JPS59206512A - Prevention of surface staining of concrete and mortar - Google Patents

Prevention of surface staining of concrete and mortar

Info

Publication number
JPS59206512A
JPS59206512A JP8070083A JP8070083A JPS59206512A JP S59206512 A JPS59206512 A JP S59206512A JP 8070083 A JP8070083 A JP 8070083A JP 8070083 A JP8070083 A JP 8070083A JP S59206512 A JPS59206512 A JP S59206512A
Authority
JP
Japan
Prior art keywords
antifouling
mortar
concrete
coating agent
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8070083A
Other languages
Japanese (ja)
Other versions
JPS6233365B2 (en
Inventor
Toru Fuyuki
冬木 亨
Minoru Nomura
実 野村
Masayoshi Nagaya
長屋 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp, Nippon Oil and Fats Co Ltd filed Critical NOF Corp
Priority to JP8070083A priority Critical patent/JPS59206512A/en
Publication of JPS59206512A publication Critical patent/JPS59206512A/en
Publication of JPS6233365B2 publication Critical patent/JPS6233365B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/70Coating or impregnation for obtaining at least two superposed coatings having different compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To interrupt the leaching of alkaline substances by strengthening the bonding force between cement concrete and an organotin polymer antifouling paint film by a method in which an epoxy resin, etc., is coated as an under coat on the sea water-contact surface of the concrete of cooling water system. CONSTITUTION:An undercoat paint, containing an epoxy resin of epoxy equivalent of 1,800-3,300, a vinyl chloride-vinyl acetate copolymer containing 91wt% or less vinyl chloride and 34wt% or less vinyl acetate, or a chlorinated polyolefin resin containing 66wt% or more chlorine, is coated on the surface to be touched by sea water of the cement concrete or mortar in the cooling water system of a power plant. Afterwards, an antifouling paint containing the polymer or copolymer of an unsaturated organotin monomer of the general formula I (where R is a 3-5C alkyl or phenyl group and R' and R'' are each H or methyl group) as the main component.

Description

【発明の詳細な説明】 本発明は発電所において、海水を使用する冷却水系の構
造物・機器類のコンクリートまたはモルタルで形成され
ている海水接触面に対する効果的な防汚方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an effective antifouling method for seawater contact surfaces formed of concrete or mortar of structures and equipment in cooling water systems that use seawater in power plants.

我が国の発電の主体を成す火力および原子力発電所は、
地理的制約によってほとんど海浜地帯に建設され、冷却
水として海水を使用している。その結果、発電所冷却水
系の構造物・機器類の海水接触面には海棲付着生物(以
下汚損生物という)、特にムラサキイガイ、フジッボ等
の動物が付着し、生長して流水径路の閉塞をひきおこし
、取水量の減少、冷却効率の悪化から発電効率を低下さ
せ、さらKこれら汚損生物が復水器冷却管に流入して切
傷を与えたり、穿孔を発生して発電停止−の被害を与え
ている。
Thermal and nuclear power plants, which form the main source of electricity generation in Japan, are
Due to geographical constraints, most of them are built on coastal areas and use seawater as cooling water. As a result, marine fouling organisms (hereinafter referred to as fouling organisms), especially animals such as mussels and Fujibo, adhere to the surfaces of structures and equipment in the power plant cooling water system that come into contact with seawater, grow, and cause blockage of the water flow path. In addition, these fouling organisms can flow into the condenser cooling pipes and cause cuts or perforations, causing power generation to stop. There is.

従来、上記汚損生物の付着を防止する対策(以下防汚と
いう)としては、 (1)物理的な方法(超音波・高周波・低調海水法等) (2)薬液注入による方法(硫酸銅・ピクリン酸等) (3)  塩素ガス(または電解塩素)注入による方法 (4)亜酸化網形防汚塗料塗布による方法などがあるが
、 fi+の方法は効果と実施の困難性の点から実用化され
ず、(2,)の方法は海産生物に与える影響と経済性の
点から実施不可能であり、(3)の方法は管理が容易で
ある点から我が国で実用化されたが、海水のアルカリ度
や汚れによって塩素の分解挙動が変化するため、現実に
は防汚効果が不十分でありながら、塩素注入点付近では
汚損生物の幼生と同時に有用プランクトンを斃死させて
いる。
Conventionally, measures to prevent the adhesion of the above-mentioned fouling organisms (hereinafter referred to as antifouling) include: (1) physical methods (ultrasonic waves, high frequency waves, low-toned seawater methods, etc.) (2) chemical injection methods (copper sulfate, picrin, etc.) (3) Injecting chlorine gas (or electrolytic chlorine); (4) Applying suboxide net type antifouling paint. However, the fi+ method has not been put to practical use due to its effectiveness and difficulty in implementation. Method (2) is impossible to implement due to its impact on marine life and economic efficiency, and method (3) has been put to practical use in Japan because of its ease of management, but Since the decomposition behavior of chlorine changes depending on the degree of pollution and dirt, in reality, the antifouling effect is insufficient, but useful plankton are killed at the same time as the larvae of fouling organisms near the chlorine injection point.

(4)の方法は+11、(2)、(3)の方法が大量の
冷却水全体にかかわる方法であるのに対し、面を防汚す
る方法であるためより合理的・効果的であるが、しかし
ながら、亜酸化鋸形防汚塗料は非俗解マトリックス形塗
料であるため、 ■ 急速に防汚剤の溶出速度を減じて短期間に防汚力を
失う。
Method (4) is more rational and effective as it is a method of stain-proofing the surface, whereas methods (2) and (3) involve a large amount of cooling water as a whole. However, since the suboxide saw type antifouling paint is a non-common matrix type paint, the elution rate of the antifouling agent rapidly decreases and the antifouling power is lost in a short period of time.

