JPS6233365B2 - - Google Patents

Info

Publication number
JPS6233365B2
JPS6233365B2 JP8070083A JP8070083A JPS6233365B2 JP S6233365 B2 JPS6233365 B2 JP S6233365B2 JP 8070083 A JP8070083 A JP 8070083A JP 8070083 A JP8070083 A JP 8070083A JP S6233365 B2 JPS6233365 B2 JP S6233365B2
Authority
JP
Japan
Prior art keywords
antifouling
coating agent
resin
mortar
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8070083A
Other languages
Japanese (ja)
Other versions
JPS59206512A (en
Inventor
Tooru Fuyuki
Minoru Nomura
Masayoshi Nagaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP8070083A priority Critical patent/JPS59206512A/en
Publication of JPS59206512A publication Critical patent/JPS59206512A/en
Publication of JPS6233365B2 publication Critical patent/JPS6233365B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/70Coating or impregnation for obtaining at least two superposed coatings having different compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は発電所においお、海氎を䜿甚する冷华
氎系の構造物・機噚類のコンクリヌトたたはモル
タルで圢成されおいる海氎接觊面に察する効果的
な防汚方法に関する。 我が囜の発電の䞻䜓を成す火力および原子力発
電所は、地理的制玄によ぀おほずんど海浜地垯に
建蚭され、冷华氎ずしお海氎を䜿甚しおいる。そ
の結果、発電所冷华氎系の構造物・機噚類の海氎
接觊面には海棲付着生物以䞋汚損生物ずい
う、特にムラサキむガむ、フゞツボ等の動物が
付着し、生長しお流氎埄路の閉塞をひきおこし、
取氎量の枛少、冷华効率の悪化から発電効率を䜎
䞋させ、さらにこれら汚損生物が埩氎噚冷华管に
流入しお切傷を䞎えたり、穿孔を発生しお発電停
止の被害を䞎えおいる。 埓来、䞊蚘汚損生物の付着を防止する察策以
䞋防汚ずいうずしおは、 (1) 物理的な方法超音波・高呚波・䜎調海氎法
等 (2) 薬液泚入による方法硫酞銅・ピクリン酞
等 (3) 塩玠ガスたたは電解塩玠泚入による方法 (4) 亜酞化銅圢防汚塗料塗垃による方法 などがあるが、 (1)の方法は効果ず実斜の困難性の点から実甚化
されず、(2)の方法は海産生物に䞎える圱響ず経枈
性の点から実斜䞍可胜であり、(3)の方法は管理が
容易である点から我が囜で実甚化されたが、海氎
のアルカリ床や汚れによ぀お塩玠の分解挙動が倉
化するため、珟実には防汚効果が䞍十分でありな
がら、塩玠泚入点付近では汚損生物の幌生ず同時
に有甚プランクトンを斃死させおいる。 (4)の方法は(1)、(2)、(3)の方法が倧量の冷华氎党
䜓にかかわる方法であるのに察し、面を防汚する
方法であるためより合理的・効果的であるが、し
かしながら、亜酞化銅圢防汚塗料は非溶解マトリ
ツクス圢塗料であるため、 急速に防汚剀の溶出速床を枛じお短期間に防
汚力を倱う。 有効な防汚剀の溶出速床は、䞉有機錫防汚剀
の溶出速床の10倍以䞊を芁する。 さらに、銅むオンは分解・無毒化するこずが
ないので、特定海域で長い幎月䜿甚した堎合、
銅むオンが蓄積する。 等の欠点がある。 本発明者等は、これらの問題を解決するものず
しお、有機錫重合䜓を䞻䜓ずする防汚塗垃剀を甚
いる冷华氎系の防汚方法を特願昭56−78612号、
特願昭56−189898号ずしお提案した。 これらの発明では、防汚塗垃剀ずなる有機錫重
合䜓は、物䜓に塗垃された状態では防汚成分ずな
る有機錫単量䜓がアクリル暹脂ず化孊結合しおお
り、いわば暹脂ず䞀䜓であるが、海氎に接觊する
ず埐々にむオン解離しお防汚剀䞉有機錫むオ
ンを再生し぀぀、暹脂本䜓も溶解し去る。すな
わち、䞋匏で瀺すように、解離した䞉有機錫むオ
ンが防汚剀ずしお䜜甚し、汚損生物の付着を防止
するものである。 したが぀お䞊蚘の方法は、 (1) 長期間䞀定の防汚力が持続する。すなわち塗
垃膜厚ず防汚期間がほが比䟋する。 (2) 防汚剀の溶出速床を必芁最小限に管理するこ
ずができ、公害察策䞊有利である。 (3) 溶け出した防汚剀は、玫倖線・オゟン・酞玠
等の䜜甚を受けお分解無毒化し、最終的には無
害な無機錫に倉化するため、亜酞化銅ず異り防
汚剀が蓄積するこずがない。 などのように優れた方法である。 しかしながら、有機錫重合䜓防汚塗垃剀をコン
クリヌトたたはモルタルに盎接塗垃するず、コン
クリヌトたたはモルタルは通垞匷アルカリ性であ
るため、塗垃膜は海氎ずの接觊面ずコンクリヌト
たたはモルタルずの接觊面の䞡面から溶解するこ
ずになり、塗垃膜は短期間に剥離を起し、有機錫
重合䜓防汚塗垃剀のすぐれた防汚力を発揮するこ
ずができない。 本発明者等は、この点に぀いお鋭意研究をした
結果、䞋塗塗垃剀の基本暹脂ずしお゚ポキシ暹
脂、塩化ビニル暹脂、塩玠化ポリオレフむン暹脂
オレフむンずしおぱチレン、プロピレンが
コンクリヌトたたはモルタルずの付着力が匷固で
アルカリの浞出を遮断し、か぀、有機錫重合䜓防
汚塗垃膜ずの付着力にも優れるこずを芋出し、本
発明を完成した。 すなわち、本発明は発電所冷华氎系の構造物・
機噚類のコンクリヌトたたはモルタルで圢成され
おいる海氎接觊面に、あらかじめ゚ポキシ圓量
180〜3300の範囲の゚ポキシ暹脂を含む䞋塗塗垃
剀、塩化ビニルの含有量が91重量以䞋でか぀酢
酞ビニルの含有量が34重量以䞋の塩化ビニル、
酢酞ビニル共重合䜓であるビニル暹脂を含む䞋塗
塗垃剀たたは塩玠含有量が66重量以䞊である塩
玠化ポリオレフむン暹脂を含む䞋塗塗垃剀を塗垃
したのち、䞀般匏 匏䞭は炭玠数〜のアルキル基たたはプ
ニル基、R′、R″は氎玠原子たたはメチル基を衚
わす。で瀺される䞍飜和有機錫単量䜓の重合䜓
もしくは共重合䜓、たたはこの匏〔〕で瀺され
る䞍飜和有機錫単量䜓ず共重合性のある他の䞍飜
和化合物ずの共重合䜓を䞻成分ずする防汚塗垃剀
を塗垃するこずを特城ずするコンクリヌトおよび
モルタル衚面の防汚方法である。 本発明で甚いる䞋塗塗垃剀は、耐アルカリ性が
匷く、コンクリヌトたたはモルタルずの付着性が
良奜であり、浞出するアルカリを遮断するず共に
さらに有機錫重合䜓防汚塗垃膜ずの付着性にすぐ
れお居るものであ぀お、通垞の䞍塗塗垃剀ずしお
䜿甚されおいる塗垃剀では埗られない特城があ
る。 本発明で䜿甚する䞋塗塗垃剀に甚いる暹脂のう
ち、゚ポキシ暹脂に぀いおは、゚ポキシ圓量180
〜3300の範囲のものであ぀お、䟋えば油化シ゚ル
゚ポキシ瀟補の゚ピコヌト807、815、815×、
816、819、827、828、828×、834、871、872、
1001、1002、1003、1055、1004、1007、1009等で
あり、たたはこれら品皮盞圓の゚ポキシ暹脂であ
る。 これらのものから遞ばれた皮たたは皮以䞊
を含む゚ポキシ暹脂を䞻剀ずし、アミン、アミン
アダクト、アミド、アミドアダクト、ポリアミド
暹脂等から遞ばれた皮たたは皮以䞊の組合せ
を含む硬化剀を加えお、䜿甚盎前に混合し䞋塗塗
垃剀ずする。なお、䞻剀ず硬化剀の混合比率は化
孊量論的に等しいこずが望たしい。 ここで゚ポキシ圓量を180〜3300の範囲に限定
する理由に぀いおは、゚ポキシ圓量180以䞋で
は、架橋間分子量が小さすぎるために剛盎ずな
り、コンクリヌトたたはモルタルおよび有機錫重
合䜓防汚塗垃膜ずの付着性を阻害するためであ
り、たた゚ポキシ圓量3300以䞊では分子量が倧き
くお硬化剀ずの架橋反応が遅過ぎ、たた䞋塗塗垃
剀䞻剀を調敎する際、高粘床、䜎固圢分ずな぀
お、塗垃膜厚が䜎くなるなど実甚䞊奜たしくない
ためである。 ビニル暹脂に぀いおは、塩化ビニルの含有量が
91重量以䞋であり、か぀、酢酞ビニルの含有量
が34重量以䞋であるビニル暹脂、䟋えばナニオ
ンカヌバむド瀟補ビニラむトVYHH、VYHD、
VYLF、VYNS―、VAGH、VAGD、VROH、
VMCH、VMCC、VMCA、VERR―40、VYDS、
