
加すること、更に最高処理温度が高くなることは、炭素
化炉の電力量の増加、及び発熱体や炉芯管の寿命が短く
なり、それらの交換に要する費用、生産の休止は無視で
きず、製造コストが増加するためである。更に、合計伸
長率が25〜40優にもなるため、毛羽発生が生じたり
、均一な延伸が困難であったりして、工業的方法として
安定にかつ安価に炭素繊維を製造する条件としては、必
ずしも満足の行くものではない。
The reason is,! a Due to finer fineness, the production volume of polyacrylonitrile fibers and carbon fibers will decrease, and manufacturing costs will increase.Furthermore, the maximum processing temperature will increase, which will lead to an increase in the amount of electricity in the carbonization furnace, and a reduction in heating elements and furnaces. This is because the lifespan of the core tube is shortened, and the cost of replacing them and the suspension of production cannot be ignored, which increases manufacturing costs. Furthermore, since the total elongation rate is as high as 25 to 40, fluffing occurs and uniform stretching is difficult, so the conditions for producing carbon fiber stably and inexpensively as an industrial method are: It's not always satisfying.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

こうした状況下で、本発明者等は、高強度・高弾性の炭
素繊維をよシ安価にかつ安定に製造し得る工業的方法を
見出子べく検討を進め、本発明に到った。本発明は、即
ち、上記の如き従来技術における問題点を解消して、高
強度・高弾性の炭素繊維を安価でかつ安定して得ること
のできる、工業的に有利な方法を提供しようとするもの
である。
Under these circumstances, the present inventors conducted studies to find an industrial method that could stably produce high-strength, high-elastic carbon fibers at a lower cost, and arrived at the present invention. That is, the present invention aims to solve the problems in the prior art as described above and provide an industrially advantageous method that can stably obtain high strength and high elasticity carbon fibers at low cost. It is something.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ポリアクリロニトリル系繊維から高強度・高
弾性炭素繊維を製造する方法を提供するもので、この方
法は、ポリアクリロニトリル系繊維を原料繊維とし、2
00〜350℃の酸化性雰囲気中で熱処理された、単繊
維同志の接着のない耐炎化繊維を、(1) 400〜8
00℃の不活性ガス雰囲気中で伸長率0〜15%で処理
しく炭素化第1工程)、ついで、(2) 900〜12
00Cの不活性ガス雰囲気中で伸長率−2〜8%で処理
しく炭素化第2工程)、さらに、(3) 1250〜1
450℃の不活性オ囲気中で伸長率θ〜4チで処理する
(炭素化第3工程)ものであって、上記(2)および/
又は(3)における処理を、少なくともハロゲン化水素
ガスを含む不活性ガスを用いて行うことを特徴とする。
The present invention provides a method for producing high-strength, high-elasticity carbon fiber from polyacrylonitrile fiber, and this method uses polyacrylonitrile fiber as a raw material fiber,
(1) 400-8
(1st step of carbonization) at an elongation rate of 0 to 15% in an inert gas atmosphere at 00°C, and then (2) 900 to 12
00C in an inert gas atmosphere at an elongation rate of -2 to 8% (second carbonization step), and (3) 1250 to 1
It is treated in an inert atmosphere at 450° C. at an elongation rate of θ to 4 (third carbonization step), and the above (2) and/or
Alternatively, the treatment in (3) is performed using an inert gas containing at least hydrogen halide gas.

本発明における最も重要な条件は、炭素化工程、特に温
度範囲t−900〜1200℃に限定し、さらKそこで
の伸長範囲及び不活性ブス雰囲気種及び処理時間を限定
組合せすることにある。
The most important conditions in the present invention are to limit the carbonization step, particularly to the temperature range t-900 to 1200°C, and to further limit the elongation range therein, the type of inert bath atmosphere, and the treatment time in limited combination.

第1図は500℃の温度においで、伸長率6%イで処理
された糸を用い、2L0M間隔知無機物質で印を入れ、
それを500〜1350℃の温度勾配を有する炭素化炉
で、伸長率1チで処理し、それを炉内より引き抜りて長
さ変化を測定した、炉内各温度での糸長伸縮変化上水す
(@)、史に、同じ試料を用い、X線回折法で求められ
る炭素(002)面の微結晶サイズ変化を示す(■)。
Figure 1 shows yarn treated at a temperature of 500°C with an elongation rate of 6%, marked with a 2L0M spacing inorganic substance,
It was treated in a carbonization furnace with a temperature gradient of 500 to 1350°C at an elongation rate of 1 inch, and the yarn was pulled out from the furnace and the change in length was measured. Changes in yarn length expansion and contraction at various temperatures in the furnace Shimizu (@) and Fumi show the change in microcrystal size of the carbon (002) plane determined by X-ray diffraction using the same sample (■).

