JPS6232312A - Range finding device - Google Patents

Range finding device

Info

Publication number
JPS6232312A
JPS6232312A JP17161285A JP17161285A JPS6232312A JP S6232312 A JPS6232312 A JP S6232312A JP 17161285 A JP17161285 A JP 17161285A JP 17161285 A JP17161285 A JP 17161285A JP S6232312 A JPS6232312 A JP S6232312A
Authority
JP
Japan
Prior art keywords
light receiving
signal
receiving element
photoelectric conversion
distance measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17161285A
Other languages
Japanese (ja)
Other versions
JPH0648189B2 (en
Inventor
Juichi Yoneyama
米山 寿一
Hiroshi Meguro
目黒 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP60171612A priority Critical patent/JPH0648189B2/en
Publication of JPS6232312A publication Critical patent/JPS6232312A/en
Publication of JPH0648189B2 publication Critical patent/JPH0648189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain a range finding data having a high accuracy by providing a range finding signal forming circuit for synthesizing the detecting outputs of photodetecting elements of every prescribed pieces, among the photodetecting elements for constituting a photodetecting element train. CONSTITUTION:A photodetecting element train LL is arranged on one straight line so that, for instance, two groups of photodetecting elements LL11-LL14 and LL21-LL24 are adjacent to each other successively. Also, in a state that a reflected light pulse is being irradiated to almost the center position of one photodetecting element, a state that a photoelectric conversion signal of the maximum signal level is obtained from its element is obtained, and when the reflected light pulse has moved by a two pitch portion from this state, the signal level of the photoelectric signal of its element is lowered to '0' from the maximum value. In this way, in photoelectric conversion signals S11-S14 and S21-S24 obtained from the photodetecting elements LL11-LL14 and LL21-LL24, signals which are sent out of every three elements and supplied to a range finding signal forming circuit 20. A range finding signal for showing an irradiated position to the photodetecting element train of the reflected light is formed by combining prescribed detecting outputs by this circuit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は測距装置に関し、例えばカメラなどに適用し得
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a distance measuring device, and can be applied to, for example, a camera.

〔従来の技術〕[Conventional technology]

カメラにおける測距装置として、第8図に示すような三
角測距手法を用いたものがある。第8図において、例え
ばLED光源でなる発光素子1から瞬時的に発生された
光は、発光レンズ2においてビーム状測距光パルスLP
に変換されてカメラ本体3から発射され、位置PI、P
2、P3、P4にそれぞれ測距対象として被写体SBI
、SB2、SB3、SB4があるとき、当該被写体SB
1、SB2、SB3.5134において反射されてカメ
ラ本体3側に戻って来る。
As a distance measuring device for a camera, there is one using a triangular distance measuring method as shown in FIG. In FIG. 8, light instantaneously generated from a light emitting element 1 consisting of, for example, an LED light source is transmitted to a light emitting lens 2 as a beam-shaped ranging light pulse LP.
is converted into and fired from the camera body 3, and the positions PI, P
2, P3, and P4, respectively, with the subject SBI as the distance measurement target.
, SB2, SB3, SB4, the subject SB
1, SB2, and SB3.It is reflected at 5134 and returns to the camera body 3 side.

カメラ本体3には、発光レンズ2と並ぶように受光レン
ズ4が設けられ、被写体SBI、SB2、SB3.5I
34からの反射光パールスRPL−を受光レンズ4にお
いて集光して受光素子LLI、LL2、LL3、LL4
を配列してなる受光素子列LLに入射する。受光素子L
LI、LL2、LL3、L L 4は光電変換素子でな
り、各受光素子L L 1、LL2、LL3、LL4が
受光した反射光パルスRPLのうち、最も振幅の大きい
反射光パルスRPLを受光した受光素子を検出すること
により、被写体の位置(従ってカメラ本体3から被写体
までの距離)を知ることができる。
The camera body 3 is provided with a light receiving lens 4 in line with the light emitting lens 2, and subjects SBI, SB2, SB3.5I
The reflected light pulses RPL- from 34 are condensed by the light receiving lens 4 to the light receiving elements LLI, LL2, LL3, LL4.
The light enters the light-receiving element array LL formed by arranging the light-receiving elements. Light receiving element L
LI, LL2, LL3, and LL4 are photoelectric conversion elements, and each light receiving element LL1, LL2, LL3, and LL4 receives the reflected light pulse RPL with the largest amplitude among the reflected light pulses RPL received. By detecting the elements, the position of the subject (therefore, the distance from the camera body 3 to the subject) can be known.

ところでこのような三角測距手法によって被写体までの
距離を測距しようとする場合、受光素子L L 1、L
L2、LL3、LL4に入射する反射光パルスRPLの
強度及び断面形状は、実際上被写体までの距離によって
変化するのみならず、被写体の反射率などの測距条件に
よって変化することを避は得す、これが外乱となるおそ
れがある。
By the way, when trying to measure the distance to a subject using such a triangular distance measurement method, the light receiving elements L L 1, L
In reality, the intensity and cross-sectional shape of the reflected light pulse RPL incident on L2, LL3, and LL4 not only change depending on the distance to the object, but also inevitably change depending on distance measurement conditions such as the reflectance of the object. , this may cause a disturbance.

かかる外乱を除去する方法として、従来第9図に示すよ
うなピーク検出回路11が用いられている。受光素子L
LI〜L L 4の光電変換信号S1〜S4は、増幅回
路12〜15を通じてピーク検出回路11に与えられる
。ピーク検出回路11は、それぞれ比較回路CON及び
基準電流調整用トランジスタTRを有する調整回路16
〜19を有し、比較回路CONの非反転入力端に増幅回
路12〜15の出力を受ける。
As a method for removing such disturbances, a peak detection circuit 11 as shown in FIG. 9 has conventionally been used. Light receiving element L
The photoelectric conversion signals S1 to S4 of LI to LL4 are provided to the peak detection circuit 11 through amplifier circuits 12 to 15. The peak detection circuit 11 includes an adjustment circuit 16 each having a comparison circuit CON and a reference current adjustment transistor TR.
.about.19, and receives the outputs of the amplifier circuits 12-15 at the non-inverting input terminal of the comparison circuit CON.