VYDS−66、VYNCたたはこれら盞圓品であ぀
お、これらの皮たたは皮以䞊の混合物を甚い
お䞋塗塗垃剀ずする。 ここでビニル暹脂䞭の塩化ビニルの含有量を91
重量以䞋する理由は、91重量以䞊では䞋塗塗
垃剀ずした堎合、コンクリヌトたたはモルタルお
よび有機錫重合䜓防汚塗垃膜ずの付着力が匱くな
るためであり、たた酢酞ビニルの含有量を34重量
以䞋ずする理由は、34重量以䞊では耐アルカ
リ性が匱くなり、䞋塗塗垃膜がコンクリヌトたた
はモルタルから剥離しやすくなるためである。 塩玠化ポリオレフむン暹脂に぀いおは、塩玠含
有量66重量以䞊である塩玠化ポリ゚チレン暹脂
たたは塩玠化ポリプロピレン暹脂であ぀お、䟋え
ば山陜囜策パルプ瀟補スヌパヌクロン907MA、
907LL、106H、307、406、507たたはこれら盞圓
品であ぀お、これを甚いお䞋塗塗垃剀ずする。 ここで塩玠化ポリオレフむン暹脂を塩玠化ポリ
゚チレン暹脂たたは塩玠化ポリプロピレン暹脂ず
する理由は、塩玠化ポリブチレン暹脂、塩玠化ポ
リアミレン暹脂、塩玠化ポリヘキシレン暹脂等で
は、塩玠化反応を均䞀に行うためには、該オレフ
むン暹脂の分子量を䜎䞋させる必芁があり、その
結果塗垃膜の匷靭性を阻害し、亀裂を生ぜしめる
など、コンクリヌトたたはモルタルずの付着力を
阻害するためである。たた塩玠含有量を66重量
以䞊ずする理由は、塩玠含有量66重量以䞋では
安定性が悪く、脱塩玠たたは脱塩化氎玠反応等に
より䞋塗塗垃膜が劣化しお、コンクリヌトたたは
モルタルから剥離するこずがある等のほかに、発
生した塩玠などが有機錫重合䜓防汚塗垃膜に悪圱
響をおよがすなど、長期にわたり安定した性胜を
持続し難いためである。 これら䞋塗塗垃剀甚暹脂は適圓な溶剀に溶解
し、必芁に応じお可塑剀、顔料、安定剀、コヌル
タヌル等を加え、垞法により混緎しお䞋塗塗垃剀
ずする。 たた、䞊塗ずしお塗垃される有機錫重合䜓防汚
塗垃剀は、䞀般匏 匏䞭は炭玠数〜のアルキル基たたはプ
ニル基、R′、R″は氎玠原子たたはメチル基を衚
わす。で瀺される䟋えばトリプロピル錫、トリ
ブチル錫、トリアミル錫、トリプニル錫等の䞉
有機錫化合物のアクリレヌトたたはメタクリレヌ
トの重合䜓たたはこの匏〔〕で瀺される䞍飜和
有機錫単量䜓ず共重合性のある䞍飜和化合物䟋え
ばアクリル酞メチル、アクリル酞゚チル、アクリ
ル酞ブチル、アクリル酞オクチル等のアクリル酞
゚ステル、たたはメタクリル酞メチル、メタクリ
ル酞゚チル、メタクリル酞ブチル、メタクリル酞
オクチル等のメタクリル酞゚ステルたたはスチレ
ン、ビニルトル゚ン等の䞍飜和化合物ず匏〔〕
で瀺される䞍飜和有機錫単量䜓ずを共重合させお
埗た重合䜓を䞻成分ずする塗垃剀であ぀お、必芁
により顔料、防汚剀、その他添加剀等を加え、垞
法により混緎しお塗垃剀ずする。 有機錫重合䜓防汚塗垃剀の塗垃も、䞋塗塗垃剀
ず同様の方法によ぀お行われるが、その塗垃膜厚
は冷华氎ずしお取氎される海氎の流速、PH、枩床
ず、芁求される耐甚幎数防汚力の持続時間お
よび防汚剀の溶出速床によ぀お決定されるべきで
あり、耐甚幎数幎間を基準にしお30Ό以䞊を必
芁ずする。 かくしお埗られる本発明の耐アルカリ性に優れ
た䞋塗塗垃剀ず、有機錫重合䜓防汚塗垃剀ずの組
合せ塗垃による防汚方法によれば、本質的にアル
カリの浞出を防止し、䞊塗りずしお塗垃される有
機錫重合䜓防汚塗垃膜がコンクリヌトたたはモル
タル玠地から剥離するこずを防ぎ、公害察策䞊有
利な長期防汚を達成し埗る。 次に実斜䟋、比范䟋によ぀お本発明を詳现に説
明する。文䞭特にこずわらない限り、郚は重量郚
である。 有機錫重合䜓防汚塗垃剀(A)の調補 撹拌機付きのフラスコにトリブチル錫メタク
リレヌト112、メチルメタクリレヌト65、
ブチルアクリレヌト10、オクチルアクリレヌ
ト23、ベンゟむルパヌオキサむド1.2、お
よびキシレン200の混合物を仕蟌み、85℃〜
90℃で時間、続いお100℃〜1050℃で時間
加熱撹拌し、さらに120℃で間加熱撹拌しお
共重合させた。埗られた共重合溶液は無色透明
であり、25℃での粘床は660cpsであ぀た。 埗られた共重合䜓溶液を、䞋蚘に瀺す量の他
の成分ず配合し混緎しお有機錫重合䜓防汚塗垃
剀(A)を調補した。 共重合䜓溶液 40.0郚 二酞化チタン 10.0郚 フタロシアニンブルヌ 20郚 タルク 34.5郚 キシレン 13.5郚 䞋塗塗垃剀〜の調補 衚に配合を瀺す〜それぞれの䞻剀成分
を混緎し、さらに〜は䜿甚盎前に硬化剀を
加えお実斜䟋の䞋塗塗垃剀〜を調補した。
The present invention relates to an effective antifouling method for seawater contact surfaces formed of concrete or mortar of cooling water system structures and equipment that use seawater in power plants. Due to geographical constraints, most of the thermal and nuclear power plants that form the main source of electricity generation in Japan are built on coastal areas and use seawater as cooling water. As a result, marine fouling organisms (hereinafter referred to as fouling organisms), especially animals such as mussels and barnacles, adhere to the surfaces of structures and equipment in the power plant cooling water system that come in contact with seawater, grow, and cause blockage of the water flow path. ,
Power generation efficiency is reduced due to a decrease in water intake and deterioration of cooling efficiency, and these fouling organisms enter the condenser cooling pipes, causing cuts and perforations, causing power generation to stop. Conventionally, measures to prevent the adhesion of the above-mentioned fouling organisms (hereinafter referred to as antifouling) include (1) physical methods (ultrasonic waves, high frequency waves, low-toned seawater methods, etc.), and (2) chemical injection methods (copper sulfate, picrin, etc.). (3) Injecting chlorine gas (or electrolytic chlorine); (4) Applying cuprous oxide antifouling paint; however, method (1) is not practical due to its effectiveness and difficulty in implementation. method (2) is not practical due to the impact on marine life and economic efficiency, and method (3) has been put to practical use in Japan because it is easy to manage, but Since the decomposition behavior of chlorine changes depending on alkalinity and dirt, in reality, the antifouling effect is insufficient, but useful plankton are killed at the same time as the larvae of fouling organisms near the chlorine injection point. Unlike methods (1), (2), and (3), which involve a large amount of cooling water as a whole, method (4) is more rational and effective because it is a method that prevents stains on the surface. However, since cuprous oxide type antifouling paints are non-dissolving matrix type paints, the elution rate of the antifouling agent rapidly decreases and the antifouling power is lost in a short period of time. The elution rate of an effective antifouling agent requires at least 10 times the elution rate of the triorganotin antifouling agent. Furthermore, copper ions do not decompose or become non-toxic, so if they are used in a specific sea area for a long time,
Copper ions accumulate. There are drawbacks such as. In order to solve these problems, the present inventors proposed a cooling water system antifouling method using an antifouling coating agent mainly containing an organic tin polymer, in Japanese Patent Application No. 56-78612.
This was proposed as patent application No. 189898, 1983. In these inventions, when the organic tin polymer that serves as the antifouling coating agent is applied to an object, the organic tin monomer that serves as the antifouling component is chemically bonded to the acrylic resin, so that it is integrated with the resin. However, when it comes into contact with seawater, the ions gradually dissociate to regenerate the antifouling agent (triorganotin ions) while the resin itself also dissolves away. That is, as shown in the formula below, the dissociated triorganotin ions act as an antifouling agent and prevent the attachment of fouling organisms. Therefore, the above method (1) maintains a constant antifouling power for a long period of time; In other words, the coating film thickness and the antifouling period are approximately proportional. (2) The elution rate of the antifouling agent can be controlled to the necessary minimum, which is advantageous in terms of pollution control. (3) The dissolved antifouling agent decomposes and becomes non-toxic under the action of ultraviolet rays, ozone, oxygen, etc., and eventually turns into harmless inorganic tin, so unlike cuprous oxide, the antifouling agent accumulates. There's nothing to do. This is an excellent method. However, when an organotin polymer antifouling coating is applied directly to concrete or mortar, the coating film dissolves from both the contact surface with seawater and the contact surface with concrete or mortar, as concrete or mortar is usually strongly alkaline. As a result, the coating film peels off in a short period of time, and the excellent antifouling power of the organic tin polymer antifouling coating agent cannot be exhibited. As a result of intensive research on this point, the present inventors have found that epoxy resins, vinyl chloride resins, and chlorinated polyolefin resins (ethylene and propylene as olefins) as basic resins for primer coating agents have good adhesion to concrete or mortar. The present invention was completed based on the discovery that it is strong, blocks alkali leaching, and has excellent adhesion to organic tin polymer antifouling coatings. In other words, the present invention is applicable to structures and systems of power plant cooling water systems.
Seawater contact surfaces made of concrete or mortar on equipment are pre-applied with epoxy equivalent.
Primer coating agent containing an epoxy resin in the range of 180 to 3300, vinyl chloride with a vinyl chloride content of 91% by weight or less and a vinyl acetate content of 34% by weight or less,