ここで示されろ微結晶サイズは、X線(Cu−にα線使
用)により、炭素(002)WJの反射における赤道線
方向の散乱強度分布の半価幅より、公知のシェラ−の式
で算出した。
The microcrystal size shown here is determined by the well-known Scherrer equation from the half-width of the scattering intensity distribution in the equatorial direction in the reflection of carbon (002) WJ using X-rays (α-rays are used for Cu-). Calculated.

ここでβはパックグランド補正後の半価幅、Kは形状因
子で、0,9の定数とした。θは炭素(002)面の反
射角度、λはX線の波長である。糸の伸縮挙動は、50
0〜800℃で伸長領域にあるが、900〜1200℃
の温度域では収縮領域にあう、更に1200℃以上では
伸長領域へと変化している。微結晶サイズは、500℃
より温度が増加するに従い、小さくなり、800〜90
0℃で最小となる。900℃を越えると、再度、結晶が
大きく成長する現象を示す。これは、処理される繊維自
体、各温度で著しい化学構造変化をうけていることを反
映している0本発明においては、微結晶サイズが、再度
大きく成長する初期温度域においで、特定の伸長を付与
し、収縮挙動を抑制すること、更に微結晶サイズの再成
長時に一致させて伸長全付与しながら、−・ロダン化水
素がス全含む不活性ガス雰囲気中で特定時間以上、好ま
しくは10秒以上処理することが、炭素繊維の強度・弾
性率増加に極めて効果的であり、かつ毛羽発生の少ない
安定な製法であることが見出されたのである。
Here, β is the half width after pack-ground correction, and K is the shape factor, which is a constant of 0.9. θ is the reflection angle of the carbon (002) surface, and λ is the wavelength of the X-ray. The stretching behavior of the thread is 50
It is in the elongation region at 0-800℃, but at 900-1200℃
In the temperature range of 1,200° C., it is in the contraction region, and furthermore, in the temperature range of 1200° C. or higher, it is in the elongation region. Microcrystal size is 500℃
As the temperature increases, it decreases to 800-90
Minimum at 0°C. When the temperature exceeds 900°C, the phenomenon of crystal growth again occurs. This reflects the fact that the processed fiber itself undergoes a significant chemical structural change at each temperature. and suppressing the shrinkage behavior, and furthermore, while giving the total elongation in accordance with the time of regrowth of the microcrystalline size, in an inert gas atmosphere containing all hydrogen rodanide for a specific period of time or more, preferably 10 It has been discovered that processing for more than a second is extremely effective in increasing the strength and elastic modulus of carbon fibers, and is a stable manufacturing method with little generation of fuzz.

以下本発明について、更に詳細に説明する。The present invention will be explained in more detail below.

本発明で用いるポリアクリロニトリル系繊維は、好まし
くは、アクリロニトリルを90重量%以上含有する重合
体からなる繊維である。10重世襲以下であれば、アク
リロニトリルと共重合可能な従来公知の単量体、例えば
、アクリル酸、メタクリル酸、イタコン酸等の不飽和カ
ルデン酸、これらの酸のエステル類、塩化ビニル、酢酸
ビニル、スチレン、アクリルアミド、α−クロルアクリ
ロニトリル、アリルスルホン酸等を、アクリロニトリル
と共重合すべき相手成分として有効に用いることができ
る。ポリアクリロニトリル系繊維の繊度は、特に限定さ
れるものではないが、現在までの汎用炭素繊維と同一の
1.2〜1.5デニールを使用することが、製造コスI
f安1西にするためにより好ましい。紡糸方法としては
、湿式紡糸、乾式紡糸、乾−湿式紡糸法等があり、接着
のない長繊維を得る方法であれば特に限定されず、従来
公知の方法が適用される。
The polyacrylonitrile fiber used in the present invention is preferably a fiber made of a polymer containing 90% by weight or more of acrylonitrile. Conventionally known monomers copolymerizable with acrylonitrile, for example, unsaturated caldic acids such as acrylic acid, methacrylic acid, and itaconic acid, esters of these acids, vinyl chloride, and vinyl acetate, if 10 times or less. , styrene, acrylamide, α-chloroacrylonitrile, allylsulfonic acid, etc. can be effectively used as a partner component to be copolymerized with acrylonitrile. The fineness of the polyacrylonitrile fiber is not particularly limited, but it is recommended to use 1.2 to 1.5 denier, which is the same as the current general-purpose carbon fiber, to reduce manufacturing costs.
It is more preferable to make f-an 1 west. The spinning method includes wet spinning, dry spinning, dry-wet spinning, etc., and there is no particular limitation as long as it is a method for obtaining long fibers without adhesion, and conventionally known methods can be applied.