各調整回路16〜19において、比較回路CONの出力
が基準電流調整用トランジスタTRのヘースに与えられ
、トランジスタTRを通じて電源4−VC,から流入す
る電流を制御するようになされている。各調整回路16
〜19のトランジスタTRのエミッタは共通に接続され
て抵抗2o及び21の直列回路に接続されると共に、比
較回路CONの反転入力端に接続される。
In each of the adjustment circuits 16 to 19, the output of the comparison circuit CON is applied to the base of the reference current adjustment transistor TR to control the current flowing from the power supply 4-VC through the transistor TR. Each adjustment circuit 16
The emitters of the transistors TR 19 to 19 are connected in common to the series circuit of resistors 2o and 21, and also to the inverting input terminal of the comparison circuit CON.

かくして受光素子L L 1〜L L 4に反射光パル
スRPLが入力されたとき、その最大振幅値を有する光
電変換信号が供給された比較回路CONを通じて対応す
るトランジスタが導通状態になり、このトランジスタT
Rを通じて電源子VCCから抵抗20及び21の直列回
路に電流が流れる。このとき抵抗20及び21のトラン
ジスタTR側端の電圧、従ってトランジスタTRのエミ
ッタの電圧は、反射光パルスRPLの最大振幅値に対応
する値に上昇されるので、当該最大振幅値の反射光を受
けた受光素子以外の受光素子のトランジスタTRはオフ
動作し、これによりピーク値が検出される。
In this way, when the reflected light pulse RPL is input to the light receiving elements L L 1 to L L 4, the corresponding transistor becomes conductive through the comparison circuit CON to which the photoelectric conversion signal having the maximum amplitude value is supplied, and this transistor T
A current flows from the power supply VCC to the series circuit of resistors 20 and 21 through R. At this time, the voltage at the transistor TR side ends of the resistors 20 and 21, and therefore the voltage at the emitter of the transistor TR, is increased to a value corresponding to the maximum amplitude value of the reflected light pulse RPL, so that the reflected light having the maximum amplitude value is received. The transistors TR of the light-receiving elements other than the light-receiving element are turned off, thereby detecting the peak value.

この時オン動作していたトランジスタTRのエミッタ電
圧に基づいて全ての調整回路CONに対する比較基準電
圧が決まることにより、反射光パルスの振幅値が測距条
件に応じて変化しても、これに応動してピーク検出動作
を誤ることはない。
Since the comparison reference voltage for all adjustment circuits CON is determined based on the emitter voltage of the transistor TR that was turned on at this time, even if the amplitude value of the reflected light pulse changes depending on the ranging conditions, the There is no way to make a mistake in the peak detection operation.

かかる構成に加えて抵抗20及び21の接続中点に得ら
れる電圧が、出力比較回路22〜25の反転入力端に与
えられ、またその非反転入力端にそれぞれ増幅回路12
〜15の出力が供給され、かくして出力比較回路22〜
25の出力に得られる論理出力が、測距信号として送出
される。
In addition to this configuration, the voltage obtained at the midpoint of the connection between the resistors 20 and 21 is applied to the inverting input ends of the output comparison circuits 22 to 25, and the amplifier circuit 12 is applied to the non-inverting input ends of each of the output comparison circuits 22 to 25.
~15 outputs are supplied, thus output comparison circuit 22~
The logic output obtained at the output of 25 is sent out as a ranging signal.

ここで最大振幅値を有する光電変換信号が供給された出
力比較回路には、反転入力として当該振幅に対応する基
準電圧が抵抗20及び21の接続中点から供給されるこ
とにより、出力端に高い電圧でなる論理r HJレベル
の検出出力が得られる。
Here, the output comparison circuit to which the photoelectric conversion signal having the maximum amplitude value is supplied is supplied with a reference voltage corresponding to the amplitude as an inverting input from the connection midpoint of the resistors 20 and 21, so that the output terminal has a high voltage. A logic rHJ level detection output consisting of a voltage is obtained.

これに対して最大振幅の反射光パルスRPLを受けた受
光素子以外の受光素子には、調整回路の比較回路CON
を通じてトランジスタTRをオン動作させるに十分な入
力が与えられないことにより、対応する比較回路からは
低い電圧でなる論理「L」レベルの検出出力が得られる
ことになる。
On the other hand, the comparison circuit CON of the adjustment circuit is connected to the light receiving elements other than the light receiving element receiving the reflected light pulse RPL with the maximum amplitude.
Since sufficient input is not applied to turn on the transistor TR through the transistor TR, a detection output of a logic "L" level with a low voltage is obtained from the corresponding comparison circuit.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが第9図のピーク検出回路11は、各受光素子L
LI〜LL4に対してそれぞれ比較回路CON及び基準
電流調整用トランジスタTRでなる調整回路を設けなけ
ればならないや従って測距装置全体として見たときの回
路構成が複雑になるという欠点があった。
However, the peak detection circuit 11 in FIG.
There is a drawback that an adjustment circuit consisting of a comparison circuit CON and a reference current adjustment transistor TR must be provided for LI to LL4, respectively, and the circuit configuration of the distance measuring apparatus as a whole becomes complicated.

本発明は以上の点を考慮してなされたもので、たとえ反
射光パルスRPLの強度が変化したり、断面形状が変形
したりなどの外乱条件が生じたとしても、その影響を軽
減した測距信号を得ることができるようにした簡易な構
成の測距装置を提案しようとするものである。
The present invention has been made in consideration of the above points, and even if disturbance conditions such as a change in the intensity of the reflected light pulse RPL or a deformation of the cross-sectional shape occur, the present invention is a distance measurement method that reduces the influence of such disturbance conditions. This paper attempts to propose a distance measuring device with a simple configuration that can obtain signals.