After applying a primer coating agent containing a vinyl resin that is a vinyl acetate copolymer or a primer coating agent containing a chlorinated polyolefin resin with a chlorine content of 66% by weight or more, the general formula (In the formula, R represents an alkyl group or phenyl group having 3 to 5 carbon atoms, and R' and R'' represent a hydrogen atom or a methyl group.) A polymer or copolymer of an unsaturated organotin monomer, Or concrete characterized by applying an antifouling coating agent containing a copolymer of the unsaturated organotin monomer represented by the formula [A] and another copolymerizable unsaturated compound as a main component. and an antifouling method for mortar surfaces.The undercoating agent used in the present invention has strong alkali resistance, good adhesion to concrete or mortar, blocks leaching alkali, and also contains an organic tin polymer antifouling agent. It has excellent adhesion to the coating film, a characteristic that cannot be obtained with coating agents used as ordinary non-coating coating agents. Among the resins used in the undercoat coating agent used in the present invention, For epoxy resin, epoxy equivalent 180
~3300, such as Epicote 807, 815, 815×A manufactured by Yuka Ciel Epoxy Co., Ltd.
816, 819, 827, 828, 828×A, 834, 871, 872,
1001, 1002, 1003, 1055, 1004, 1007, 1009, etc., or epoxy resins equivalent to these types. A curing agent whose main ingredient is an epoxy resin containing one or more selected from these, and a curing agent containing one or more combinations selected from amine, amine adduct, amide, amide adduct, polyamide resin, etc. and mix immediately before use to form a primer coating agent. Note that it is desirable that the mixing ratio of the base agent and the curing agent be stoichiometrically equal. The reason why the epoxy equivalent is limited to a range of 180 to 3300 is that if the epoxy equivalent is less than 180, the molecular weight between crosslinks is too small, resulting in rigidity and poor adhesion to concrete or mortar and the organotin polymer antifouling coating film. In addition, if the epoxy equivalent is 3300 or more, the molecular weight is large and the crosslinking reaction with the curing agent is too slow. Also, when preparing the base coating agent, the viscosity is high and the solid content is low, resulting in a problem with the coating film thickness. This is because it is not preferable in practice, as it lowers the value. Regarding vinyl resin, the content of vinyl chloride is
Vinyl resins with a vinyl acetate content of 91% by weight or less and 34% by weight or less, such as Vinylite VYHH, VYHD, manufactured by Union Carbide;
VYLF, VYNS-3, VAGH, VAGD, VROH,
VMCH, VMCC, VMCA, VERR-40, VYDS,
VYDS-66, VYNC, or their equivalents, and one or a mixture of two or more of these is used as a primer coating agent. Here, the content of vinyl chloride in vinyl resin is 91
The reason for setting the vinyl acetate content below 34% by weight is that if it is 91% by weight or more, the adhesion to concrete or mortar and the organic tin polymer antifouling coating film becomes weak when used as a primer coating agent. The reason for setting the content to be less than 34% by weight is that alkali resistance becomes weaker when the content is more than 34% by weight, and the undercoat film easily peels off from the concrete or mortar. The chlorinated polyolefin resin is a chlorinated polyethylene resin or a chlorinated polypropylene resin with a chlorine content of 66% by weight or more, such as Super Chron 907MA manufactured by Sanyo Kokusaku Pulp Co., Ltd.
907LL, 106H, 307, 406, 507 or equivalent products, which are used as a primer coating agent. The reason why the chlorinated polyolefin resin is selected as chlorinated polyethylene resin or chlorinated polypropylene resin is that chlorinated polybutylene resin, chlorinated polyamylene resin, chlorinated polyhexylene resin, etc. are used in order to uniformly perform the chlorination reaction. This is because it is necessary to reduce the molecular weight of the olefin resin, and as a result, the toughness of the coating film is inhibited, causing cracks, etc., and inhibiting the adhesion with concrete or mortar. It also reduces the chlorine content to 66% by weight.