本発明ておいて、このような繊維全200〜350℃の
酸化性雰囲気中で熱処理し、接着のない耐炎化糸を得る
必要がある。酸化性雰囲気としては、空気が主として使
用されるが、−酸化窒素や亜硫酸ガスと空気の混合雰囲
気全使用してもよい。この接着のない耐炎化糸を得る方
法については、接着を防止できる方法であれば特に限定
されないが、一般に急速に高温度で耐炎化を行うと、暴
走反応により、繊維が融着、ひいては糸切れ現象を示す
ので、200〜350℃の範囲で、低温側から徐々に高
温側へ何段かに分けて耐炎化するのが通常である。いづ
れにしても、接着のない耐炎化糸を得る事が必要であり
、接着していると後の炭素化処理時に延伸が困難になり
、糸切れが生じたり、また糸切れがなくても良好な物性
が得られなかったりする。耐炎化工程で付与する伸長に
ついては、毛羽が生じない適当な伸長操作を施すことが
好ましい。
In the present invention, it is necessary to heat-treat all such fibers in an oxidizing atmosphere at 200 to 350 DEG C. to obtain a flame-resistant yarn without adhesion. Air is mainly used as the oxidizing atmosphere, but a mixed atmosphere of -nitrogen oxide or sulfur dioxide gas and air may also be used. There are no particular restrictions on the method for obtaining flame-retardant yarn without adhesion, as long as it can prevent adhesion, but in general, if flame-retardant is rapidly applied at high temperatures, a runaway reaction will cause the fibers to fuse and eventually break. Therefore, flame resistance is usually achieved in several stages from the low temperature side to the high temperature side gradually in the range of 200 to 350°C. In any case, it is necessary to obtain a flame-resistant yarn without adhesion, and if it is adhered, it will be difficult to stretch during the carbonization process later, resulting in yarn breakage, or even if there is no yarn breakage, it will be fine. It may not be possible to obtain suitable physical properties. Regarding the elongation imparted in the flameproofing step, it is preferable to perform an appropriate elongation operation that does not cause fuzz.

本発明においては、前記接着のない耐炎化糸を、400
〜800℃の不活性ガス雰囲気中で、伸長率0〜15%
で処理する炭素化第1工程が必要である。それは、炭素
化第2工程と伸長率及び処理雰囲気ガスを区分しようと
するためであり、この工程において伸長率が0チ以下で
あると、高強度・高弾性の炭素繊維を得る事が困難であ
り、また15%を越えると、延伸後や毛羽発生をともな
い、場合によっては糸切れが生じ、安定して高強度・高
弾性の炭素繊維を得ることができない。本工程での処理
温度は、400〜800℃である。400℃未満では炭
素化反応が遅く長時間を要し、工業的実施には不利であ
る。一方、800tt−越えると、炭素化第2工程の温
度領域を含むことになり、本発明の効果が低下すると共
に、強度低下が著しい。不活性雰囲気ガスとしては、操
作性、経済性の面から窒素音用いることが好ましい。
In the present invention, the non-adhesive flame-retardant yarn is
Elongation rate 0-15% in inert gas atmosphere at ~800℃
A first carbonization step is required. This is because the elongation rate and processing atmosphere gas are to be differentiated from the second carbonization step. If the elongation rate is less than 0 in this step, it will be difficult to obtain high-strength and high-elastic carbon fibers. If it exceeds 15%, thread breakage may occur after drawing or fluffing may occur, making it impossible to stably obtain carbon fibers with high strength and high elasticity. The treatment temperature in this step is 400 to 800°C. Below 400°C, the carbonization reaction is slow and takes a long time, which is disadvantageous for industrial implementation. On the other hand, if it exceeds 800 t-, the temperature range includes the second carbonization step, and the effect of the present invention decreases, and the strength decreases significantly. As the inert atmosphere gas, it is preferable to use nitrogen gas from the viewpoint of operability and economy.