〔問題点を解決するための手段〕[Means for solving problems]

かかる問題点を解決するため本発明においては、測距対
象SBI〜SB4に対して測距光LPを発射し、測距対
象5BI−3B4からの反射光パルスRPLを複数の受
光素子を配列してなる受光素子列LLに照射して各受光
素子から得られる光電変換信号に基づいて測距信号を得
るようになされた測距装置において、受光素子列LLを
構成する受光素子LLII〜LL24のうち、所定個数
おきの受光素子の検出出力を合成して測距信号形成回路
20に入力し、その測距信号形成回路20は、人力され
た検出出力のうち、所定の検出出力を組合わせて、反射
光の受光素子列LLに対する照射位置を表す論理コード
を有する測距信号DR1〜DR6、DR11〜DR15
を形成するようにする。
In order to solve this problem, in the present invention, distance measurement light LP is emitted to the distance measurement objects SBI to SB4, and a plurality of light receiving elements are arranged to receive the reflected light pulse RPL from the distance measurement objects 5BI to 3B4. In a distance measuring device configured to obtain a ranging signal based on a photoelectric conversion signal obtained from each light receiving element by irradiating the light receiving element row LL, among the light receiving elements LLII to LL24 forming the light receiving element row LL, The detection outputs of every predetermined number of light receiving elements are combined and input to the distance measurement signal formation circuit 20, and the distance measurement signal formation circuit 20 combines the detection outputs of the manually input detection outputs and generates a reflection signal. Distance measurement signals DR1 to DR6, DR11 to DR15 having logical codes representing the irradiation position of light with respect to the light receiving element array LL
so that it forms.

〔作用〕[Effect]

反射光パルスRPLの受光素子列LL上の位置は、測距
対象までの距離に対応して移動して行くが、受光素子列
を構成する受光素子のうち、所定個数おきの受光素子の
検出出力を合成し、このような検出出力を受けた測距信
号形成回路20は、入力された検出出力を組み合わせる
ことによって、反射光RPLの受光素子列LLに対する
照射位置を表す測距信号DRI−DR6、DRII〜D
R15を形成する。
The position of the reflected light pulse RPL on the light-receiving element row LL moves in accordance with the distance to the distance measurement target, but the detection output of the light-receiving elements every predetermined number of light-receiving elements constituting the light-receiving element row By combining the input detection outputs, the distance measurement signal forming circuit 20 generates a distance measurement signal DRI-DR6 representing the irradiation position of the reflected light RPL with respect to the light receiving element array LL. DRII~D
Form R15.

かくして本発明によれば、高い精度をもった測距データ
を得ることができる。
Thus, according to the present invention, highly accurate ranging data can be obtained.

〔実施例〕〔Example〕

以下図面について本発明の一実施例を詳述する。 An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図において、受光素子列LLは例えば2群の受光素
子LLII〜LL14及びL L 21〜LL24を順
次隣接するように一直線上に配列させた構成を有する。
In FIG. 1, the light receiving element row LL has a configuration in which, for example, two groups of light receiving elements LLII to LL14 and LL21 to LL24 are arranged in a straight line so as to be adjacent to each other.

各受光素子LLII〜L L 14及びLL21〜LL
24の幅(反射光パルスRPLの移動方向の幅)はほぼ
等しい値に選定されている。
Each light receiving element LLII~LL14 and LL21~LL
The widths of 24 (the widths in the movement direction of the reflected light pulse RPL) are selected to be approximately equal.

反射光パルスRPLが1つの受光素子のほぼ中央位置を
照射している状態において、当該受光素子から最大信号
レベルの光電変換信号を得ている状態が得られ、この状
態から2ピッチ分だけ反射光パルスRPLが移動したと
き当該受光素子の光電変換信号の信号レベルが最大値か
ら0に低下して行くようになされている。
In a state where the reflected light pulse RPL illuminates approximately the center position of one light receiving element, a state is obtained in which a photoelectric conversion signal of the maximum signal level is obtained from the light receiving element, and from this state, the reflected light pulse is reflected by two pitches. When the pulse RPL moves, the signal level of the photoelectric conversion signal of the light receiving element decreases from the maximum value to zero.

か(して各受光素子LLII〜LL14及びLL21〜
LL24から得られる光電変換信号S11〜S14及び
S21〜S24のうち、3つおきの受光素子から送出さ
れる光電変換信号を合成して測距信号形成回路20に供
給する。すなわち第1及び第5の受光素子LL11及び
LL21の光電変換信号311及びS21が合成されて
増幅回路2・1に入力されることによって和の光電変換
信号St  (=311+321)が送出される。以下
同様にして受光素子LL12及びLL22、LL13及
びLL23、LL14及びLL24の光電変換信号S1
2及びS22、S13及びS23、S14及び324が
合成されてそれぞれ増幅回路22.23.24に入力さ
れ、その出力端に和の光電変換信号S2 (=S12+
522)、S3 (−313+523) 、S4 (−
314+524)が得られる。
(and each light receiving element LLII to LL14 and LL21 to
Among the photoelectric conversion signals S11 to S14 and S21 to S24 obtained from the LL 24, the photoelectric conversion signals sent from every third light receiving element are combined and supplied to the ranging signal forming circuit 20. That is, the photoelectric conversion signals 311 and S21 of the first and fifth light receiving elements LL11 and LL21 are combined and input to the amplifier circuit 2.1, thereby outputting the sum photoelectric conversion signal St (=311+321). Similarly, the photoelectric conversion signals S1 of the light receiving elements LL12 and LL22, LL13 and LL23, LL14 and LL24
2 and S22; S13 and S23;
522), S3 (-313+523), S4 (-
314+524) is obtained.

ここで反射光パルスRPLが受光素子LLII側からL
L24側に移動する方向(これを順方向と呼ぶ)又はそ
の逆の方向(これを逆方向と呼ぶ)方向に移動したとき
の光電変換信号S1、S2、S3、S4の信号レベルの
変化は、反射光パルスRPLの照射位置の変化に対応す
るように変動する。
Here, the reflected light pulse RPL is L from the light receiving element LLII side.
Changes in the signal levels of the photoelectric conversion signals S1, S2, S3, and S4 when moving in the direction of movement toward the L24 side (this is called the forward direction) or the opposite direction (this is called the reverse direction) are as follows: It changes to correspond to the change in the irradiation position of the reflected light pulse RPL.

