JPS6233000B2 - - Google Patents

Info

Publication number
JPS6233000B2
JPS6233000B2 JP53093304A JP9330478A JPS6233000B2 JP S6233000 B2 JPS6233000 B2 JP S6233000B2 JP 53093304 A JP53093304 A JP 53093304A JP 9330478 A JP9330478 A JP 9330478A JP S6233000 B2 JPS6233000 B2 JP S6233000B2
Authority
JP
Japan
Prior art keywords
water
dust collection
dust
exhaust gas
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53093304A
Other languages
Japanese (ja)
Other versions
JPS5520646A (en
Inventor
Yoshihiro Myamoto
Susumu Shirakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9330478A priority Critical patent/JPS5520646A/en
Publication of JPS5520646A publication Critical patent/JPS5520646A/en
Publication of JPS6233000B2 publication Critical patent/JPS6233000B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は製鋼炉例えば転炉の排ガス素および集
塵水中におけるスケール堆積防止方法に関する。 従来、製鋼工場においては、第1図に示す如く
転炉1より吹錬中に排出されたガスは、間接冷却
部3を通り、除塵系に送気される。排ガス中の塵
埃は一次集塵器4において水洗集塵され、さらに
二次集塵器5で再び水洗集塵された後、誘引フア
ン6によつて排出される。しかして一次集塵器4
で含塵された集塵水中のSS成分(浮遊物質)を
除去したのち、水槽10に入る。水槽10の集塵
水は給水ポンプ11によつて二次集塵器5の集塵
用水に利用され、その含塵排水はシールポツト1
3を経て給水ポンプ14により一次集塵器4に給
水される。 上述したように集塵水は除塵系を循環使用して
おり、循環中に持去られた不足水に対しての系内
補給は水槽10へ系外給水源より補給される。 このように集塵水は循環使用を行なつていると
ころから排ガス中の溶解成分により循環集塵水中
の塩分量は濃縮増加する。 この塩分量の増加に伴ない、従来このスケール
堆積防止策として水槽10に分散剤(例えばポリ
アクリル酸、ポリ燐酸塩、アルキル基、アミノ
基、ヒドロキシル基を有するホスホン酸等)を添
加し、一次および二次集塵器4,5の給水配管系
内のスケール堆積防止が行なわれていた。 しかしながら転炉の操業条件によつては、前記
分散剤の注入方法では必ずしも充分な効果が発揮
できないという欠点があつた。 例えば高PH,高Ca硬度成分集塵水に対して
は、第1図に示す塵埃回収装置9、水槽10より
分散剤やPH低下剤(一般には硫酸)の添加を行な
つていたが、生成する石膏、炭酸カルシウムによ
り集塵水系(例えば戻水管8や給水管)の閉塞、
集塵器後位のダクト内や誘引フアン6内にスケー
ル堆積を生じていた。 本発明はかかる事態に鑑みてなされたもので、
その特徴とするところは、製鋼炉排ガス系およ
び/もしくは集塵水系の循環集塵水中にアルカリ
塩および燐含有化合物のそれぞれ一方もしくは両
方を注入し、該循環集塵水を溶解塩バランス(全
硬度/HCO3 -)が0.2以下、PO4 -3が1ppm以上に
水質調整することにあり、比較的HCO3 -が高
く、Ca硬度成分の低い水質の場合は勿論、上述
したようにスケール堆積が大となる水質条件の場
合であつても排ガス・集塵水系内にスケールが堆
積することがない製鋼炉排ガス系および集塵水系
のスケール堆積防止方法を提供するにある。 本発明者等は、本発明の完成に先立つて種々研
究、検討を重ねた結果、上記系内へスケール堆積
を来たす水質条件として以下の各項が存在するこ
とを知見し得た。 PHが11.0以上となる。 M(メチレンブルー)アルカリ値として
900ppm以上となり、HCO3 -/Mアルカリ値が
0.01以下(as CaCO3 ppm)となる。(HCO3 -
としてはほとんど零になる場合が多い。) Mアルカリ値のほとんどがCa(OH)2成分と
なる。 戻水中(第1図の集塵水系8)のPO4 -3が瞬
時的または連続的に1ppm以下となる。 集塵器で排ガスと接触した直後、PH値が4.0
以上低下する。 しかして、製鋼(転炉)工場の循環集塵水の水
質が、排ガス・集塵水系にスケール堆積を生じさ
せる原因として、副原料の影響が考えられてい
る。 すなわち、副原料中のCaOおよびCaCO3が排
ガス中の塵埃として水と接触し、CaCO3は、 2CaCO3+2H2O =Ca(OH)2+Ca(HCO32 ……(1) となり、CaOは CaO+H2O=Ca(OH)2 ……(2) となつて循環集塵水中に溶解する。 (1)式中のCa(HCO32は30〜40℃では1200〜
1175ppmの溶解度を示すが、温度が上昇するに
従つて、 Ca(HCO32→CaCO3+H2O ……(3) となり、不溶解なCaCO3が生成され、沈澱し、
スケール化する。 また、(2)式の反応で生成されたCa(OH)2は排
ガス中のCO2を吸収することによつて、 Ca(OH)2+CO2=CaCO3+H2O ……(4) としてCa(HCO32の分解と同様に、不溶な
CaCO3が生成され、その結果スケール堆積が生
じる。 出願人工場における実積によれば、(3)式の反応
が先行し、(2)式の反応は第1図の塵埃回収装置9
およびそれ以後の集塵水系でCa(OH)2の飽和値
まで溶解が進行する。したがつて排ガスと接触し
た以後の集塵水系7,8および13,15の箇所
についてスケール堆積が顕著に現われる。 また、前述したように硫酸等の薬剤を水槽10
に添加した場合には、集塵水系の給水系12につ
いてもスケール堆積が生じることを確認してい
る。 第1表は出願人工場の実操業における、(ア)スケ
ール付着の大なる集塵水水質と、(イ)スケール付着
小なる水質との比較例を示したものであるが、ス
ケール付着の大なる水質では、HCO3 -の存在が
認められず、高硬度となつており、一方スケール
付着の小なる水質では充分なHCO3 -の存在によ
り、硬度値も低く、PO4 -3の含有が認められてい
る。