The reason for this is that if the chlorine content is less than 66% by weight, stability is poor, and the primer coating film may deteriorate due to dechlorination or dehydrochlorination reactions and may peel off from the concrete or mortar. This is because the generated chlorine etc. have an adverse effect on the organic tin polymer antifouling coating film, making it difficult to maintain stable performance over a long period of time. These resins for undercoating are dissolved in a suitable solvent, and if necessary, a plasticizer, pigment, stabilizer, coal tar, etc. are added thereto, and kneaded by a conventional method to obtain an undercoat. In addition, the organic tin polymer antifouling coating agent applied as a top coat has the general formula (In the formula, R represents an alkyl group having 3 to 5 carbon atoms or a phenyl group, and R' and R'' represent a hydrogen atom or a methyl group.) For example, tripropyltin, tributyltin, triamyltin, triphenyltin, etc. Polymers of acrylate or methacrylate of triorganotin compounds or unsaturated compounds copolymerizable with the unsaturated organotin monomer represented by this formula [A], such as methyl acrylate, ethyl acrylate, butyl acrylate, acrylic Acrylic esters such as octyl methacrylate, methacrylic esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, or unsaturated compounds such as styrene and vinyltoluene, and formula [A]
A coating agent whose main component is a polymer obtained by copolymerizing with an unsaturated organotin monomer shown in and use it as a liniment. The organic tin polymer antifouling coating agent is applied using the same method as the base coating agent, but the coating film thickness depends on the flow rate, pH, and temperature of the seawater used as cooling water, and the required durability. It should be determined by the age (duration of antifouling power) and the elution rate of the antifouling agent, and 30 Ό or more is required based on a one-year service life. According to the antifouling method by combining the thus obtained undercoat coating agent with excellent alkali resistance and the organic tin polymer antifouling coating agent of the present invention, the leaching of alkali is essentially prevented, and the stain resistant coating agent can be applied as a top coat. The organic tin polymer antifouling coating film can be prevented from peeling off from the concrete or mortar substrate, and long-term antifouling that is advantageous in terms of pollution control can be achieved. Next, the present invention will be explained in detail using Examples and Comparative Examples. Unless otherwise specified in the text, parts are parts by weight. Preparation of organotin polymer antifouling coating agent (A) In a flask equipped with a stirrer, add 112 g of tributyltin methacrylate, 65 g of methyl methacrylate,
Prepare a mixture of 10 g of butyl acrylate, 23 g of octyl acrylate, 1.2 g of benzoyl peroxide, and 200 g of xylene, and
Copolymerization was carried out by heating and stirring at 90°C for 2 hours, then at 100°C to 1050°C for 3 hours, and further heating and stirring at 120°C for 1 hour. The obtained copolymerization solution was colorless and transparent, and had a viscosity of 660 cps at 25°C. The obtained copolymer solution was blended with other components in the amounts shown below and kneaded to prepare an organic tin polymer antifouling coating agent (A). Copolymer solution 40.0 parts Titanium dioxide 10.0 parts Phthalocyanine blue 20 parts Talc 34.5 parts Xylene 13.5 parts Preparation of base coating agents A to H The main ingredients of A to H whose formulations are shown in Table 1 were kneaded, and further A to D Example basecoat applications A to H were prepared by adding a curing agent just before use.