すなわち第2図(A)に示すように、光電変換信号S1
は反射光パルスRPLが第1の受光素子LL1jの中央
位置にあるとき光電変換信号S11に基づいて最大信号
レベルになるのに対して、この位置から反射光パルスR
PLが順方向に移動して行けば、光電変換信号S1の信
号レベルは低下して行き、2ピッチ分移動し−た位置す
なわち1つおいた隣の受光素子LL13の中央位置に来
たとき最小になる。ところが反射光パルスRPLが第3
の受光素子LL13の位置からさらに順方向に移動して
行くと、第5の受光素子L L 21から得られる充電
変換信号521が次第に上昇して行くことにより、光電
変換信号S1もこれに応じて上昇して行くことになる。
That is, as shown in FIG. 2(A), the photoelectric conversion signal S1
When the reflected light pulse RPL is at the center position of the first light receiving element LL1j, it reaches the maximum signal level based on the photoelectric conversion signal S11, whereas the reflected light pulse RPL from this position
As PL moves in the forward direction, the signal level of the photoelectric conversion signal S1 decreases, and reaches a minimum when it reaches the position moved by two pitches, that is, the center position of the adjacent light receiving element LL13. become. However, the reflected light pulse RPL is the third
When moving further in the forward direction from the position of the fifth light receiving element LL13, the charging conversion signal 521 obtained from the fifth light receiving element LL21 gradually increases, and the photoelectric conversion signal S1 also increases accordingly. It will go up.

そして反射光パルスRPLが第5の受光素子LL21の
位置に来ると、光電変換信号S1の信号レベルは最大に
なり、この最大位置から反射光パルスRPLがさらに順
方向に移動して行けば、光電変換信号S1の信号レベル
は再び最小の方向に立下って行く。
When the reflected light pulse RPL reaches the position of the fifth light-receiving element LL21, the signal level of the photoelectric conversion signal S1 becomes maximum, and if the reflected light pulse RPL further moves in the forward direction from this maximum position, the photoelectric conversion signal S1 reaches a maximum. The signal level of the converted signal S1 falls again in the direction of the minimum.

かかる光電変換信号S1の変化と同様の変化が他の光電
変換信号S2、S3、S4についても光電変換信号S1
の変化に対して順次光電変換素子1ピツチ分ずつ順方向
にずれた位置で生ずる。その結果光電変換信号S1〜S
4は、受光素子列LL上の反射光パルスRPLの照射位
置を表していることになる。
Changes similar to the change in the photoelectric conversion signal S1 occur in the photoelectric conversion signal S1 in other photoelectric conversion signals S2, S3, and S4.
This occurs at positions that are sequentially shifted in the forward direction by one pitch of the photoelectric conversion elements with respect to changes in . As a result, photoelectric conversion signals S1 to S
4 represents the irradiation position of the reflected light pulse RPL on the light receiving element array LL.

反射光パルスRPLが、例えば受光素子LL11とLL
12の境界線上で対称的に投影されている時には出力信
号Sll及びS12は等しいレベルになっており、他の
受光素子の境界線上に投影されている時も同様である。
For example, the reflected light pulse RPL is transmitted to the light receiving elements LL11 and LL.
The output signals Sll and S12 are at the same level when they are projected symmetrically on the boundary line of No. 12, and the same is true when they are projected on the boundary line of the other light receiving elements.

また、反射光パルスRPLが、例えば受光素子LL12
の中心に投影されている時には出力信号Sll及び51
3は等しいレベルになっており、他の受光素子の中心に
投影されている時も同様である。このように、反射光パ
ルスRPLが受光素子の境界線上あるいは中心に投影さ
れている時には第2図(B)に示される如くそこでの各
出力信号は等しくなっている。
Further, the reflected light pulse RPL is transmitted to the light receiving element LL12, for example.
When the output signal Sll and 51 are projected at the center of
3 are at the same level, and the same is true when projected onto the center of other light receiving elements. In this way, when the reflected light pulse RPL is projected onto the boundary line or the center of the light receiving element, the respective output signals there are equal, as shown in FIG. 2(B).

測距信号形成回路20は光電変換信号S1〜S4を必要
に応じて組合わせ比較することによって反射光パルスR
PLが所定位置に来たとき論理レベルが反転する測距信
号DRI〜DR5を形成する。すなわち第1の比較回路
31の非反転入力端及び反転入力端にはそれぞれ光電変
換信号Sl及びS2が供給され、これにより光電変換1
3号S1が光電変換信号S2より大きい信号レベルにあ
るとき論理rHJレベルになり、これに対して小さいレ
ベルになったとき論理rLJに立下る測距信号DRIを
発生する(第2図(CI))。
The distance measurement signal forming circuit 20 combines and compares the photoelectric conversion signals S1 to S4 as necessary to generate a reflected light pulse R.
Distance measurement signals DRI to DR5 are formed whose logic level is inverted when PL reaches a predetermined position. That is, the photoelectric conversion signals Sl and S2 are supplied to the non-inverting input terminal and the inverting input terminal of the first comparator circuit 31, respectively, so that the photoelectric conversion signal 1
When No. 3 S1 has a signal level greater than the photoelectric conversion signal S2, it becomes the logic rHJ level, and when it becomes a smaller level, the distance measurement signal DRI which falls to the logic rLJ is generated (Fig. 2 (CI) ).

また第2の比較回路32の非反転入力端及び反転入力端
に対してそれぞれ光電変換信号S1及びS3が与えられ
、これにより光電変換信号S1が光電変換信号S3より
大きい信号レベルにあるとき論理rHJになり、これに
対して小さい信号レベルになったとき論理rLJレベル
に立下る測距信号DR2を送出する(第2図(C2))
Further, the photoelectric conversion signals S1 and S3 are applied to the non-inverting input terminal and the inverting input terminal of the second comparator circuit 32, respectively, so that when the photoelectric conversion signal S1 is at a higher signal level than the photoelectric conversion signal S3, the logic rHJ When the signal level becomes smaller than this, the distance measurement signal DR2 that falls to the logic rLJ level is sent out (Fig. 2 (C2)).
.