炭素化第1工程に続き、炭素化第2工程を行うこと、す
なわち、900〜1200℃のノへロダン化水素ガスを
含む不活性がス雰囲気中で、少なくとも10極間以上処
理し、伸長本音−2〜8チとすることが必要である。処
理温度が900℃未満では、ハロゲン化水素ガスを含む
不活性ガス雰囲気による強度向上効果が少なく、毛羽発
生も多い。
Following the first carbonization step, a second carbonization step is performed, that is, at least 10 electrodes are treated in an inert gas atmosphere containing hydrogen hydrogen gas at 900 to 1200°C, and the elongation process is carried out. -2 to 8 inches is necessary. When the treatment temperature is less than 900° C., the strength-improving effect of the inert gas atmosphere containing hydrogen halide gas is small and fuzz is often generated.

さらに900℃未満で生じる伸長と区分することができ
ず、900〜1200℃での収縮がより大きくなシ、弾
性率が低下する。一方、1200℃を越える場合は、1
200℃以上で生じる伸長と区分することができず、上
記と同様に弾性率が低下する。温度プロファイルは、上
記温度範囲であれば、どれt−最高値としてもよく、あ
るいは900℃から1200℃まで徐々に昇温される温
度プロファイルでもよい。伸長範囲は、−2〜8%であ
り、好ましくは0〜4%である。伸長が一2%未満では
、高強度は得られるものの、目標の弾性率を得ることが
困難である。一方、8%以上では、延伸斑や糸切れが生
じ、安定に目標の炭素繊維を得ることができない。90
0〜1200℃の温度範囲での収縮を抑制し、伸長する
ことが弾性率を増加させる重要な操作である。
Furthermore, it cannot be distinguished from the elongation that occurs at temperatures below 900°C, and the contraction at 900 to 1200°C is greater, resulting in a lower elastic modulus. On the other hand, if the temperature exceeds 1200℃, 1
It cannot be distinguished from elongation that occurs at temperatures of 200° C. or higher, and the elastic modulus decreases in the same way as above. The temperature profile may be any t-maximum value within the above temperature range, or may be a temperature profile in which the temperature is gradually increased from 900°C to 1200°C. The elongation range is -2 to 8%, preferably 0 to 4%. If the elongation is less than 12%, high strength can be obtained, but it is difficult to obtain the target elastic modulus. On the other hand, if it is 8% or more, stretching unevenness and thread breakage occur, making it impossible to stably obtain the target carbon fiber. 90
Suppressing shrinkage and elongation in the temperature range of 0 to 1200°C are important operations to increase the elastic modulus.

更に、へロrン化水素ガスとしては、塩化水素、フッ化
水素、臭化水素等、不活性ガスとしては、窒素、アルゴ
ン、ヘリウム、水素等を用いることができる。−ロダン
化水素ガスは0.1容量チ以上、残りを不活性ガスとす
るのが好ましく、操作性及び経済性の面から、窒素と塩
化水素の組合せを用いることが更に好ましい。ハロゲン
化水素ガスを含む不活性雰囲気で処理し九場合、炭素繊
維の強度が高くなシ、特に900〜1200℃の温度範
囲においで、その効果が著しい。更に、へロrン化水素
がスを含まない場合に比較して、同一伸長率での毛羽発
生が極めて少なくなり、ハoffン化水素ガスが、延伸
の均一化に有効であることも見出された。
Furthermore, hydrogen chloride, hydrogen fluoride, hydrogen bromide, etc. can be used as the hydrogen heronide gas, and nitrogen, argon, helium, hydrogen, etc. can be used as the inert gas. - It is preferable that the hydrogen rhodanide gas has a volume of 0.1 or more, with the remainder being an inert gas. From the viewpoint of operability and economy, it is more preferable to use a combination of nitrogen and hydrogen chloride. When treated in an inert atmosphere containing hydrogen halide gas, the strength of the carbon fibers is high, and the effect is particularly significant in the temperature range of 900 to 1200°C. Furthermore, compared to the case where hydrogen heronide does not contain gas, the generation of fuzz at the same elongation rate is extremely small, indicating that hydrogen heronide gas is effective in making the stretching uniform. Served.

炭素化第2工程における処理時間は、少なくとも10秒
間以上であり、これは・〜ロダン化水素ガスを含むこと
による、高強度化、延伸の均一化を充分て発現させるた
めに必要である。
The treatment time in the second carbonization step is at least 10 seconds or more, which is necessary to sufficiently achieve high strength and uniform stretching due to the inclusion of hydrogen rhodanide gas.