【衚】【table】

【衚】 比范䟋䞋塗塗垃剀の調補 撹拌機付きのフラスコに、ロゞン10.8郚、タ
マノヌル145F荒川林産業補ロゞン倉性プ
ノヌル暹脂30.6郚、アマニ油14.0郚、支那桐
æ²¹1.6郚、ミネラルスピリツト10.0郚、スワゟ
ヌルJ310䞞善石油瀟補芳銙族石油ナフサ
33.0郚を仕蟌み、50℃に加枩し぀぀時間撹拌
し、やや耐色に着色した透明な倉性油溶液を埗
た。 倉性油溶液を甚い、䞋蚘の配合によ぀お比范
䟋䞋塗塗垃剀を調補した。 タルク 20.0郚 バラむタ 3.6郚 匁 柄 8.0郚 亜鉛華 4.0郚 倉性油溶液 57.9郚 ナフテン酞コバルト 0.3郚 ナフテン酞鉛 3.0郚 ミネラルスピリツト 3.2郚 実斜䟋〜、比范䟋〜 䞋塗塗垃剀〜をモルタル仕䞊げを斜したコ
ンクリヌト板それぞれ枚に、衚に瀺す塗膜厚
ずなるごずく〜回スプレヌ塗装し、䞋塗未塗
装の比范䟋ずずもに、さらにその䞊に有機錫重
合䜓防汚塗垃剀(A)を塗膜厚60Όで回スプレヌ塗
装しお実斜䟋〜、比范䟋〜の塗装詊隓板
を䜜補した。 実斜䟋、比范䟋それぞれの塗装詊隓板枚は40
℃の人工海氎に浞挬しお経時的に付着性を調べ、
他の枚は州本垂由良湟で、筏から氎面䞋1.5
の海䞭に浞挬し、経時的に防汚効果ず付着性を調
べた。結果を衚、衚、衚に瀺す。
[Table] Preparation of Comparative Example Primer Coating In a flask with a stirrer, 10.8 parts of rosin, 30.6 parts of Tamanol 145F (rosin-modified phenolic resin manufactured by Arakawa Hayashi Sangyo), 14.0 parts of linseed oil, 1.6 parts of Chinese tung oil, and 10.0 parts of mineral spirits. Section, Swazol J310 (aromatic petroleum naphtha manufactured by Maruzen Oil Co., Ltd.)
33.0 parts were charged and stirred for 1 hour while heating to 50°C to obtain a transparent denatured oil solution colored slightly brown. A comparative base coat coating agent was prepared using a modified oil solution according to the following formulation. Talc 20.0 parts Baryta 3.6 parts Valve handle 8.0 parts Zinc white 4.0 parts Modified oil solution 57.9 parts Cobalt naphthenate 0.3 parts Lead naphthenate 3.0 parts Mineral spirits 3.2 parts Examples 1-8, Comparative Examples 1-2 Primer coating agent A~ was spray-coated 2 to 3 times on each of three mortar-finished concrete plates to the coating thickness shown in Table 2, and an organic tin polymer antifouling coating was applied on top of Comparative Example 1, which had not been undercoated. Coated test plates of Examples 1 to 8 and Comparative Examples 1 to 2 were prepared by spray coating coating agent (A) twice at a coating thickness of 60 Όm. One coated test board for each example and comparative example is 40
The adhesion was examined over time by immersing it in artificial seawater at ℃.
The other two photos are from Yura Bay, Shumoto City, 1.5m below the water surface from the raft.
The antifouling effect and adhesion were examined over time by immersing the material in the sea. The results are shown in Tables 3, 4, and 5.

【衚】【table】

【衚】 衚にみられるように、あらかじめ、゚ポキシ
暹脂を配合した䞋塗塗垃剀、を塗垃した実斜
䟋、実斜䟋、䞀般にタヌル゚ポキシ暹脂塗垃
剀ず呌ばれる䞋塗塗垃剀、を塗垃した実斜䟋
、実斜䟋、ビニル暹脂を配合した䞋塗塗垃剀
、を塗垃した実斜䟋、実斜䟋、塩玠化ポ
リ゚チレンを配合した䞋塗塗垃剀を塗垃した実
斜䟋、塩玠化ポリプロピレンを配合した䞋塗塗
垃剀を塗垃した実斜䟋はいずれも40℃人工氎
浞挬か月埌のゎバン目テストで異状なく、良奜
な付着性を瀺したが、有機錫重合䜓防汚塗垃剀(A)
をコンクリヌト板に盎接塗垃た比范䟋および䞀
般に油性䞋塗ペむントず呌ばれる比范甚䞋塗塗垃
剀を塗垃した比范䟋はいずれも40℃人工海氎
浞挬前に行぀たゎバン目テストは25で正垞であ぀
たが、比范䟋は浞挬か月埌に、比范は浞挬
か月埌に塗垃膜が党面剥離し、゚ポキシ暹脂、
タヌル゚ポキシ暹脂、ビニル暹脂、塩玠化ポリオ
レフむン暹脂がコンクリヌトたたはモルタルに匷
い付着力を有し、か぀耐アルカリ性にすぐれおい
るこずを瀺した。
[Table] As shown in Table 3, Examples 1 and 2 were coated with primer coating agents A and B containing epoxy resin, and primer coating agents C and D, which are generally called tar epoxy resin coating agents, were coated in advance. Example 3 and Example 4 were coated, Example 5 and Example 6 were coated with primer coating agents E and F containing vinyl resin, Example 7 were coated with primer coating agent G containing chlorinated polyethylene, and chlorine. In Example 8, in which primer coating agent H containing chemically modified polypropylene was applied, there were no abnormalities in the goblin test after 6 months of immersion in artificial water at 40°C, showing good adhesion. Coating agent (A)
In Comparative Example 1, in which the material was applied directly to the concrete board, and in Comparative Example 2, in which a comparative undercoat paint, generally called oil-based undercoat paint, was applied, the goblin test conducted before immersion in artificial seawater at 40°C was 25, which was normal. However, in Comparative Example 1, the coating film completely peeled off after 1 month of immersion, and in Comparative Example 2, after 3 months of immersion, and the epoxy resin,
It was shown that tar epoxy resin, vinyl resin, and chlorinated polyolefin resin have strong adhesion to concrete or mortar and have excellent alkali resistance.

【衚】【table】

【衚】 衚の結果は詊隓板党面積に占める汚損生物の
付着率ずしお衚わしおいるが、本質的には䞋塗塗
垃剀の有無比范䟋は䞋塗塗垃剀を塗垃しおい
ない。および䞋塗塗垃剀の皮類の違い比范䟋
は耐アルカリ性の匱い油性䞋塗ペむントを䞋塗
塗垃剀ずしお䜿甚した。に起因するコンクリヌ
トたたはモルタル玠地ずの付着力の差で、その傟
向は衚のゎバン目テストの結果ず同様である。
[Table] The results in Table 4 are expressed as the adhesion rate of fouling organisms to the total area of the test plate, but essentially they are based on the presence or absence of an undercoat (no undercoat was applied in Comparative Example 1). This is due to the difference in adhesion to the concrete or mortar base due to the difference in the type of primer coating agent (in Comparative Example 2, an oil-based primer paint with weak alkali resistance was used as the primer coating agent), and this tendency is shown in Table 1. The results are similar to those of the eye test.