以下同様にして第3、第4、第5の比較回路33.34
.35にはそれぞれ光電変換信号S2及びS3、S2及
びS4、S3及びS4が与えられ、これにより出力端に
測距信号DR3、DR4、DR5が送出される(第2図
(C3)、(C4)、(C5))。
Similarly, the third, fourth, and fifth comparison circuits 33, 34
.. 35 are given photoelectric conversion signals S2 and S3, S2 and S4, S3 and S4, respectively, and distance measurement signals DR3, DR4 and DR5 are sent to the output end (Fig. 2 (C3), (C4) , (C5)).

このようにして測距信号形成回路20において形成され
た測距信号DRI−DR5の論理レベルによって表され
るコードは、反射光パルスRPLの受光素子列LL上の
照射位置すなわちゾーンZF1〜ZF14に対応するこ
とになる。
The code represented by the logic level of the ranging signal DRI-DR5 thus formed in the ranging signal forming circuit 20 corresponds to the irradiation position of the reflected light pulse RPL on the light receiving element array LL, that is, the zones ZF1 to ZF14. I will do it.

例えば反射光パルスRPLが第1の受光素子LI、11
の順方向の半部のゾーンZFIを照射しているとき測距
信号DRI〜DR5はr HHHHH」になり、この位
置から受光素子LLII及びLL12間の境界を越えて
受光素子LL12の逆方向半部に入ったとき当該ゾーン
ZF2において測距信号DRI〜DR5はr L HH
HHJになる。
For example, the reflected light pulse RPL is transmitted to the first light receiving element LI, 11
When irradiating zone ZFI in the forward half of When entering the zone ZF2, the ranging signals DRI to DR5 are r L HH
Become HHJ.

以下同様にして、各受光素子の表面を2つのゾーンに分
けて、各ゾーンごとに測距信号DRI〜DR5の論理レ
ベルによって所定のコードをもった測距信号が得られる
ことになる。
Similarly, the surface of each light-receiving element is divided into two zones, and a distance measurement signal having a predetermined code is obtained for each zone depending on the logic level of the distance measurement signals DRI to DR5.

かかる構成に加えて、測距信号形成回路20は、さらに
第6番目の測距信号DR6を形成する回路部を有する。
In addition to this configuration, the ranging signal forming circuit 20 further includes a circuit section that forms the sixth ranging signal DR6.

この第6番目の測距信号DR6は、反射光パルスRPL
が受光素子LLII〜LL24の間を1回移動する間に
、光電変換信号S1〜S4が1周期以上の周期に亘って
信号レベルの変化を呈し、これにより同じコードをもつ
ゾーンが2回繰り返されるので、各周期における照射位
置を区分けするために用いられる−0 すなわち第1〜第4の受光素子LLII〜LL14は第
2の光電変換信号S31〜S34及びS41〜S44を
発生し、331〜S34を合成して選択信号SEL 1
として差動増幅回路41に与え、その出力を比較回路4
2の非反転入力端への光電変換信号S5として送出する
と共に、受光素子LL21〜LL24の出力S41〜S
44が合成されて選択信号S E L 2として差動増
幅回路43に与えられ、その出力が比較回路42の反転
入力端への光電変換信号S6として送出される。
This sixth ranging signal DR6 is the reflected light pulse RPL.
While the light-receiving elements LLII to LL24 move once, the photoelectric conversion signals S1 to S4 exhibit a change in signal level over one cycle or more, and as a result, zones with the same code are repeated twice. Therefore, -0 used for dividing the irradiation position in each period. That is, the first to fourth light receiving elements LLII to LL14 generate second photoelectric conversion signals S31 to S34 and S41 to S44, and 331 to S34. Combined selection signal SEL 1
is applied to the differential amplifier circuit 41, and its output is applied to the comparator circuit 4.
The outputs S41 to S of the light receiving elements LL21 to LL24 are sent as a photoelectric conversion signal S5 to the non-inverting input terminal of
44 are combined and given to the differential amplifier circuit 43 as a selection signal S E L 2, and the output thereof is sent to the inverting input terminal of the comparator circuit 42 as a photoelectric conversion signal S6.

かくして比較回路42は、受光素子LL11〜LL14
の出力S3’l〜S34の和でなる光電変換信号S5が
、受光素子LL21−LL24の出力S41〜S44の
和でなる光電変換信号S6より大きい信号レベルにある
とき論理rHJレベルになり、これに対して小さいとき
論理rLJレベルに立下る測距信号DR6を送出する。
Thus, the comparison circuit 42 compares the light receiving elements LL11 to LL14.
When the photoelectric conversion signal S5, which is the sum of the outputs S3'l to S34, is at a higher signal level than the photoelectric conversion signal S6, which is the sum of the outputs S41 to S44 of the light receiving elements LL21 to LL24, it becomes the logic rHJ level. On the other hand, when it is smaller, the distance measurement signal DR6 which falls to the logic rLJ level is sent out.

ところで反射光パルスRPLが受光素子LL11−LL
14のゾーンを照射しているとき、光電変換信号S5は
光電変換信号S6より大きい信号レベルにあり、これに
対して反射光パルスRPLが受光素子L L 21〜L
 L 24のゾーンに入ると、光電変換信号S5は光電
変換信号S6より小さい信号レベルになる。従って測距
信号DR6は、受光素子列LLのうち、受光素子LL1
4及びLL21の境界位置を境にして、反射光パルスR
PLが受光素子LL11〜LL14のゾーンにあるとき
論理「I4」レベルになり、これに対して受光素子LL
21〜LL24のゾーンにあるとき論理「L」レベルに
立下る(第2図(C6))。かくして測距信号DRI〜
DR5のコードが、ゾーンZ’F2〜ZF5及びZFI
O〜ZF13において互いに等しいコードをもつことが
あっても、これを測距信号DR6の論理レベルによって
区分けすることができる(第2図(C1)〜(C6))
By the way, the reflected light pulse RPL is detected by the light receiving elements LL11-LL.
When the 14 zones are irradiated, the photoelectric conversion signal S5 is at a higher signal level than the photoelectric conversion signal S6, and in contrast, the reflected light pulse RPL reaches the light receiving elements L L 21 to L.
When entering the zone L24, the photoelectric conversion signal S5 has a smaller signal level than the photoelectric conversion signal S6. Therefore, the distance measurement signal DR6 is transmitted to the light receiving element LL1 of the light receiving element array LL.
4 and LL21, the reflected light pulse R
When PL is in the zone of light receiving elements LL11 to LL14, it becomes logic "I4" level, and in contrast, light receiving element LL
When it is in the zone LL21 to LL24, it falls to the logic "L" level (FIG. 2 (C6)). Thus, the ranging signal DRI~
DR5 code is in zones Z'F2 to ZF5 and ZFI
Even if O to ZF13 have the same codes, they can be classified by the logic level of the ranging signal DR6 ((C1) to (C6) in Figure 2).
.