炭素化第2工程に続き、炭素化第3工程、丁なわち、1
250〜1450℃の不活性ガス雰囲気中で伸長率を0
〜4チとする処理が必要である。
Following the second carbonization step, the third carbonization step, namely, 1
The elongation rate is 0 in an inert gas atmosphere at 250-1450℃.
~4chi processing is required.

処理温度が1250℃未満では目標の弾性率が得られず
、また1450℃以上では、弾性率は高くなるものの、
強度低下が生じる。更に、1450℃以上では、炭素化
炉の電力量の増加はもとより、発熱体や炉芯管の寿命が
短くなシ、更には使用できる発熱体や炉芯管材料も制約
され、例えば、発熱体は、炭化ケイ素より炭素へ、炉芯
管もAtl管よシ炭素へと、炭素化炉材質を変更する必
要性も生じてしまう。本発明の好ましい温度範囲は、1
300〜1400℃である。伸長範囲は、0〜4%であ
)、0%未満では処理される糸にまたるみ”が発生し、
目標の弾性率が得られない。4%以上の伸長では、毛羽
発生、糸切れ発生等があり、安定に目標の炭素繊維を得
ることができない。好ましい伸長率は、0.5〜2.5
%である。不活性ガス雰囲気は、炭素化第2工程同様、
−ロダン化水素ガスを含んでもよいし、あるいは窒素だ
けでもよい。
If the treatment temperature is less than 1250°C, the target elastic modulus cannot be obtained, and if the treatment temperature is 1450°C or higher, although the elastic modulus becomes high,
A decrease in strength occurs. Furthermore, at temperatures above 1450°C, not only does the power consumption of the carbonization furnace increase, but the lifespan of the heating element and furnace core tube is shortened, and the materials that can be used for the heating element and furnace core tube are also restricted. In this case, it becomes necessary to change the material of the carbonization furnace from silicon carbide to carbon, and from an Atl tube to carbon for the furnace core tube. The preferred temperature range of the present invention is 1
The temperature is 300-1400°C. The elongation range is 0 to 4%), and if it is less than 0%, the processed yarn will become sagging.
The target elastic modulus cannot be obtained. If the elongation exceeds 4%, fluffing and thread breakage occur, making it impossible to stably obtain the desired carbon fiber. The preferred elongation rate is 0.5 to 2.5.
%. The inert gas atmosphere is similar to the second carbonization step.
- It may contain hydrogen rhodanide gas, or it may contain only nitrogen.

更に、炭素化第2工程及び炭素化第3工程の雰囲気ガス
を−・ログン化水素がス全含む酸化性雰囲気ガスとし、
炭素繊維の表面処理を同時に実施してもよい。
Furthermore, the atmosphere gas in the second carbonization step and the third carbonization step is an oxidizing atmosphere gas containing all hydrogen rogonide,
Surface treatment of the carbon fibers may be carried out at the same time.

以上述べたように、本発明の方法の特徴は、まず接着の
ない耐炎化糸を得、次いで3段階で炭素化するに当って
、特に炭素化第2工程の温度、及び伸長率を特定の範囲
とし、かつ−ロダン化水素ガスを含む不活性ガス雰囲気
中で処理することにあシ、本発明の条件下で、?リアク
リロニトリル系繊維の繊度が1.2デニ一ル以上であっ
ても、更だ炭素化第3工程の最高処理温度を増加させな
くても、高強度・高弾性でかつ毛羽の少ない炭素繊維を
安定に、そして安価に製造することが可能となり、本発
明の工業的意義は極めて大きい。
As described above, the feature of the method of the present invention is that flame-resistant yarn without adhesion is first obtained, and then carbonized in three steps. under the conditions of the present invention, and treated in an inert gas atmosphere containing hydrogen rhodide gas. Even if the fineness of the acrylonitrile fiber is 1.2 denier or higher, it is possible to produce carbon fibers with high strength, high elasticity, and low fluff without increasing the maximum treatment temperature in the third carbonization step. It becomes possible to manufacture stably and at low cost, and the industrial significance of the present invention is extremely large.

〔実施例〕〔Example〕

以下に実施例を挙げて本発明を更に説明するが、これら
の例は本発明を限定するものではない。なお、炭素繊維
のストランド強度・弾性率・伸度は、JIS−R760
1に示されている樹脂含浸ストランド試験方法にて実施
し、樹脂処方は、同解説例2を用いた。炭素繊維の直径
は、繊度及び比重より換算して求めた。
The present invention will be further explained below with reference to Examples, but these examples are not intended to limit the present invention. In addition, the strand strength, elastic modulus, and elongation of carbon fiber are based on JIS-R760.
The test was carried out using the resin-impregnated strand test method shown in Section 1, and the resin formulation used was Explanation Example 2. The diameter of the carbon fiber was calculated from the fineness and specific gravity.