■ 有効な防汚剤の溶出速度は、三有機錫防汚剤の溶出
速度の10倍以上を要する。
(2) The elution rate of an effective antifouling agent must be at least 10 times the elution rate of the triorganotin antifouling agent.

■ さらに、銅イオンは分解・無毒化することがないの
で、特定海域で長い年月使用した場合、銅イオンが蓄積
する。
■ Furthermore, since copper ions do not decompose or become non-toxic, copper ions accumulate if used for a long time in a specific sea area.

等の欠点がある。There are drawbacks such as.

本発明者等は、これらの問題を解決するものとして、有
機錫重合体を主体とする防汚塗布剤を用いる冷却水系の
防汚方法を特願昭56−78612号、特願昭56−1
89898号として提案した。
In order to solve these problems, the present inventors proposed a cooling water system antifouling method using an antifouling coating agent mainly containing an organic tin polymer, in Japanese Patent Application Nos. 56-78612 and 1986-1.
It was proposed as No. 89898.

これらの発明では、防汚塗布剤となる有機錫重合体は、
物体に塗布された状態では防汚成分となる有機錫単量体
カリアクリル樹脂と化学結合しており、いわば樹脂と一
体であるが、海水に接触すると徐々にイオン解離して防
汚剤(三有機錫イオン)を再生しつつ、樹脂本体も溶解
し去る。すなわち、下式に示すように、解離した三有機
錫イオンが防汚剤として作用し、汚損生物の付着を防止
するものであ含逼ミる。
In these inventions, the organic tin polymer used as the antifouling coating agent is
When applied to an object, it is chemically bonded to the organotin monomer potassium acrylic resin, which is the antifouling component, and is, so to speak, integrated with the resin, but when it comes into contact with seawater, the ions gradually dissociate and form the antifouling agent (triple acrylic resin). While regenerating the organic tin ions), the resin itself also dissolves away. That is, as shown in the following formula, the dissociated triorganotin ion acts as an antifouling agent and prevents the attachment of fouling organisms.

したがって上記の方法自社幼くは、 (1)長期間一定の防汚力が持続する。すなわち塗布膜
厚と防汚期間がほぼ比例する。
Therefore, using the above method in-house: (1) A certain level of antifouling power is maintained for a long period of time. In other words, the coating film thickness and the antifouling period are approximately proportional.

(2)防汚剤の溶出速度を必要最小限に管理することが
でき、公害対策上有利である。
(2) The elution rate of the antifouling agent can be controlled to the necessary minimum, which is advantageous in terms of pollution control.

(3)  溶は出した防汚剤は、紫外線・オゾン・酸素
等の作用を受けて分解無毒化し、最終的には無害な無機
錫に変化するため、亜酸化鋼と異り防汚剤が蓄積するこ
とがない。
(3) The dissolved antifouling agent decomposes and becomes non-toxic under the action of ultraviolet rays, ozone, oxygen, etc., and ultimately turns into harmless inorganic tin, so unlike suboxide steel, the antifouling agent There is no accumulation.

などのように優れた方法である。This is an excellent method.

しかしながら、有機錫重合体防汚塗布剤をコンクリート
またはモルタルに直接塗布すると、コンクリートまたは
モルタルは通常強アルカリ性であるため、塗布膜は海水
との接触面とコンクリートまたはモルタルとの接触面の
両面から溶解することになり、塗布膜は短期間に剥離を
起し、有機錫重合体防汚塗布剤のすぐれた防汚力を発揮
することができない。
However, when an organotin polymer antifouling coating is applied directly to concrete or mortar, the coating film dissolves from both the contact surface with seawater and the contact surface with concrete or mortar, as concrete or mortar is usually strongly alkaline. As a result, the coating film peels off in a short period of time, and the excellent antifouling power of the organic tin polymer antifouling coating agent cannot be exhibited.

本発明者等は、この点について鋭意研究をした結果、下
塗塗布剤の基本樹脂としてエポキシ樹脂、塩化ビニル樹
脂、塩素化ポリオレフィン樹脂(オレフィンとしてはエ
チレン、プμピレン)がコンクリートまたはモルタルと
の付着力が強固でアルカリの浸出を遮断し、かつ、有機
錫重合体防汚塗布膜との付着力にも優れることを見出し
、本発明を完成した。
As a result of intensive research on this point, the present inventors have discovered that epoxy resins, vinyl chloride resins, and chlorinated polyolefin resins (olefins include ethylene and propylene) are used as basic resins for primer coating agents, and are suitable for adhesion to concrete or mortar. The present invention was completed based on the discovery that it has strong adhesion, blocks alkali leaching, and has excellent adhesion to organic tin polymer antifouling coatings.

すなわち、本発明は発電所冷却水系の構造物・機器類の
コンクリートまたはモルタルで形成されている海水接触
面に、あらかじめエポキシ当量180〜3300の範囲
のエポキシ樹脂を含む下塗塗布剤、塩化ビニルの含有量
が91重量%以下でかつ酢酸ビニルの含有量が34重量
−以下の塩化ビニル、酢酸ビニル共重合体であるビニル
樹脂を含む下塗塗布剤または塩素含有量が66重量%以
上である塩素化ポリオレフィン樹脂を含む下塗塗布剤を
塗布したのち、一般式 (式中Rは炭素数3〜5のアルキル基または)工二ル基
、RH詰ま水素原子またはメチル基を表わす。
That is, the present invention applies an undercoating agent containing an epoxy resin having an epoxy equivalent of 180 to 3,300 and vinyl chloride to the seawater contact surface formed of concrete or mortar of structures and equipment of a power plant cooling water system. Primer coating agent containing vinyl chloride with a vinyl acetate content of 91% by weight or less and a vinyl acetate content of 34% by weight or less, a vinyl resin that is a vinyl acetate copolymer, or a chlorinated polyolefin with a chlorine content of 66% by weight or more After applying a resin-containing undercoat coating agent, it is coated with the general formula (in the formula, R is an alkyl group having 3 to 5 carbon atoms, or an methyl group, an RH-filled hydrogen atom, or a methyl group).