その結果受光素子列LLの全ての範囲に亘ってどのゾー
ンに反射光パルスRPLが照射していても、これに対応
するコードをもつ測距信号が測距信号形成回路20から
送出できることになる。
As a result, regardless of which zone in the entire range of the light-receiving element array LL is irradiated with the reflected light pulse RPL, a distance measurement signal having a code corresponding to the zone can be sent from the distance measurement signal forming circuit 20.

以上の構成において、反射光パルスRPLが受光素子列
LL上に照射したとき、光電変換信号S1〜S4は、反
射光パルスRPLのほぼ中心位置が受光素子LL11〜
LL24の中心位置に来たとき最大信号レベルになる。
In the above configuration, when the reflected light pulse RPL is irradiated onto the light receiving element row LL, the photoelectric conversion signals S1 to S4 are such that the substantially center position of the reflected light pulse RPL is on the light receiving elements LL11 to LL.
When it reaches the center position of LL24, it reaches the maximum signal level.

ここで測距対象までの距離や、被写体の反射率などの測
距条件に応じて到来する反射光パルスRPLの強度及び
断面形状、断面の大きさなどが変化したとしても、その
変化は実際上反射光パルスRPLの受光素子列LL上の
移動方向(順方向及び逆方向)に対称に生ずるので、か
かる変化によって反射光パルスRPLの中心がずれるお
それはなく、従って測距信号DRI〜DR6の内容はか
かる大きさの変化によって誤差が生ずるおそれを有効に
回避し得る。
Even if the intensity, cross-sectional shape, cross-sectional size, etc. of the arriving reflected light pulse RPL change depending on the distance measurement conditions such as the distance to the distance measurement target and the reflectance of the subject, the change will not actually occur. Since the reflected light pulses RPL occur symmetrically in the moving direction (forward and reverse directions) on the light receiving element array LL, there is no risk that the center of the reflected light pulses RPL will shift due to such changes, and therefore the contents of the ranging signals DRI to DR6 can effectively avoid the possibility of errors occurring due to such changes in magnitude.

また反射光パルスRPLの強度が変化した場合には、光
電変換信号S1〜S4、S31〜s34、S41〜S4
4の振幅値は変化するが、これらの光電変換信号に基づ
いてコード信号でなる測距信号DRI〜DR6に変換す
る際には、比較回路31〜35及び42において2つの
光電変換信号の相対的信号レベルの変化を求めるように
なされていることにより、反射光パルスRPLの信号レ
ベルの変化によって測距信号DRI−DR6の検出結果
に誤差が生ずるおそれを有効に回避し得る。
Further, when the intensity of the reflected light pulse RPL changes, the photoelectric conversion signals S1 to S4, S31 to s34, S41 to S4
Although the amplitude values of the two photoelectric conversion signals change, when converting the distance measurement signals DRI to DR6 made of code signals based on these photoelectric conversion signals, the comparison circuits 31 to 35 and 42 change the relative value of the two photoelectric conversion signals. By determining the change in the signal level, it is possible to effectively avoid the possibility that an error will occur in the detection result of the ranging signal DRI-DR6 due to a change in the signal level of the reflected light pulse RPL.

これに加えて上述の構成によれば、受光素子LLll〜
LL24を多数配列した場合に、所定数(実施例の場合
3個)おきの受光素子から得た出力を加算して光電変換
信号S1〜S4を作るようにしたことにより光電変換信
号S1〜S4として反射光パルスRPLが受光素子列L
L上を移動したときに1周期以上の変化をもつようにし
得ることにより、高い精度で反射光パルスRPLの照射
位置を検出することができる。
In addition to this, according to the above configuration, the light receiving elements LLll~
When a large number of LL24 are arranged, the photoelectric conversion signals S1 to S4 are created by adding the outputs obtained from every predetermined number (three in the case of the example) of light receiving elements. The reflected light pulse RPL is transmitted to the light receiving element array L.
By making it possible to have a change of one cycle or more when moving on L, the irradiation position of the reflected light pulse RPL can be detected with high accuracy.

かくするにつき、従来の場合のようにピーク検出回路な
どは必要としないので、測距回路全体としての構成を簡
易化し得る。
In this way, unlike in the conventional case, a peak detection circuit or the like is not required, so that the overall configuration of the distance measuring circuit can be simplified.

なお第1図の構成において、比較回路35は、実際上ゾ
ーンZF13及びZF14(第2図)を区別するためだ
けに使用されている。従ってこの比較回路35の代わり
に、第1図において点線で示すように、受光素子LL2
4−の外側に新たな受光素子LL31を設けると共に、
その第1出力を増幅回路21を介して光電変換信号St
に加えると共に、第2出力を増幅回路43を介して光電
変換信号S6に加えるようにしても良い。このようにず
れば、光電変換信号S1は第2図(B)において破線に
1で示すように反射光パルスRP、Lが受光素子LL2
4の領域にあるとき光電変換信号Slが発生し、これに
応じて第2図(CI)において破線に2で示すように、
測距信号DPIがゾーンZF14において論理「L」レ
ベルから「H」レベルに立上る。かくしてゾーンZF1
3及びZF14の区分けをすることができることになり
、比較回路35を省略した分、測距回路の構成をさらに
簡易化し得る。
In the configuration of FIG. 1, the comparator circuit 35 is actually used only to distinguish between zones ZF13 and ZF14 (FIG. 2). Therefore, instead of this comparison circuit 35, as shown by the dotted line in FIG.
In addition to providing a new light receiving element LL31 on the outside of 4-,
The first output is sent to the photoelectric conversion signal St via the amplifier circuit 21.
In addition, the second output may be added to the photoelectric conversion signal S6 via the amplifier circuit 43. With this shift, the photoelectric conversion signal S1 is reflected by the reflected light pulse RP and L by the light receiving element LL2, as shown by the broken line 1 in FIG. 2(B).
4, a photoelectric conversion signal Sl is generated, and accordingly, as shown by the broken line 2 in FIG. 2 (CI),
The distance measurement signal DPI rises from the logic "L" level to the "H" level in the zone ZF14. Thus zone ZF1
Since the comparator circuit 35 is omitted, the configuration of the distance measuring circuit can be further simplified.