実施例1 アクリロニトリル/メタクリル&=98.0/2.0(
重量%)なる共重合体を用い、硝酸を溶媒として、湿式
紡糸法によシ、フィラメント数6000本、単糸デニー
ル1.3dのプリカーサ−を得た。この繊維束を、空気
雰囲気中235cで20分、次いで255℃で40分か
けて耐炎化した。このとき、伸長率は10チに設定した
。この耐炎化糸に接着は認められず、比重は1.39g
/CCであった。この耐炎化糸を用いて、表−1に示す
炭素化第1工程条件にて90秒間処理し、つづいて最高
温度1100℃に設定された炭素化第2工程を、伸長率
を変化させて60秒間実施した後、最高温度1350℃
に設定された炭素化第3工程を伸長率1%で、60秒間
実施した。なお各工程の雰囲気ガスは、第1工程が窒素
、第2工程は窒素/塩化水素=97.3/2.7(容量
チ)、第3工程は窒素とした。得られた炭素繊維の諸物
性を表−1に示す。また実験番号7の、接着のある耐炎
イし糸は、同じノリカーサ−を用いて、260℃で30
分間、空気雰囲気中で耐炎化したものである。
Example 1 Acrylonitrile/methacrylic &=98.0/2.0 (
A precursor having 6,000 filaments and a single yarn denier of 1.3 d was obtained by wet spinning using a copolymer (% by weight) and nitric acid as a solvent. This fiber bundle was made flame resistant in an air atmosphere at 235° C. for 20 minutes and then at 255° C. for 40 minutes. At this time, the elongation rate was set to 10 inches. No adhesion was observed in this flame-resistant thread, and the specific gravity was 1.39g.
/CC was. Using this flame-resistant yarn, it was treated for 90 seconds under the conditions of the first carbonization step shown in Table 1, and then the second carbonization step was performed at a maximum temperature of 1100°C for 60 seconds while changing the elongation rate. Maximum temperature 1350℃ after running for seconds
The third carbonization step was carried out at an elongation rate of 1% for 60 seconds. Note that the atmospheric gas in each step was nitrogen in the first step, nitrogen/hydrogen chloride=97.3/2.7 (capacity) in the second step, and nitrogen in the third step. Table 1 shows the physical properties of the obtained carbon fiber. In addition, in Experiment No. 7, the adhesive flame-resistant yarn was made using the same glue cursor, and was
It is flame resistant in an air atmosphere for several minutes.

以下余白 実施例2 実施例1に示す共重合体及び紡糸方法により、フィラメ
ント数6000本、単糸デニール0.8dのグリカーサ
−を得たのち、同一条件で耐炎化し、接着のない耐炎化
糸を得、更て実施例1の実験番号1と同一炭素化条件で
炭素化した。得られた炭素繊維の物性は、ストランド強
度が535kg/■2、弾性率が30.5 ton、乙
■2、伸度1.75チ、直径5.4μであった・ 実施例3 実施例1と同様にして得た接着のない耐炎化糸を用い、
炭素化第1工程を最高処理温度500℃で伸長率″’に
6%として処理し、つづいて炭素化第2工程を、表−2
に示す条件で処理した後、炭素化第3工程を、最高処理
温度1350℃、伸長率1%で処理し念。雰囲気ガス条
件、処理時間は、実施例1と同じである。得られた炭素
繊維の諸物性を表−2に示す。
Example 2: Using the copolymer and spinning method shown in Example 1, a glycercer with 6,000 filaments and a single yarn denier of 0.8 d was obtained, and then flame resistant was made under the same conditions to produce flame resistant yarn without adhesion. This was further carbonized under the same carbonization conditions as in Experiment No. 1 of Example 1. The physical properties of the obtained carbon fiber were that the strand strength was 535 kg/■2, the elastic modulus was 30.5 tons, Otsu2, the elongation was 1.75 inches, and the diameter was 5.4 μ.Example 3 Example 1 Using non-adhesive flame-retardant yarn obtained in the same manner as above,
The first carbonization step was carried out at a maximum treatment temperature of 500°C and an elongation rate of 6%, followed by the second carbonization step as shown in Table 2.
After processing under the conditions shown in , the third carbonization step was carried out at a maximum processing temperature of 1350°C and an elongation rate of 1%. The atmospheric gas conditions and processing time are the same as in Example 1. Table 2 shows the physical properties of the obtained carbon fiber.