The present invention relates to a method for preventing scale deposition in exhaust gas and dust collection water of a steelmaking furnace, such as a converter. Conventionally, in a steel factory, as shown in FIG. 1, gas discharged from a converter 1 during blowing passes through an indirect cooling section 3 and is sent to a dust removal system. The dust in the exhaust gas is washed and collected in the primary dust collector 4, further washed and collected again in the secondary dust collector 5, and then discharged by the induction fan 6. However, primary dust collector 4
After removing SS components (suspended substances) from the dust-containing collected water, the water enters the water tank 10. The collected dust water in the water tank 10 is used as water for collecting dust in the secondary dust collector 5 by the water supply pump 11, and the dust-containing waste water is sent to the seal pot 1.
3, water is supplied to the primary dust collector 4 by a water supply pump 14. As described above, the dust collection water is circulated through the dust removal system, and the water tank 10 is replenished from an external water supply source to replenish the insufficient water removed during the circulation. As the dust collection water is recycled in this way, the amount of salt in the circulating dust water becomes concentrated and increases due to dissolved components in the exhaust gas. As the salt content increases, a dispersant (for example, polyacrylic acid, polyphosphate, phosphonic acid having an alkyl group, amino group, or hydroxyl group, etc.) is added to the water tank 10 as a measure to prevent scale accumulation. Also, measures were taken to prevent scale build-up within the water supply piping system of the secondary dust collectors 4 and 5. However, depending on the operating conditions of the converter, the dispersant injection method described above does not necessarily have a sufficient effect. For example, a dispersant or a PH lowering agent (generally sulfuric acid) was added to the collected dust water containing high PH and high Ca hardness components from the dust collection device 9 and water tank 10 shown in Fig. 1. Blockage of dust collection water system (e.g. return pipe 8 and water supply pipe) due to gypsum and calcium carbonate,
Scale accumulation had occurred in the duct behind the dust collector and in the induction fan 6. The present invention was made in view of such a situation,
The feature is that one or both of alkali salts and phosphorus-containing compounds are injected into the circulating dust water of the steelmaking furnace exhaust gas system and/or dust collection water system, and the circulating dust water is used to maintain the dissolved salt balance (total hardness). /HCO 3 - ) is 0.2 or less and PO 4 -3 is 1 ppm or more. Of course, when the water quality is relatively high in HCO 3 - and low in Ca hardness components, it also prevents scale accumulation as mentioned above. To provide a method for preventing scale accumulation in a steelmaking furnace exhaust gas