【衚】【table】

【衚】 衚の結果は衚、衚の結果ず同様の傟向で
あり、本発明に甚いられる䞋塗垃剀が、耐アルカ
リ性を有し、コンクリヌトたたはモルタルずの付
着性にすぐれるこずを瀺した。 実斜䟋  発電所の、モルタル仕䞊げをほどこしたコン
クリヌト補取氎口壁面に䞋塗塗垃剀、を被塗
垃面積の50ず぀に、それぞれ塗垃膜厚50Όで
回、さらに有機重合䜓防汚塗垃剀(A)を塗垃膜厚60
Όで党面に回、゚アレススプレヌを甚いお塗垃
した。通氎幎埌に調査したずころ、塗垃膜の剥
離・汚損生物の付着ずもになく、良奜な防汚力を
瀺した。 実斜䟋 10 発電所の、モルタルラむニングをほどこした
埪環氎管内面に、䞋塗塗垃剀、を被塗垃面積
の50ず぀に、それぞれ塗垃膜厚70Όで回、さ
らに有機錫重合䜓防汚塗垃剀(A)を塗垃膜厚60Όで
党面に回、ロヌラヌ刷毛を甚いお塗垃した。通
氎幎埌に調査したずころ、塗垃膜の剥離・汚損
生物の付着ずもになく、良奜な防汚力を瀺した。 実斜䟋 11 発電所の、コンクリヌト補取氎口壁面に、䞋
塗塗垃剀、を被塗垃面積の50ず぀に、それ
ぞれ塗垃膜厚30Όで回、さらに有機錫重合䜓防
汚塗垃剀(A)を塗垃膜厚60Όで党面に回、゚アレ
ススプレヌを甚いお塗垃した。通氎幎埌に調査
したずころ、塗垃膜の剥離・汚損生物の付着ずも
になく、良奜な防汚力を瀺した。 実斜䟋 12 発電所の、モルタルラむニングをほどこした
埪環氎管内面に、䞋塗塗垃剀、を被塗垃面積
の50ず぀に、それぞれ塗垃膜厚40Όで回、さ
らに有機錫重合䜓防汚塗垃剀(A)を60Όで党面に
回、ロヌラヌ刷毛を甚いお塗垃した。通氎幎埌
に調査したずころ、塗垃膜の剥離・汚損生物の付
着ずもになく、良奜な防汚力を瀺した。 比范䟋  発電所の、モルタルラむニングをほどこした
埪環氎管内面の䞀郚に、か所は有機錫重合䜓防
汚塗垃剀(A)を塗垃膜厚60Όで回、他のか所は
比范甚䞋塗塗垃剀を塗垃膜厚40Όで回、さら
に有機錫重合䜓防汚塗垃剀(A)を60Όで回、ロヌ
ラヌ刷毛を甚いお塗垃した。通氎幎埌に状態を
芳察したずころ、塗垃膜は完党に剥離・消倱し、
汚損生物が党面に付着しおいた。 以䞊実斜䟋、比范䟋で説明したように、本発明
の防汚方法は、発電所冷华氎系の構造物・機噚類
のコンクリヌトたたはモルタルで圢成されおいる
海氎接觊面に、゚ポキシ暹脂系䞋塗塗垃剀、ビニ
ル暹脂系䞋塗塗垃剀たたは塩玠化ポリオレフむン
オレフむンずしおぱチレン、プロピレン暹
脂系䞋塗塗垃剀ず有機錫重合䜓防汚塗垃剀ずを重
ね塗りするこずにより、防汚力、塗垃膜の付着力
ずもに長期間の効果が期埅できる、産業䞊有甚な
ものである。
[Table] The results in Table 5 have the same tendency as the results in Tables 3 and 4, indicating that the primer used in the present invention has alkali resistance and has excellent adhesion to concrete or mortar. Indicated. Example 9 Primer coating agents A and B were applied to 50% of the area to be coated on the mortar-finished concrete water intake wall of power plant A, each with a film thickness of 50 ÎŒm.
2 times, and then apply organic polymer antifouling coating agent (A) to a film thickness of 60 mm.
Ό was applied twice over the entire surface using an airless sprayer. When investigated after one year of water flow, there was no peeling of the coating film or adhesion of fouling organisms, indicating good antifouling ability. Example 10 Primer coating agents C and D were applied twice to 50% each of the area to be coated on the inner surface of the circulating water pipes lined with mortar at power plant B, each with a film thickness of 70 Όm, and then an organic tin polymer antifouling agent was applied. Coating agent (A) was applied twice to the entire surface with a coating thickness of 60 Όm using a roller brush. When investigated after 2 years of water flow, there was no peeling of the coating film or adhesion of fouling organisms, indicating good antifouling properties. Example 11 Primer coating agents E and F were applied three times to 50% each of the area to be coated on the concrete water intake wall of power plant C, each with a film thickness of 30 Όm, and then an organic tin polymer antifouling coating agent ( A) was applied twice to the entire surface with a coating thickness of 60 Όm using an airless sprayer. When investigated after one year of water flow, there was no peeling of the coating film or adhesion of fouling organisms, indicating good antifouling ability. Example 12 Primer coating agents G and H were applied twice to 50% each of the area to be coated on the inner surface of the circulating water pipes lined with mortar at power plant D, each with a film thickness of 40 Όm, and then an organic tin polymer antifouling agent was applied. Apply coating agent (A) at 60 Ό over the entire surface.
It was applied twice using a roller brush. When investigated after one year of water flow, there was no peeling of the coating film or adhesion of fouling organisms, indicating good antifouling ability. Comparative Example 3 On a part of the inner surface of the mortar-lined circulating water pipe in power plant B, organic tin polymer antifouling coating agent (A) was applied twice to a film thickness of 60Ό at one location, and at the other location. A comparative undercoat coating agent was applied twice at a coating thickness of 40 Όm, and an organic tin polymer antifouling coating agent (A) was applied twice at a coating thickness of 60 Όm using a roller brush. When we observed the condition after one year of water flow, we found that the coating film had completely peeled off and disappeared.
Fouling organisms were adhered to the entire surface. As explained above in the Examples and Comparative Examples, the antifouling method of the present invention applies an epoxy resin undercoat to the concrete or mortar contact surfaces of power plant cooling water system structures and equipment. By overcoating a vinyl resin-based primer coating agent or a chlorinated polyolefin (olefin: ethylene or propylene) resin-based primer coating agent and an organic tin polymer antifouling coating agent, the antifouling power and adhesion of the coating film can be improved. Both are industrially useful and can be expected to have long-term effects.