)で示される不飽和有機錫単量体の重合体もしくは共重
合体、またはこの式(A)で示される不飽和有機錫単量
体と共重合性のある他の不飽和化合物との共重合体を主
成分とする防汚塗布剤を塗布することを特徴とするコン
クリートおよびモルタル表面の防汚方法である。′ 本発明で用いる下塗塗布剤は、耐アルカリ性が強く、コ
ンクリートまたはモルタルとの付着性が良好であり、浸
出するアルカリを遮断すると共にさらに有機錫重合体防
汚塗布膜との付着性にすぐれて居るものであって、通常
の下塗塗布剤として使用されている塗布剤では得られな
い特徴がある。
) A polymer or copolymer of an unsaturated organotin monomer represented by formula (A), or a copolymer of this unsaturated organotin monomer represented by formula (A) with another unsaturated compound that is copolymerizable. This is an antifouling method for concrete and mortar surfaces, which is characterized by applying an antifouling coating agent whose main component is coalescence. ' The primer coating agent used in the present invention has strong alkali resistance, good adhesion to concrete or mortar, blocks leaching alkali, and also has excellent adhesion to the organotin polymer antifouling coating film. It has characteristics that cannot be obtained with coating agents used as ordinary primer coating agents.

本発明で使用する下塗塗布剤に用いる樹脂のうち、エポ
キシ樹脂については、エポキシ当fk180〜3300
の範囲のものであって、例えば油化シェルエポキシ社製
のエビコ−)807,815.815XA、816.8
19.827.828、B28XA、834.871.
872.1001.1002.1003.1055.1
004.1007.1009等であり、またはこれら品
種相当のエポキシ樹脂である。
Among the resins used in the undercoat coating agent used in the present invention, epoxy resins have an epoxy fk of 180 to 3300.
For example, Ebiko 807, 815.815XA, 816.8 manufactured by Yuka Shell Epoxy Co., Ltd.
19.827.828, B28XA, 834.871.
872.1001.1002.1003.1055.1
004.1007.1009, etc., or epoxy resins equivalent to these types.

これらのものから選ばれた1種または2種以上を含むエ
ポキシ樹脂を主剤とし、アミン、7ミン7ダクト、7ミ
ド、アミド7ダクト、ポリアミド樹脂等から選ばれた1
種または2種以上の組合せを含む硬化剤を加えて、使用
直前に混合し下塗塗布剤とする。なお、主剤と硬化剤の
混合比率は化学量論的に等しいことが望ましい。
The main resin is an epoxy resin containing one or more selected from these, and one selected from amine, 7min 7duct, 7mid, amide 7duct, polyamide resin, etc.
Hardeners containing seeds or combinations of two or more are added and mixed immediately before use to form a base coat application. Note that it is desirable that the mixing ratio of the base agent and the curing agent be stoichiometrically equal.

ここでエポキシ当量を180〜3300の範囲に限定す
る理由については、エポキシ当量180以下では、架橋
間分子量が小さすぎるために剛直となり、コンクリート
またはモルタルおよび有機錫重合体防汚塗布膜との付着
性を阻害するためであり、またエポキシ当量3300以
上では分子量が大きくて硬化剤との架橋反応が運過ぎ、
また下塗塗布剤主剤を調整する際、高粘度、低固形分と
なって、塗布膜厚が低くなるなど実用上好ましくないた
めである。
The reason why the epoxy equivalent is limited to a range of 180 to 3,300 is that if the epoxy equivalent is less than 180, the molecular weight between crosslinks is too small, resulting in rigidity and poor adhesion to concrete or mortar and the organotin polymer antifouling coating film. Moreover, if the epoxy equivalent is 3300 or more, the molecular weight is too large and the crosslinking reaction with the curing agent is too slow.
In addition, when preparing the main component of the undercoating agent, the viscosity is high and the solid content is low, resulting in a decrease in coating film thickness, which is undesirable from a practical standpoint.

ビニル樹脂については、塩化ビニルの含有量が91重量
−以下であり、かつ、酢酸ビニルの含有量が34重量−
以下であるビニル樹脂、例えばユニオンカーバイド社製
ビニライトVYHH、VYHD 、VYLF 、VYN
S−3,VAGH、MAGD 、VROH、VMCH、
VMCC、VMCA 。
Regarding vinyl resin, the content of vinyl chloride is 91% by weight or less, and the content of vinyl acetate is 34% by weight.
The following vinyl resins, such as Union Carbide Vinylite VYHH, VYHD, VYLF, VYN
S-3, VAGH, MAGD, VROH, VMCH,
VMCC, VMCA.

VERR−40、VYDS 、VYDS−66、VYN
Cまたはこれら相当品であって、これらの1種または2
種以上の混合物を用いて下塗塗布剤とする。
VERR-40, VYDS, VYDS-66, VYN
C or equivalent products, one or two of these
A mixture of more than one species is used to form a primer coating.

ここでビニル樹脂中の塩化ビニルの含有量な91重量%
以下とする理由は、91重t%以上では下塗塗布剤とし
た場合、コンクリートまたはモルタルおよび有機錫重合
体防汚塗布膜との付着力が弱くなるためであり、また酢
酸ビニルの含有量、k・34重量%以下とする理由は、
34重量%以上では耐アルカリ性が弱くなり、下塗塗布
膜がコンクリートまたはモルタルから剥離しやすくなる
ためである。
Here, the content of vinyl chloride in the vinyl resin is 91% by weight.
The reason for the following is that if it is 91 wt % or more, the adhesion to concrete or mortar and organic tin polymer antifouling coating will be weak when used as an undercoat coating agent, and the content of vinyl acetate, k・The reason for setting it to 34% by weight or less is as follows.
This is because if the content is 34% by weight or more, the alkali resistance becomes weak and the undercoat film easily peels off from the concrete or mortar.