system and a dust collection water system, which prevents scale from being deposited in the exhaust gas and dust collection water systems even under high water quality conditions. As a result of various studies and studies conducted prior to the completion of the present invention, the present inventors have found that the following items exist as water quality conditions that cause scale deposition in the above system. PH becomes 11.0 or higher. M (methylene blue) as alkaline value
900ppm or more, HCO 3 - /M alkaline value
Less than 0.01 (as CaCO 3 ppm). (HCO 3 -
In most cases, it is almost zero. ) Most of the M alkali value is the Ca(OH) 2 component. PO 4 -3 in the return water (dust collection water system 8 in Figure 1) becomes 1 ppm or less instantaneously or continuously. Immediately after contact with exhaust gas in the dust collector, the PH value is 4.0
or more. Therefore, the influence of auxiliary raw materials is thought to be the cause of the quality of circulating dust collection water in steelmaking (converter) factories causing scale accumulation in the exhaust gas/dust collection water system. That is, CaO and CaCO 3 in the auxiliary raw materials come into contact with water as dust in the exhaust gas, and CaCO 3 becomes 2CaCO 3 + 2H 2 O = Ca(OH) 2 + Ca(HCO 3 ) 2 ...(1), and CaO is dissolved in the circulating dust collection water as CaO+H 2 O=Ca(OH) 2 ...(2). Ca(HCO 3 ) 2 in formula (1) is 1200~ at 30~40℃
It shows a solubility of 1175 ppm, but as the temperature rises, Ca(HCO 3 ) 2 → CaCO 3 + H 2 O...(3), insoluble CaCO 3 is produced and precipitated.
Scale. In addition, Ca(OH) 2 generated in the reaction of equation (2) absorbs CO 2 in the exhaust gas, resulting in Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O ……(4) Similar to the decomposition of Ca( HCO3 ) 2 , insoluble
CaCO 3 is produced resulting in scale deposits. According to the actual production at the applicant's factory, the reaction of equation (3) takes precedence, and the reaction of equation (2) takes place in the dust collection device 9 of Fig. 1.
After that, dissolution proceeds to the saturation value of Ca(OH) 2 in the dust collection water system. Therefore, scale accumulation appears significantly in the dust collection water systems 7, 8 and 13, 15 after contact with the exhaust gas. In addition, as mentioned above, a chemical such as sulfuric acid is added to the water tank 10.
It has been confirmed that when added to the water supply system 12 of the dust collection water system, scale deposition occurs. Table 1 shows a comparison example between (a) dust collection water quality with large scale adhesion and (b) water quality with small scale adhesion in the actual operation of the applicant's factory. In water quality where the presence of HCO 3 - is not recognized, the water quality is high, and on the other hand, in water quality with small scale adhesion, the hardness value is low due to the presence of sufficient HCO 3 - , and the content of PO 4 -3 is low. It recognized.