第3図は本発明の他の実施例を示すもので、第1図との
対応部分に同一符号を付して示すように、測距信号形成
回路20の構成を、第1図の場合と比較してさらに簡易
化しようとするものである。
FIG. 3 shows another embodiment of the present invention, and as shown by assigning the same reference numerals to corresponding parts as in FIG. 1, the configuration of the ranging signal forming circuit 20 is different from that in FIG. 1. This is an attempt to further simplify the comparison.

すなわち第3図の実施例の場合、受光素子LL11〜L
L24の光電変換信号Sll〜S24を直接2つの差動
増幅回路51及び52に与え、その差出力S61及びS
62に基づいて比較回路61.62.63.64を用い
て測距信号DR11〜DR14を形成する。ここで差動
増幅回路51及び52は、カーレントミラー回路構成の
ツートン型差動電流増幅器を適用し得る。
That is, in the case of the embodiment shown in FIG. 3, the light receiving elements LL11 to L
The photoelectric conversion signals Sll to S24 of L24 are directly applied to two differential amplifier circuits 51 and 52, and the difference outputs S61 and S
62, distance measurement signals DR11 to DR14 are formed using comparison circuits 61, 62, 63, and 64. Here, the differential amplifier circuits 51 and 52 may be two-tone differential current amplifiers having a current mirror circuit configuration.

第1の差動増幅回路51の非反転入力端には第1及び第
5の受光素子LLII及びLL21の光電変換信号Sl
l及びS21が直接与えられると共に、反転入力端に1
つ置いた隣の受光素子L Li2及びLL23の光電変
換信号513が与えられる。従って差動増幅回路51の
出力端には、両者の差を表す差信号S61が得られる(
第4図(B))。
The non-inverting input terminal of the first differential amplifier circuit 51 is connected to the photoelectric conversion signal Sl of the first and fifth light receiving elements LLII and LL21.
l and S21 are directly applied, and 1 is applied to the inverting input terminal.
A photoelectric conversion signal 513 from the adjacent light receiving elements LLi2 and LL23 is provided. Therefore, at the output terminal of the differential amplifier circuit 51, a difference signal S61 representing the difference between the two is obtained (
Figure 4(B)).

また差動増幅回路52の非反転入力端には、第2及び第
、6の受光素子LL12及びLL22の光電変換信号S
12及びS22が与えられると共に、反転入力端に1つ
置いた隣の受光素子LL14及びLL24の光電変換信
号S14及びS24が与えられ、従って差動増幅回路5
2の出力端には、光電変換信号両者の差信号S62が得
られる(第4図(B))。
Further, the non-inverting input terminal of the differential amplifier circuit 52 is connected to the photoelectric conversion signal S of the second and sixth light receiving elements LL12 and LL22.
12 and S22 are given, and photoelectric conversion signals S14 and S24 of the adjacent light receiving elements LL14 and LL24, one of which is placed at the inverting input terminal, are given. Therefore, the differential amplifier circuit 5
A difference signal S62 between the two photoelectric conversion signals is obtained at the output terminal of 2 (FIG. 4(B)).

この差信号S61及びS62は必要に応じて組み合わせ
られて比較回路61〜64に選択的に入力され、これに
より、受光素子LLII〜LL24上の所定位置におい
て論理レベルが反転する測距信号DRII〜DR14が
形成される。
The difference signals S61 and S62 are combined as necessary and selectively inputted to the comparison circuits 61 to 64, thereby producing ranging signals DRII to DR14 whose logic levels are inverted at predetermined positions on the light receiving elements LLII to LL24. is formed.

すなわち比較回路61の非反転入力端に差信号S61が
与えられると共に反転入力端に差信号S62が与えられ
、かくして第4図(C1)に示すように、第1及び第2
の受光素子LLII及びLL12の境界位置と、第5及
び第6の受光素子LL21及びLL22の境界位置とに
おいて論理「HJレベルからrLJに立ち下がり、かつ
第3及び第4の受光素子LL13及びLL14間の境界
位置と、第7及び第8の受光素子LL23及びLL24
の境界位置とにおいて論理rLJレベルからrHJレベ
ルに立ち上がるような測距信号DR11が得られる。
That is, the difference signal S61 is applied to the non-inverting input terminal of the comparator circuit 61, and the difference signal S62 is applied to the inverting input terminal, and thus, as shown in FIG.
At the boundary position of the light receiving elements LLII and LL12 and the boundary position of the fifth and sixth light receiving elements LL21 and LL22, the logic falls from the HJ level to rLJ, and between the third and fourth light receiving elements LL13 and LL14. and the seventh and eighth light receiving elements LL23 and LL24
A distance measurement signal DR11 that rises from the logical rLJ level to the rHJ level at the boundary position is obtained.

また比較回路62の非反転入力端には差信号S61が与
えられて反転入力端に与えられたアース電位と比較され
、か(してその出力端に、第4図(C2)に示すように
、差信号S61が正の間論理「■1」レベルになる測距
信号DR12を発生し、かくして測距信号DR12は、
第2及び第6の受光素子LL12及びLL22のほぼ中
央位置において論理レベルを反転する。
Further, a difference signal S61 is applied to the non-inverting input terminal of the comparator circuit 62, which is compared with the ground potential applied to the inverting input terminal, and outputted to the output terminal as shown in FIG. 4 (C2). , while the difference signal S61 is positive, the distance measurement signal DR12 is at the logic "■1" level, and thus the distance measurement signal DR12 is
The logic level is inverted at approximately the center position of the second and sixth light receiving elements LL12 and LL22.