塩素化ポリオレフィン樹脂については、塩素含有量66
重量%以上である塩素化ポリエチレン樹脂または塩素化
ポリプルピレン樹脂であって、例えば山場国策パルプ社
製スーパークロン907MA、907LL、106に、
307,406,507またはこれら相当品であって、
これを用いて下塗塗布剤とする。
For chlorinated polyolefin resins, the chlorine content is 66
% by weight or more of chlorinated polyethylene resin or chlorinated polypropylene resin, for example, Super Chron 907MA, 907LL, 106 manufactured by Yamaba Kokusaku Pulp Co., Ltd.
307, 406, 507 or their equivalents,
This is used as an undercoat coating agent.

ここで塩素化ポリオレフィン樹脂を塩素化ポリエチレン
樹脂または塩素化ポリプロピレン樹脂とする理由は、塩
素化ポリアミド樹脂、塩素化ポリアミド樹脂、塩素化ポ
リヘキシレン剃り旨等では、塩素化反応を均一に行うた
めには、該オレフイン樹脂の分子量を低下させる必要が
あり、その結果塗布膜の強靭性を阻害し、亀裂を生せし
めるなど、コンクリートまたはモルタルどの付着力を阻
害するためである。また塩素含有量を66重量%以上と
する理由は、塩素含有量66重量%以下では安定性が悪
く、脱塩素または脱塩化水素反応等により下塗塗布膜が
劣化して、コンクリートまたはモルタルから剥離するこ
とがある等のほかに、発生した塩素などが有機錫重合体
防汚塗布膜に悪影響をおよぼすなど、長期にわたり安定
した性能を持続し難いためである。
The reason why the chlorinated polyolefin resin is chlorinated polyethylene resin or chlorinated polypropylene resin is that in order to uniformly perform the chlorination reaction, chlorinated polyamide resin, chlorinated polyamide resin, chlorinated polyhexylene, etc. This is because it is necessary to reduce the molecular weight of the olefin resin, and as a result, the toughness of the coating film is inhibited, causing cracks, etc., and inhibiting the adhesion of concrete or mortar. The reason why the chlorine content is set to be 66% by weight or more is that if the chlorine content is 66% by weight or less, the stability is poor, and the primer coating film deteriorates due to dechlorination or dehydrochlorination reaction, resulting in peeling from the concrete or mortar. In addition to this, the generated chlorine etc. have an adverse effect on the organic tin polymer antifouling coating film, making it difficult to maintain stable performance over a long period of time.

これら下塗塗布剤用樹脂は適当な溶剤に溶解し、必要に
応じて可塑剤、顔料、安定剤、コールタール等を加え、
常法により混練して下塗塗布剤とする。
These resins for base coating are dissolved in a suitable solvent, and if necessary, plasticizers, pigments, stabilizers, coal tar, etc. are added.
The mixture is kneaded using a conventional method to obtain a base coat coating agent.

また、上塗として塗布される有機錫重合体防汚塗布剤は
、一般式 (式中Rは炭素数3〜5のアルキル基または)工二ル基
、R1、R″は水素原子またはメチル基を表わす。)で
示される例えばトリプロピル錫、トリブチル錫、トリア
ミル錫、トリフェニル錫等の三有機錫化合物の7クリレ
ートまたはメタクリレート合物例えばアクリル酸メチル
、アクリル酸エチル、アクリル酸ブチル、アクリル酸オ
クチル等のアクリル酸エステル、またはメタクリル酸メ
チル、メタクリル酸エチル、メタクリル酸ブチル、メタ
クリル酸オクチル等のメタクリル酸エステルまたはさせ
て得た重合体を主成分とする塗布剤であって、必要によ
り顔料、防汚剤、その他添加剤等を加え、常法により混
練して塗布剤とする。
In addition, the organotin polymer antifouling coating agent applied as a top coat has the general formula (in the formula, R is an alkyl group having 3 to 5 carbon atoms or an engineering group), and R1 and R'' are a hydrogen atom or a methyl group. 7 acrylate or methacrylate compounds of triorganotin compounds such as tripropyltin, tributyltin, triamyltin, triphenyltin, etc., such as methyl acrylate, ethyl acrylate, butyl acrylate, octyl acrylate, etc. or methacrylic esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, and octyl methacrylate, or polymers obtained by methacrylic acid esters, and if necessary, pigments and antifouling agents. and other additives, and knead by a conventional method to prepare a coating agent.

有機錫重合体防汚塗布剤の塗布も、下塗塗布剤と同様の
方法によって行われるが、その塗布膜厚は冷却水として
取水される海水の流速、pH1温度と、要求される耐用
年数(防汚力の持続期間)および防汚剤の溶出速度によ
って決定されるべきであり、耐用年数1年間を基準にし
て30μ以上を必要とする。
The organic tin polymer antifouling coating agent is applied using the same method as the base coating agent, but the coating film thickness depends on the flow rate of the seawater used as cooling water, pH1 temperature, and the required service life (antifouling agent). It should be determined by the duration of staining power) and the elution rate of the antifouling agent, and should be 30μ or more based on one year of service life.