【表】 したがつて本発明は転炉操業条件によつてスケ
ール堆積状態を現出する水質を、高HCO3 -含有
水に改質し、排ガスとともに飛散して来るCaO塵
埃を集塵水中に、Ca(OH)2として溶解濃縮する
ことを防止し且つPO4 -3による沈澱成分の分散を
狙つたものであり、このための手段として、転炉
排ガス系および/もしくは集塵水系の循環集塵水
中にアルカリ塩および燐含有化合物のそれぞれ一
方もしくは両方を適宜注入し、溶解塩バランス
(全硬度/HCO3 -)が0.2以下、PO4 -3が1ppm以上
となるように循環集塵水を水質調整するものであ
る。 本発明で用いられるアルカリ塩としては、例え
ばナトリウム、カリウムもしくはリチウム炭酸
塩、重炭酸塩、水酸化物、塩化物、燐酸塩または
硫酸塩等の1種または2種以上が挙げられる。 また、燐含有化合物としては例えば燐酸やヘキ
サメタ燐酸、トリポリ燐酸などの縮合燐酸類およ
びその塩、アミノアルキルホスホン酸、エチレン
ジアミンテトラ(メチルホスホン酸)などのホス
ホン酸類およびその塩、ホスホノカルボン酸類お
よびその塩等の1種または2種以上が挙げられ
る。 これらの化合物の添加場所としては、製鋼炉排
ガス系では煙道の任意の場所が、また製鋼炉排ガ
ス集塵水系では、集塵器における循環水散水装置
から塵埃回収装置の間の任意の場所が挙げられ
る。これらの化合物の添加場所は製鋼炉排ガス系
のみでも、製鋼炉排ガス集塵水系のみでも良く、
また両方同時でも良い。 なお、製鋼に用いる原料によつては、元々排ガ
ス中に燐含有化合物が含まれ、集塵の際これが水
系に移行することがあるが、このような場合には
系外から添加すべき燐含有化合物の量はPO4 -3
して1ppm以上となるように不足分のみを添加す
れば良く、初めからこの量に達しておれば、系外
から特別に燐含有化合物を添加する必要はない。 本発明方法においては、集塵水を塵埃回収装置
で処理した後、必要に応じて補給水を追加して再
度集塵器に循環する際、スール防止剤を添加する
ことが望ましい。スケール防止剤の添加場所とし
ては、塵埃回収装置の処理水出口から二次集塵器
に至る給水系が適当である。 給水系に使用するスケール防止剤としては、公
知のものが使用可能である。例えばポリアクリル
酸、ポリメタクリル酸およびそれらの塩、リグニ
ンスルホン酸およびその塩、アクリル酸―フマル
酸共重合体、イソブチレン―無水マレイン酸共重
合体、アミノアルキルホスホン酸等のホスホン酸
類およびその塩、縮合燐酸類およびその塩、ホス
ホノカルボン酸類およびその塩等が挙げられる
が、特に上記ホスホン酸類、縮合燐酸類、ホスホ
ノカルボン酸類等の燐含有化合物を用いると、本
発明方法で添加すべき燐含有化合物量が節約もし
くは省略されて好ましい。 第2表は水質条件に対応するスケール付着速度
を示したものである。
[Table] Therefore, the present invention improves the water quality that exhibits scale accumulation depending on the operating conditions of the converter to water with high HCO 3 - content, and removes the CaO dust scattered with the exhaust gas into the collected water. , Ca(OH) 2 and dispersion of precipitated components by PO 4 -3.As a means for this purpose, circulation collection of the converter exhaust gas system and/or dust collection water system is used. Inject one or both of alkali salts and phosphorus-containing compounds into the dust water as appropriate, and circulate the dust collection water so that the dissolved salt balance (total hardness/HCO 3 - ) is 0.2 or less and the PO 4 -3 is 1 ppm or more. It is used to adjust water quality. Examples of the alkali salts used in the present invention include one or more of sodium, potassium, or lithium carbonates, bicarbonates, hydroxides, chlorides, phosphates, and sulfates. Examples of phosphorus-containing compounds include condensed phosphoric acids and their salts such as phosphoric acid, hexametaphosphoric acid and tripolyphosphoric acid, phosphonic acids and their salts such as aminoalkylphosphonic acid and ethylenediaminetetra (methylphosphonic acid), phosphonocarboxylic acids and their salts. One or more of the following may be mentioned. These compounds can be added at any location in the flue in the steelmaking furnace exhaust gas system, and at any location between the circulating water sprinkler device and the dust collection device in the dust collector in the steelmaking furnace exhaust gas dust collection water system. Can be mentioned. These compounds may be added only to the steelmaking furnace exhaust gas system or only to the steelmaking furnace exhaust gas dust collection water system.
Also, both may be used at the same time. Note that depending on the raw material used for steelmaking, phosphorus-containing compounds are originally contained in the exhaust gas, and these may be transferred to the water system during dust collection. In such cases, phosphorus-containing compounds that must be added from outside the system It is sufficient to add only the insufficient amount of the compound so that the amount of PO 4 -3 is 1 ppm or more, and if this amount is reached from the beginning, there is no need to specifically add a phosphorus-containing compound from outside the system. In the method of the present invention, after the collected dust water is treated with the dust recovery device, it is desirable to add a Thule inhibitor when the water is circulated to the dust collector again after adding make-up water as necessary. A suitable place for adding the scale inhibitor is the water supply system from the treated water outlet of the dust collection device to the secondary dust collector. Known scale inhibitors can be used in the water supply system. For example, polyacrylic acid, polymethacrylic acid and salts thereof, ligninsulfonic acid and salts thereof, acrylic acid-fumaric acid copolymer, isobutylene-maleic anhydride copolymer, phosphonic acids such as aminoalkylphosphonic acid and salts thereof, Examples include condensed phosphoric acids and their salts, phosphonocarboxylic acids and their salts, etc., but especially when using phosphorus-containing compounds such as the above-mentioned phosphonic acids, condensed phosphoric acids, and phosphonocarboxylic acids, the phosphorus to be added in the method of the present invention can be used. This is preferable because the amount of compounds contained can be reduced or omitted. Table 2 shows scale deposition rates corresponding to water quality conditions.