実施例4 実施例1と同様にして得た接着のない耐炎化基金用い、
炭素化第1工程を、最高処理温度500℃で、伸長基音
6チとして処理し、つづいて炭素化第2工程を、900
℃から1200Cまでの温度勾配を有する炉で、伸長率
3%として処理し、つづいて炭素化第3工程を表−3に
示す条件で処理し九。処理時間は実施例1と同様である
。各工程の雰開気ガスは、第1工程が窒素、第2工程及
び第3工程は、それぞれ窒素/塩化水素= 97.3/
2.7(容量チ)とした。得られ念炭素繊維の諸物性を
表−3に示す。
Example 4 Using non-adhesive flame retardant foundation obtained in the same manner as Example 1,
The first carbonization step was carried out at a maximum treatment temperature of 500°C with an extended fundamental tone of 6chi, followed by the second carbonization step at a temperature of 900°C.
The material was treated in a furnace having a temperature gradient from .degree. C. to 1200.degree. C. at an elongation rate of 3%, followed by a third carbonization step under the conditions shown in Table 3.9. The processing time is the same as in Example 1. The atmosphere gas in each step is nitrogen in the first step, and nitrogen/hydrogen chloride = 97.3/in the second and third steps, respectively.
2.7 (capacity). Table 3 shows the physical properties of the obtained carbon fiber.

以下余白 実施例5 実施例4の実験番号2においで、炭素化第2及び第3工
程の雰囲気ガスを、窒素/塩化水素/酸素=97.0/
2.710.3 (容量チ)のノーロダン化水素ガスを
含む酸化性雰囲気とした。得られた炭素繊維の物性は、
ストランド強度が521 kg/m”、弾性率が30.
5 ton/腸、伸度が1.71俤、直径が6.6μで
あり1表面処理済みの炭素繊維が得られた。
Below is a margin Example 5 In experiment number 2 of Example 4, the atmospheric gas in the second and third carbonization steps was nitrogen/hydrogen chloride/oxygen = 97.0/
The atmosphere was an oxidizing atmosphere containing 2.710.3 (capacity) of hydrogen norodane gas. The physical properties of the obtained carbon fiber are
Strand strength is 521 kg/m", elastic modulus is 30.
Carbon fibers with a weight of 5 tons/intestine, an elongation of 1.71 yen, a diameter of 6.6 μm, and 1 surface treatment were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の方法で得られた高強度・高弾性炭素繊維は、航
空宇宙分野の一次構造材、及びスポーツ・レジャー用品
、各種工業装置部品等、多くの用途に使用することが可
能であり、更によシ高弾性を達成するための黒鉛化処理
の原料繊維として使用できる。
The high strength and high modulus carbon fiber obtained by the method of the present invention can be used in many applications such as primary structural materials in the aerospace field, sports and leisure goods, and parts for various industrial equipment. It can be used as a raw material fiber for graphitization to achieve high elasticity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、種々の炭素化温度で得られる炭素(002)
面の微結晶サイズ、及び各温度で発生する糸長伸縮率変
化金示すグラフである。 ■微結晶サイズ、0沖縮率
Figure 1 shows carbon (002) obtained at various carbonization temperatures.
It is a graph showing the microcrystal size of the surface and the change in yarn length expansion/contraction rate that occurs at each temperature. ■ Microcrystal size, zero shrinkage rate

Claims (1)

【特許請求の範囲】[Claims] 1、ポリアクリロニトリル系繊維を原料繊維とし、20
0〜350℃の酸化性雰囲気中で熱処理された単繊維同
志の接着がない耐炎化繊維を、(1)400〜800℃
の不活性ガス雰囲気中で伸長率0〜15%で処理し、つ
いで、(2)900〜1200℃の不活性ガス雰囲気中
で伸長率−2〜8%で処理し、さらに、(3)1250
〜1450℃の不活性ガス雰囲気中で伸長率0〜4%で
処理する方法においで、上記(2)および/又は(3)
における処理を、少なくともハロゲン化水素ガスを含む
不活性ガスを用いて行うことを特徴とする高強度・高弾
性炭素繊維の製法。
1. Polyacrylonitrile fiber is used as raw material fiber, 20
Flame-resistant fibers heat-treated in an oxidizing atmosphere at 0 to 350°C, with no adhesion between single fibers, (1) heated at 400 to 800°C.
(2) in an inert gas atmosphere at 900 to 1200°C at an elongation rate of -2 to 8%, and (3) 1250°C.
In the method of processing at an elongation rate of 0 to 4% in an inert gas atmosphere at ~1450°C, the above (2) and/or (3)
A method for producing high-strength and high-elastic carbon fiber, characterized in that the treatment in step 1 is performed using an inert gas containing at least hydrogen halide gas.
JP17236385A 1985-08-07 1985-08-07 Production of high-strength and high-modulus carbon fiber Pending JPS6233826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17236385A JPS6233826A (en) 1985-08-07 1985-08-07 Production of high-strength and high-modulus carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17236385A JPS6233826A (en) 1985-08-07 1985-08-07 Production of high-strength and high-modulus carbon fiber