かくして得られる本発明の耐アルカリ性に優れた下塗塗
布剤と、有機錫重合体防汚塗布剤との組合せ塗布による
防汚方法によれば、本質的にアルカリの浸出を防止し、
上塗りとして塗布される有機錫重合体防汚塗布膜がコン
クリートまたはモルタル素地から剥離することを防ぎ、
公害対策上有利な長期防汚を達成し得る。
According to the antifouling method by applying a combination of the base coat coating agent with excellent alkali resistance of the present invention obtained in this way and the organic tin polymer antifouling coating agent, leaching of alkali is essentially prevented,
Prevents the organic tin polymer antifouling coating applied as a top coat from peeling off from the concrete or mortar base,
It is possible to achieve long-term antifouling, which is advantageous in terms of pollution control.

次に実施例、比較例によって本発明の詳細な説明する。Next, the present invention will be explained in detail using Examples and Comparative Examples.

文中特にことわらない限り、部は重量部である。Unless otherwise specified in the text, parts are parts by weight.

I有機錫重合体防汚塗布剤(A)の調製攪拌機付きのフ
ラスコにトリメチル錫メタクリレ−)112/、メチル
メタクリレート6511ブチル7クリレート10/、オ
クチル7クリレー)23.P、ベンゾイルパーオキサイ
ド1.2 J’ 、およびキシレン200tの混合物を
仕込み、85’0〜90°0で2時間、続いて100°
0〜105°0で3時間加熱攪拌し、さらに120℃で
1時間加熱攪拌して共重合させた。得られた共重合体溶
液は無色透明であり、25°0での粘度は660 cp
sであった。
I Preparation of Organotin Polymer Antifouling Coating Agent (A) In a flask equipped with a stirrer, add trimethyltin methacrylate (112/), methyl methacrylate (6511), butyl (7) acrylate (10/), octyl (7 acrylate)) 23. A mixture of P, 1.2 J' of benzoyl peroxide, and 200 t of xylene was charged and heated at 85'0 to 90°0 for 2 hours, followed by 100°.
The mixture was heated and stirred at 0 to 105°C for 3 hours, and further heated and stirred at 120°C for 1 hour to effect copolymerization. The resulting copolymer solution was colorless and transparent, with a viscosity of 660 cp at 25°0.
It was s.

得られた共重合体溶液を、下記に示す量の他の成分と配
合し混練して有機錫重合体防汚塗布剤(A)を調製した
The obtained copolymer solution was blended with other components in the amounts shown below and kneaded to prepare an organic tin polymer antifouling coating agent (A).

共重合体溶液        400部二酸化チタン 
       10.0部フタロシアニンブルー   
  20部タルク           345部キシ
レン          135部■下塗塗布剤A−H
の調製 表1に配合を示すA−Hそれぞれの主剤成分を混練し、
さらにA−Dは使用直前に硬化剤を加えて実施例の下塗
塗布剤A〜■を調製した。
Copolymer solution 400 parts titanium dioxide
10.0 parts Phthalocyanine blue
20 parts Talc 345 parts Xylene 135 parts ■Undercoat coating agent A-H
Preparation Knead the main ingredients of each of A-H whose formulation is shown in Table 1,
Further, for AD, a curing agent was added immediately before use to prepare base coat coating agents A to ① of the examples.

■比較例下塗塗布剤Iの調製 攪拌機付きのフラスコに、127108部、タマノール
145 F (i用林産製ロジン変性フェノール樹脂)
306部、アマニ油140部、支那桐油1.6部、ミネ
ラルスピリット100部、スワゾールJ310(丸善石
油社製芳香族石油ナフサ)330部を仕込み、50℃に
加温しつつ1時間攪拌し、やや褐色に着色した透明な変
性油溶液を得た。
■Comparative Example Preparation of Primer I In a flask equipped with a stirrer, add 127,108 parts of Tamanol 145 F (Rosin-modified phenolic resin made by Forest Products for i).
306 parts of linseed oil, 140 parts of linseed oil, 1.6 parts of Chinese tung oil, 100 parts of mineral spirit, and 330 parts of Swazol J310 (aromatic petroleum naphtha manufactured by Maruzen Oil Co., Ltd.) were charged, and stirred for 1 hour while heating to 50°C. A transparent modified oil solution with a brown color was obtained.

変性油溶液を用い、下記の配合によって比較例下塗塗布
剤lを調製した。
Comparative Example Primer Coating Agent I was prepared using a modified oil solution according to the following formulation.

タルク           200部バライタ   
        3.6部弁柄           
  80部亜鉛華            40部変性
油溶液         57.9部ナフテン酸コバル
ト       03部ナフテン酸鉛        
 3.0部ミネラルスピリット      32部実施
例1〜8、比較例1〜2 下塗途布剤A−Iをモ、レタ、し 仕上げを施したコンクリート板それぞれ3枚に、機錫重
合体防汚塗布剤(A)を塗膜厚60μで2回スプレー塗
装して実施例1〜8、比較例1〜2の塗装試験板を作製
した。
Talc 200 parts baryta
3.6 part pattern
80 parts zinc white 40 parts modified oil solution 57.9 parts cobalt naphthenate 03 parts lead naphthenate
3.0 parts mineral spirit 32 parts Examples 1 to 8, Comparative Examples 1 to 2 Three concrete plates each coated with base coating agent A-I were coated with tin polymer antifouling. Coated test plates of Examples 1 to 8 and Comparative Examples 1 to 2 were prepared by spray coating agent (A) twice at a coating thickness of 60 μm.

実施例、比較例それぞれの塗装試験板1枚は40°0の
人工海水に浸漬して経時的に付着性を調べ、他の2枚は
州本市由良湾で、筏から水面下1.5 mの海中に浸漬
し、経時的に防汚効果と付着性を調べた。結果を表3、
表4、表5に示す。
One painted test board for each of the Example and Comparative Example was immersed in artificial seawater at 40°0 to examine adhesion over time, and the other two were immersed in artificial seawater at 40°0, and the other two were immersed in Yura Bay, Shumoto City, from a raft 1.5 meters below the water surface. The antifouling effect and adhesion were examined over time by immersing the sample in the sea. The results are shown in Table 3.
It is shown in Table 4 and Table 5.