【表】 第3表は本発明前の転炉工場戻水管におけるス
ケール付着テストと工場操業状態との相関を示す
ものである。
[Table] Table 3 shows the correlation between the scale adhesion test on the converter factory return pipe before the present invention and the factory operating conditions.

【表】 上述した第2表から(全硬度値/HCO3 -)値が
0.2以下でないと、第3表に示すようなスケール
堆積による操業誤差が生じる。 本発明は上述したように構成したことにより、
例えば転炉の如き製鋼炉の排ガス系および集塵水
系の循環集塵水の水質調整が適確になされ、系内
におけるスケール堆積が極減し、操業トラブルの
解消とともに装置系保全作業も軽減され、操業性
の向上に貢献する効果がきわめて大きい。
[Table] From Table 2 above, the (total hardness value/HCO 3 - ) value is
If it is not 0.2 or less, operational errors will occur due to scale accumulation as shown in Table 3. By having the present invention configured as described above,
For example, the water quality of the circulating dust water in the exhaust gas system and dust collection water system of a steelmaking furnace such as a converter can be properly adjusted, and scale accumulation within the system can be minimized, eliminating operational problems and reducing equipment maintenance work. , which has an extremely large effect on improving operability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は転炉排ガス系および集塵水系の全体図
である。
FIG. 1 is an overall diagram of the converter exhaust gas system and dust collection water system.