Publications (1)

Publication Number Publication Date
JPS6233826A true JPS6233826A (en) 1987-02-13

Family

ID=15940516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17236385A Pending JPS6233826A (en) 1985-08-07 1985-08-07 Production of high-strength and high-modulus carbon fiber

Country Status (1)

Country Link
JP (1) JPS6233826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091961A (en) * 2002-08-30 2004-03-25 Toho Tenax Co Ltd Method for producing carbon fiber
JP2004277972A (en) * 2003-03-19 2004-10-07 Toho Tenax Co Ltd High strength carbon fiber and method for producing the same
JP2006283227A (en) * 2005-03-31 2006-10-19 Toho Tenax Co Ltd Method for producing carbon fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5069320A (en) * 1973-10-24 1975-06-10
JPS6088128A (en) * 1983-10-13 1985-05-17 Mitsubishi Rayon Co Ltd Preparation of carbon yarn having high strength and high elasticity
JPS60110925A (en) * 1983-11-15 1985-06-17 Asahi Chem Ind Co Ltd Manufacture of high-performance carbon fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5069320A (en) * 1973-10-24 1975-06-10
JPS6088128A (en) * 1983-10-13 1985-05-17 Mitsubishi Rayon Co Ltd Preparation of carbon yarn having high strength and high elasticity
JPS60110925A (en) * 1983-11-15 1985-06-17 Asahi Chem Ind Co Ltd Manufacture of high-performance carbon fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091961A (en) * 2002-08-30 2004-03-25 Toho Tenax Co Ltd Method for producing carbon fiber
JP2004277972A (en) * 2003-03-19 2004-10-07 Toho Tenax Co Ltd High strength carbon fiber and method for producing the same
JP2006283227A (en) * 2005-03-31 2006-10-19 Toho Tenax Co Ltd Method for producing carbon fiber
JP4662450B2 (en) * 2005-03-31 2011-03-30 東邦テナックス株式会社 Carbon fiber manufacturing method

Similar Documents

Publication Publication Date Title
JP2007177368A (en) Carbon fiber and precursor and method for producing carbon fiber
KR101395811B1 (en) Preparation method for carbon fiber with high performance using textile grade polyacrylonitrile fiber
JP4662450B2 (en) Carbon fiber manufacturing method
JPS6233826A (en) Production of high-strength and high-modulus carbon fiber
JP2010229573A (en) Polyacrylonitrile-based carbon fiber strand and method for producing the same
WO2024001261A1 (en) Preparation method for high-performance, low-cost carbon fiber
JP5849127B2 (en) Polyacrylonitrile-based carbon fiber strand and method for producing the same
JPS58144128A (en) Preparation of carbon fiber having high performance
JP3002549B2 (en) Manufacturing method of graphite fiber
JP4088500B2 (en) Carbon fiber manufacturing method
JPS6233825A (en) Production of high-strength and high modulus carbon fiber
JP4271019B2 (en) Carbon fiber manufacturing method
JPS62215018A (en) Production of carbon fiber
JPH0219513A (en) Production of carbon fiber having high strength and high modulus of elasticity
WO1987002391A1 (en) Process for producing carbon fibers
JP2004197278A (en) Method for producing carbon fiber
JPS61119719A (en) Production of carbon fiber of high strength
CN206219445U (en) Glass structure and the train with it
JPH02259119A (en) High density graphite yarn and production thereof
JPS59168129A (en) Production of carbon fiber
JP3303424B2 (en) Method for producing acrylic carbon fiber
KR870000534B1 (en) Carbon fiber and it's making method
JP2000096353A (en) Production of carbon fiber
JPS6361413B2 (en)
JP4088543B2 (en) High-strength carbon fiber and method for producing the same