表3 付着試験結果 (40℃人工海水浸漬)注1、表
中の数字は間隔2期のゴバン目を25目切り、テープハ
クリをしたあとに残った目の数で示した。(以下ゴバン
目テストという)注2、−印はすでに量弁膜がモルタル
素地から剥離しており、ゴノくン目テストができなかっ
たことを示す。
Table 3 Adhesion test results (40°C artificial seawater immersion) Note 1: The numbers in the table are the number of stitches remaining after cutting 25 stitches in the second interval and peeling with tape. (Hereinafter referred to as the goblin test) Note 2: The - mark indicates that the valve membrane had already peeled off from the mortar base, and the goblin test could not be performed.

表3にみられるように、あらかじめ、エポキシ樹脂を配
合した下塗塗布剤A、Bを塗布した実施例1、実施例2
、一般にタールエポキシ樹脂塗布剤と呼ばれる下塗塗布
剤C,Dを塗布した実施例3、実施例4、ビニル樹脂を
配合した下塗塗布剤E、Fを塗布した実施例5、実施例
6、塩素化ポリエチレンを配合した下塗塗布剤Gを塗布
した実施例7、塩素化ポリプルピレンを配合した下塗塗
布剤Hな塗布した実施例8はいずれも40゛C人工海水
浸漬6か月後のゴバン目テストで異状なく、良好な付着
性を示したが、有機錫重合体防汚塗布剤(A)をコンク
リート板に直接塗布した比較例1および一般に油性下塗
ペイントと呼ばれる比較用下塗塗布剤■を塗布した比較
例2はいずれも40℃人工海水浸漬前に行ったゴバン目
テストは25で正常であったが、比較例1は浸漬1か月
後に、比較例2は浸漬3か月後に塗布膜が全面剥離し、
エポキシ樹脂、タールエポキシ樹脂、ビニル樹脂、塩素
化ポリオレフィン樹脂がコンクリートまたはモルタルに
強い付着力を有し、かつ耐アルカリ性、にすぐれている
ことを示した。
As shown in Table 3, Examples 1 and 2 were coated with primer coating agents A and B containing epoxy resin in advance.
, Example 3 and Example 4, in which primer coating agents C and D, generally called tar epoxy resin coating agents, were applied, Example 5, Example 6, in which primer coating agents E and F containing vinyl resin were applied, and Example 6. Example 7, in which the undercoat G containing polyethylene was applied, and Example 8, in which the undercoat H was applied, containing chlorinated polypropylene, both showed abnormalities in the goblin test after 6 months of immersion in 40°C artificial seawater. Comparative Example 1, in which the organotin polymer antifouling coating agent (A) was applied directly to the concrete board, and Comparative Example, in which the comparative primer coating agent ■, which is generally called an oil-based primer paint, was applied. In both cases, the cross-cut test conducted before immersion in 40°C artificial seawater was 25, which was normal, but in Comparative Example 1, the coating film completely peeled off after 1 month of immersion, and in Comparative Example 2, after 3 months of immersion. ,
It has been shown that epoxy resins, tar epoxy resins, vinyl resins, and chlorinated polyolefin resins have strong adhesion to concrete or mortar and have excellent alkali resistance.

表4 防汚効果 (由良湾で浸漬) 注3、表中の数字は浸漬試峡板全面積に対して付着した
汚損生物の占める面積を百分率で示したものであり、0
は付着なし、100は全面付着を表わす。汚損生物はす
べて有機錫重合体防汚塗布膜が剥離した部分に付着して
おり、有機錫重合体防汚塗布膜が健全な部分には付着は
なかりた。
Table 4 Antifouling effect (Immersed in Yura Bay) Note 3: The numbers in the table indicate the area occupied by the fouling organisms attached to the total area of the immersion test plate as a percentage.
100 indicates no adhesion, and 100 indicates full adhesion. All the fouling organisms were attached to the parts where the organotin polymer antifouling coating film had peeled off, and there was no adhesion to the parts where the organotin polymer antifouling coating film was intact.

表4の結果は試験板全面積に占める汚損生物の付着率と
して表わしているが、本質的には下塗塗布剤の有無(比
較例1は下塗塗布剤を塗布していない。)および下塗塗
布剤の種類の違い(比較例2は耐アルカリ性の弱い油性
下塗ペイントを下塗塗布剤として使用した。)に起因す
るコンクリートまたはモルタル素地との付着力の差で、
その傾向は表1のゴバン目テストの結果と同様である。
The results in Table 4 are expressed as the adhesion rate of fouling organisms to the total area of the test plate, but essentially they are based on the presence or absence of the primer coating agent (in Comparative Example 1, no primer coating agent was applied) and the presence or absence of the primer coating agent. The difference in adhesion to the concrete or mortar base is due to the difference in type (Comparative Example 2 used an oil-based primer paint with weak alkali resistance as the primer coating agent).
The trend is similar to the results of the Goban eyes test shown in Table 1.

表5 海水浸漬付着試験 (由良湾で浸漬)注4、表中
の数字は表3の数字(注1)と同じである。なお−印は
海水浸漬中に塗布膜がすべて剥離・消失したため、ゴバ
ン目テストができなかったことを示す。
Table 5 Seawater immersion adhesion test (Immersed in Yura Bay) Note 4: The numbers in the table are the same as the numbers in Table 3 (Note 1). Note that the - mark indicates that the coating film was completely peeled off and disappeared during immersion in seawater, so the cross-cut test could not be performed.