Claims (1)

【特許請求の範囲】[Claims] 1 製鋼炉排ガス系および/もしくは集塵水系の
循環集塵水中にアルカリ塩および燐含有化合物の
それぞれ一方もしくは両方を注入し、該循環集塵
水を、溶解塩バランス(全硬度/HCO3 -)が0.2以
下、PO4 -3を1ppm以上に水質調整することを特
徴とする製鋼炉排ガス系および集塵水系のスケー
ル堆積防止方法。
1. Inject one or both of an alkali salt and a phosphorus-containing compound into the circulating dust collection water of the steelmaking furnace exhaust gas system and/or dust collection water system, and adjust the circulating dust collection water to the dissolved salt balance (total hardness/HCO 3 - ) A method for preventing scale accumulation in a steelmaking furnace exhaust gas system and a dust collection water system, which is characterized by adjusting water quality so that PO 4 -3 is 0.2 or less and PO 4 -3 is 1 ppm or more.
JP9330478A 1978-07-31 1978-07-31 Preventing method of scale deposition of exhaust gas system and dust collecting water system of steel making furnace Granted JPS5520646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9330478A JPS5520646A (en) 1978-07-31 1978-07-31 Preventing method of scale deposition of exhaust gas system and dust collecting water system of steel making furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9330478A JPS5520646A (en) 1978-07-31 1978-07-31 Preventing method of scale deposition of exhaust gas system and dust collecting water system of steel making furnace

Publications (2)

Publication Number Publication Date
JPS5520646A JPS5520646A (en) 1980-02-14
JPS6233000B2 true JPS6233000B2 (en) 1987-07-17

Family

ID=14078591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9330478A Granted JPS5520646A (en) 1978-07-31 1978-07-31 Preventing method of scale deposition of exhaust gas system and dust collecting water system of steel making furnace

Country Status (1)

Country Link
JP (1) JPS5520646A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804476A (en) * 1987-10-23 1989-02-14 Calgon Corporation Process for controlling calcium oxalate scale over a wide pH range
JP4577466B2 (en) * 2000-10-24 2010-11-10 栗田工業株式会社 Scale prevention method and scale inhibitor
JP5988534B2 (en) * 2009-03-31 2016-09-07 栗田工業株式会社 Processing method for high concentration slurry

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078566A (en) * 1973-10-11 1975-06-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078566A (en) * 1973-10-11 1975-06-26

Also Published As

Publication number Publication date
JPS5520646A (en) 1980-02-14

Similar Documents

Publication Publication Date Title
US4834955A (en) Chemical formulation and combined process for inhibiting deposition and corrosion in cooling water and gypsum scaling in flue gas desulfurization scrubber systems
JPS58199878A (en) Method and composition for inhibiting corrosion and sedimentation in aqueous system
US4617129A (en) Scale inhibition
US4118318A (en) Gas scrubber scale and deposit control
US4566972A (en) Treatment of aqueous systems
CA1234327A (en) Composition and method for inhibiting scale
JPS61153199A (en) Method and composition of inhibiting scale of calcium oxalate extending over wide ph range
CA1059869A (en) Chelating agents
JPS58177479A (en) Method of controlling corrosion and sedimentation in aqueous system and composition therefor
US5534157A (en) Polyether polyamino methylene phosphonates for high pH scale control
US5320779A (en) Use of molybdate as corrosion inhibitor in a zinc/phosphonate cooling water treatment
US4469663A (en) Scale control in flue gas desulfurization
US4547294A (en) Alkaline scale abatement in cooling towers
DE2700347C2 (en)
US4556493A (en) Composition and method for inhibiting scale
JPS6233000B2 (en)
AU649149B2 (en) Inhibition of scale formation and corrosion by sulfonated organophosphonates
US5234602A (en) Method for regenerating scale solvent
JP5757092B2 (en) Method for treating hydrofluoric acid-containing waste liquid
JPS5811279B2 (en) Scale prevention treatment method
US4216087A (en) Scrubber scale prevention
KR100290808B1 (en) Descaling agent for boiler
FR2533549A1 (en) COMPOSITION AND METHOD FOR INHIBITING TARTAR FORMATION
GB2137185A (en) Composition and Method for Inhibiting Scale
US5437712A (en) Methods for inhibiting deposition and fouling in scrubber systems