Claims (1)

【特蚱請求の範囲】  冷华氎系のコンクリヌトたたはモルタルで圢
成されおいる海氎接觊面に、゚ポキシ圓量が180
〜3300の範囲である゚ポキシ暹脂を含む䞋塗塗垃
剀、塩化ビニルの含有量が91重量以䞋で、か
぀、酢酞ビニルの含有量が34重量以䞋の塩化ビ
ニル、酢酞ビニル共重合䜓であるビニル暹脂を含
む䞋塗塗垃剀たたは塩玠含有量が66重量以䞊で
ある塩玠化ポリオレフむン暹脂を含む䞋塗塗垃剀
を塗垃したのち、䞀般匏 匏䞭は炭玠数〜のアルキル基たたはプ
ニル基、R′、R″は氎玠原子たたはメチル基を衚
わす。で瀺される䞍飜和有機錫単量䜓の重合䜓
もしくは共重合䜓、たたはこの匏〔〕で瀺され
る䞍飜和有機錫単量䜓ず共重合性のある他の䞍飜
和化合物ずの共重合䜓を䞻成分ずする防汚塗垃剀
を塗垃するこずを特城ずするコンクリヌトおよび
モルタル衚面の防汚方法。
[Claims] 1. The seawater contact surface formed of cooling water-based concrete or mortar has an epoxy equivalent of 180
A base coat containing an epoxy resin in the range of ~3300, a vinyl chloride/vinyl acetate copolymer with a vinyl chloride content of 91% by weight or less and a vinyl acetate content of 34% by weight or less After applying a primer coating agent containing a resin or a primer coating agent containing a chlorinated polyolefin resin with a chlorine content of 66% by weight or more, the general formula (In the formula, R represents an alkyl group or phenyl group having 3 to 5 carbon atoms, and R' and R'' represent a hydrogen atom or a methyl group.) A polymer or copolymer of an unsaturated organotin monomer, Or concrete characterized by applying an antifouling coating agent containing a copolymer of the unsaturated organotin monomer represented by the formula [A] and another copolymerizable unsaturated compound as a main component. and antifouling methods for mortar surfaces.
JP8070083A 1983-05-11 1983-05-11 Prevention of surface staining of concrete and mortar Granted JPS59206512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8070083A JPS59206512A (en) 1983-05-11 1983-05-11 Prevention of surface staining of concrete and mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8070083A JPS59206512A (en) 1983-05-11 1983-05-11 Prevention of surface staining of concrete and mortar

Publications (2)

Publication Number Publication Date
JPS59206512A JPS59206512A (en) 1984-11-22
JPS6233365B2 true JPS6233365B2 (en) 1987-07-21

Family

ID=13725600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8070083A Granted JPS59206512A (en) 1983-05-11 1983-05-11 Prevention of surface staining of concrete and mortar

Country Status (1)

Country Link
JP (1) JPS59206512A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015372A (en) * 1990-02-07 1991-05-14 The United States Of America As Represented By The Secretary Of The Navy Toxin containing perforated antifouling polymer nozzle grommet

Also Published As

Publication number Publication date
JPS59206512A (en) 1984-11-22

Similar Documents

Publication Publication Date Title
KR100530968B1 (en) Coating composition
JP3874486B2 (en) Paint composition
EP1457531B1 (en) Antifouling paint composition, antifouling paint films, and ships, underwater structures, fishing gear and fishing nets covered with the films
CA1084645A (en) Anti-fouling overcoating composition and use thereof
AU2001266093B2 (en) Antifouling paint
CN100465242C (en) Low-superficial area ratio marine antifouling coating of silicofluoride block polymer and its production
CN1304496C (en) Antifouling paint composition
JP6676654B2 (en) Antifouling paint composition, antifouling coating film, antifouling substrate, and method for producing the antifouling substrate
KR20210043730A (en) Antifouling composite coating film, antifouling substrate, and method for manufacturing antifouling substrate
CN1119665A (en) Antifouling paint composition
NZ512945A (en) Antifouling paint
JPH08269390A (en) Coating composition
JPS6233365B2 (en)
JPH10279841A (en) Antifouling paint composition, coating film formed from this composition, method for preventing fouling by using this composition, and hull, underwater and water-surface structures or fishery material coated with the film
JPH08277372A (en) Coating composition
JPH1161002A (en) Non-tin antifouling paint composition, antifouling coating film, antifouling method and ship coated with this antifouling coating film
US4482652A (en) Marine anti-fouling paints
US4816071A (en) Coating composition
JP2006183059A (en) Coating composition
JPS60124667A (en) Method for preventing surface of rubber lining from being fouled
JP3120731B2 (en) Underwater antifouling agent
JPH10279840A (en) Antifouling paint composition, coating film formed from this composition, method for preventing fouling by using this composition, and hull, underwater and water-surface structures or fishery material coated with the film
WO1992007037A1 (en) Anti-fouling composition
JP4573337B2 (en) Method for producing coating composition
JPS6277306A (en) Novel antifouling agent and submarine antifouling coating material using said agent