表5の結果は表3、表4の結果と同様の傾向であり、本
発明に用いられる下塗塗布剤が、耐アルカリ性を有し、
コンクリートまたはモルタルとの付着性にすぐれること
を示した。
The results in Table 5 have the same tendency as the results in Tables 3 and 4, indicating that the primer coating agent used in the present invention has alkali resistance,
It has been shown to have excellent adhesion to concrete or mortar.

実施例9 A発電所の、モルタル仕上げをほどこしたコンクリート
製取水口壁面に下塗塗布剤A、Bを被塗布面積の50%
ずつに、それぞれ塗布膜厚50βで2回、さらに有機重
合体防汚塗布剤(A)を塗布膜厚60μで全面に2回、
工7ンススプレーを用いて塗布した。通水1年後に調査
したところ、塗布膜の剥離・汚損生物の付着ともになく
、良好な防汚力を示した。
Example 9 Primer coating agents A and B were applied to 50% of the area to be applied to the mortar-finished concrete water intake wall of power plant A.
The organic polymer antifouling coating agent (A) was applied twice to the entire surface with a coating thickness of 60μ, respectively.
It was applied using a sprayer. When investigated after one year of water flow, there was no peeling of the coating film or adhesion of fouling organisms, indicating good antifouling ability.

実施例10 B発電所の、モルタルライニングをほどこした循環水管
内面に、下塗塗布剤C,Dを被塗布面積の50%ずつK
、それぞれ塗布膜厚7oμで2回、さらに有機錫重合体
防汚塗布剤(A)を塗布膜厚60声で全面に2回、1−
ラー刷毛を用いて塗布した。通水2年後に調査したとこ
ろ、塗布膜の剥離・汚損生物の付着ともになく、良好な
防汚力を示した。
Example 10 Primer coating agents C and D were applied to the inner surface of the mortar-lined circulating water pipes in power plant B by 50% each of the area to be coated.
, respectively, twice with a coating thickness of 7 μm, and then applied organic tin polymer antifouling coating agent (A) twice over the entire surface with a coating thickness of 60 μm, 1-
It was applied using a color brush. When investigated after 2 years of water flow, there was no peeling of the coating film or adhesion of fouling organisms, indicating good antifouling properties.

実施例工I C発電所の、コンクリート製取水口壁面に、下塗塗布剤
E、Fを被塗布直積の50%ずつに、それぞれ塗布膜厚
30μで3回、さらに有機錫重合体防汚塗布剤(A)を
塗布膜厚60.で全面に2回、エアレススプレーを用い
て塗布した。通水1年後′に、!11査したところ、塗
布膜の剥離・汚損生物の付着ともになく、良好な防汚力
を示した。
Example work On the concrete water intake wall of the IC power plant, apply primer coating agents E and F to 50% of the area to be coated three times, each with a film thickness of 30 μm, and then apply an organic tin polymer antifouling coating agent. (A) has a coating film thickness of 60. It was applied twice over the entire surface using an airless sprayer. One year after the water was turned on! As a result of 11 inspections, there was no peeling of the coating film and no adhesion of fouling organisms, indicating good antifouling ability.

実施例12 D発電所の、モルタルライニングをほどこした循環水管
内面に、下塗塗布剤G、 I(を被塗布面積の50チず
つに、それぞれ塗布膜厚4oμで2回、さらに有機錫重
合体防汚塗布剤(A)を60μで全面に2回、p−ラー
刷毛を用いて塗布した。通水1年後に調査したところ、
塗布膜の剥離・汚損生物の付着ともKなく、良好な防汚
力を示した。
Example 12 Primer coating agents G and I were applied to the inner surface of the mortar-lined circulating water pipes of power plant D twice to a coating thickness of 4 μm on each 50-inch area, and an organic tin polymer preventive coating was applied to each 50 inch area. Stain coating agent (A) was applied twice to the entire surface using a p-lar brush at 60 μm.An investigation was conducted after one year of water flow.
There was no peeling of the coating film or adhesion of fouling organisms, and good antifouling power was exhibited.

比較例3 B発電所の、モルタルライニングをほどこした循環水管
内面の一部に、1か所は有機錫重合体防汚塗布剤(A)
を塗布膜厚60μで2回、他の1か所は比較用下塗塗布
剤■を塗布膜厚40μで2回、さらに有機錫重合体防汚
塗布剤(A)を60、で2回、p−ラー刷毛を用いて塗
布した。通水1年後に状態を観察したところ、塗布膜は
完全に剥離・消失し、汚損生物が全面に付着していた。
Comparative Example 3 Organotin polymer antifouling coating agent (A) was applied to one part of the inner surface of the mortar-lined circulating water pipe in power plant B.
2 times with a film thickness of 60μ, and one other place was coated with a comparative undercoat coating agent ■ twice with a film thickness of 40μ, and an organic tin polymer antifouling coating agent (A) was applied twice with a film thickness of 60μ. - Applied using a color brush. When the condition was observed one year after water flow, the coating film had completely peeled off and disappeared, and fouling organisms had adhered to the entire surface.

以上実施例、比較例で説明したように、本発明の防汚方
法は、発電所冷却水系の構造物・機器類のコンクリート
またはモルタルで形成されている海水接触面K、エポキ
シ樹脂系下塗塗布剤、ビニル樹脂系下塗塗布剤または塩
素化ポリオレフィン(オンフィンとしてはエチレン、プ
ルピレン)樹脂系下塗塗布剤と有機懸重合体防汚塗布剤
とを重ね塗りすることにより、防汚力、塗布膜の付着力
ともて長期間の効果が期待できる、産業上有用なもので
ある。
As explained above in the Examples and Comparative Examples, the antifouling method of the present invention applies an epoxy resin base coat to seawater contact surfaces K formed of concrete or mortar of structures and equipment of power plant cooling water systems. By overcoating a vinyl resin-based primer coating agent or a chlorinated polyolefin (ethylene or propylene as onfin) resin-based primer coating agent and an organic suspended polymer antifouling coating agent, the antifouling power and adhesion of the coating film can be improved. It is industrially useful and can be expected to have long-term effects.

特許出願人    日本油脂株式会社Patent applicant: NOF Corporation

Claims (1)

【特許請求の範囲】 冷却水系のフンクリートまたはモルタルで形成されてい
る海水接触間に、エポキシ当量が180〜3BQQの範
囲であるエポキシ樹脂を含む下塗塗布剤、塩化ビニルの
含有量が91重量%以下で、かつ、酢酸ビニルの含有量
が34重量%以下の塩化ビニル、酢酸ビニル共重合体で
あるビニル樹脂を含む下塗塗布剤または塩素含有量が6
6重量係以上である塩素化ポリオレフィン樹脂を含む下
塗塗布剤を塗布したのち、一般式 (式中Rは炭素数3〜5のアルキル基またはフェニル基
、R’、 R’は水素原子またはメチル基を表わす。)
で示される不飽和有機錫単量体の重合体もしくは共重合
体、またはこの式(A)で示される不飽和有機錫単量体
と共重合性のあ々他の不飽和化合物との共重合体を主成
分とする防汚塗布剤を塗布することを特徴とするコンク
リートおよびモルタル表面の防汚方法。
[Scope of Claims] An undercoating agent containing an epoxy resin having an epoxy equivalent in the range of 180 to 3 BQQ between the seawater contacts formed by cooling water-based Funkrete or mortar, and a vinyl chloride content of 91% by weight or less. and an undercoating agent containing vinyl chloride with a vinyl acetate content of 34% by weight or less, a vinyl resin that is a vinyl acetate copolymer, or a chlorine content of 6% by weight.
After applying an undercoat coating agent containing a chlorinated polyolefin resin having a weight ratio of 6 or more, the general formula (wherein R is an alkyl group having 3 to 5 carbon atoms or a phenyl group, R' and R' are a hydrogen atom or a methyl group) is applied. )
A polymer or copolymer of an unsaturated organotin monomer represented by the formula (A), or a copolymer of the unsaturated organotin monomer represented by this formula (A) with any other unsaturated compound copolymerizable An antifouling method for concrete and mortar surfaces, which comprises applying an antifouling coating agent whose main component is coalescence.
JP8070083A 1983-05-11 1983-05-11 Prevention of surface staining of concrete and mortar Granted JPS59206512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8070083A JPS59206512A (en) 1983-05-11 1983-05-11 Prevention of surface staining of concrete and mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8070083A JPS59206512A (en) 1983-05-11 1983-05-11 Prevention of surface staining of concrete and mortar

Publications (2)

Publication Number Publication Date
JPS59206512A true JPS59206512A (en) 1984-11-22
JPS6233365B2 JPS6233365B2 (en) 1987-07-21

Family

ID=13725600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8070083A Granted JPS59206512A (en) 1983-05-11 1983-05-11 Prevention of surface staining of concrete and mortar

Country Status (1)

Country Link
JP (1) JPS59206512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015372A (en) * 1990-02-07 1991-05-14 The United States Of America As Represented By The Secretary Of The Navy Toxin containing perforated antifouling polymer nozzle grommet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015372A (en) * 1990-02-07 1991-05-14 The United States Of America As Represented By The Secretary Of The Navy Toxin containing perforated antifouling polymer nozzle grommet

Also Published As

Publication number Publication date
JPS6233365B2 (en) 1987-07-21

Similar Documents

Publication Publication Date Title
KR100530968B1 (en) Coating composition
CA1084645A (en) Anti-fouling overcoating composition and use thereof
JPH02151672A (en) Antifouling coating material
JP6663928B2 (en) Antifouling composite coating film, antifouling substrate, and method for producing the antifouling substrate
BRPI0313260B1 (en) seawater insoluble polymer, process for preparing a seawater insoluble polymer, use of a seawater insoluble polymer, antifouling coating compositions and use of a coating composition
JP6676654B2 (en) Antifouling paint composition, antifouling coating film, antifouling substrate, and method for producing the antifouling substrate
ZA200300030B (en) Antifouring paint.
CN1119665A (en) Antifouling paint composition
JPS62501293A (en) antifouling paint
CN101121855A (en) Tin-free self-polishing antifouling paint
KR100254651B1 (en) Hydrolyzable resin containing aldehyde bonded thereto and self-polishing antifouling paint
JPS59206512A (en) Prevention of surface staining of concrete and mortar
JPH08277372A (en) Coating composition
US4482652A (en) Marine anti-fouling paints
JPH10279841A (en) Antifouling paint composition, coating film formed from this composition, method for preventing fouling by using this composition, and hull, underwater and water-surface structures or fishery material coated with the film
JP2004307764A (en) Coating material composition, antifouling coating film, underwater structure and method for forming antifouling coating film for underwater structure
JPH1161002A (en) Non-tin antifouling paint composition, antifouling coating film, antifouling method and ship coated with this antifouling coating film
US4816071A (en) Coating composition
KR900003425B1 (en) Sealing composition for ship bottom paint
JPS636067A (en) Water-repellent antifouling coating composition
JP2006183059A (en) Coating composition
JPS60124667A (en) Method for preventing surface of rubber lining from being fouled
JPS6044567A (en) Stainproofing method for surface of nonferrous metal
JPH10279840A (en) Antifouling paint composition, coating film formed from this composition, method for preventing fouling by using this composition, and hull, underwater and water-surface structures or fishery material coated with the film
JPH01197571A (en) Formation of stainproof paint film