また差信号S61及びS62は、抵抗66及び67を通
じて比較回路63の非反転入力端に共通に与えられる。
Further, the difference signals S61 and S62 are commonly applied to the non-inverting input terminal of the comparator circuit 63 through resistors 66 and 67.

ここで抵抗66及び67の値は、比較回路63への入力
S63が差信号S61及び362の平均値を表すような
値に予め選定され、かくして入力信号S63は、第4図
(B)に示すように、受光素子LL11〜LL24の各
位置において、差信号S61及びS62の平均値を表す
ような変化をする。これに加えて比較回路63の反転入
力端にはアース電位が与えられ、これにより比較回路6
3の出力端には、第4図(C3)に示すように、平均値
出力S63が正の間論理rH」レベルに立ち上がる測距
信号−DR13が得られる。か(して測距信号DR13
は、第2及び第3の受光素子L L 12及びLL13
の境界位置、第4及び第5の受光素子L L 14及び
LL21の境界位置、第6及び第7の受光素子L L 
22及びI。
The values of resistors 66 and 67 are here preselected such that the input S63 to the comparator circuit 63 represents the average value of the difference signals S61 and 362, so that the input signal S63 is as shown in FIG. Thus, at each position of the light receiving elements LL11 to LL24, the difference signals S61 and S62 change to represent the average value. In addition, a ground potential is applied to the inverting input terminal of the comparator circuit 63, so that the comparator circuit 63
As shown in FIG. 4 (C3), the distance measurement signal -DR13 that rises to the logic rH level while the average value output S63 is positive is obtained at the output terminal of the sensor 3. (then distance measurement signal DR13
are the second and third light receiving elements L L 12 and LL13
boundary position of the fourth and fifth light receiving elements L L 14 and LL21, sixth and seventh light receiving elements L L
22 and I.

L23の境界位置において論理レベルを反転する。The logic level is inverted at the boundary position of L23.

さらに比較回路64の非反転入力端には差信号S62が
与えられ、反転入力端に与えられたアース電位と比較さ
れる。かくして比較回路64の出力端には、第4図(C
4)に示すように第3、第5、第7の受光素子LL13
、LL15、L L 17のほぼ中央位置において論理
レベルを変更する測距信号DR14が得られる。
Further, a difference signal S62 is applied to the non-inverting input terminal of the comparator circuit 64, and is compared with the ground potential applied to the inverting input terminal. Thus, the output terminal of the comparator circuit 64 has the voltage shown in FIG.
4), the third, fifth, and seventh light receiving elements LL13
, LL15, and LL17, a distance measurement signal DR14 whose logic level is changed approximately at the center position is obtained.

このようにして形成した測距信号DRII〜DR14は
、反射光パルスRPLが所定位置に来たとき、論理レベ
ルを変化して行くので、測距信号DRII〜DR14の
論理レベルによって表されたコードの変化によって反射
光パルスRPLが照射している受光素子LLII〜L 
L 24上のゾーンを表すことができる。すなわち第4
図(C1)〜(C4)に示すように、測距信号DRII
〜DR14のコードは、反射光パルスRPLが第1及び
第5の受光素子LLII及びL L 21の順方向側半
部のゾーンZFI及びZF9にあるときrHH)I H
Jになり、第2及び第6の受光素子LLI2及びL L
 22の逆方向側半部のゾーンZ F’2及びZFIO
にあるときr L HHl−I Jになり、・・・・・
・、第4及び第8の受光素子LL14及びLL24の逆
方向側半部のゾーンZF61及びZF14にあるときr
HLLLJになる。
The distance measurement signals DRII to DR14 formed in this way change the logic level when the reflected light pulse RPL reaches a predetermined position, so that the code represented by the logic level of the distance measurement signals DRII to DR14 changes. The light-receiving elements LLII to L that are irradiated with the reflected light pulse RPL due to the change
A zone on L24 can be represented. That is, the fourth
As shown in Figures (C1) to (C4), the distance measurement signal DRII
~DR14 code is rHH)IH when the reflected light pulse RPL is in the zones ZFI and ZF9 of the forward half of the first and fifth light receiving elements LLII and LL21.
J, and the second and sixth light receiving elements LLI2 and L L
Zone Z F'2 and ZFIO in the opposite half of 22
When it is, it becomes r L HHL-I J, and...
・When located in zones ZF61 and ZF14 of the opposite half of the fourth and eighth light receiving elements LL14 and LL24, r
Become HLLLJ.

従って第3図の構成によれば、受光素子列LLを構成す
る受光素子のうち、1つ置きの受光素子から得られる光
電変換信号の相対的信号レベルの変化に基づいて、反射
光パルスRPLの照射位置すなわちカメラ本体3から被
写体までの距離を表す測距データを測距信号DRII〜
DR14の論理レベルで表されたコードとして得ること
ができる。
Therefore, according to the configuration shown in FIG. 3, the reflected light pulse RPL is determined based on the change in the relative signal level of the photoelectric conversion signal obtained from every other light receiving element among the light receiving elements constituting the light receiving element array LL. The distance measurement data representing the irradiation position, that is, the distance from the camera body 3 to the subject, is sent to the distance measurement signal DRII~
It can be obtained as a code expressed at the DR14 logic level.

ところで、第3図の実施例の場合も、第1図の増幅回路
41及び43、比較回路・12と同じように、反射光パ
ルスRPLが受光素子群LLII〜L L 14及びL
L21−LL24の2つのゾーンを照射したとき同じコ
ードをもつ測距信号DR11〜DR14を生ずるので、
これを区分けするため、差動増幅回路53及び比較回路
65をもつ。
By the way, in the case of the embodiment shown in FIG. 3, as in the case of the amplifier circuits 41 and 43 and the comparison circuit 12 shown in FIG.
When the two zones L21-LL24 are irradiated, ranging signals DR11-DR14 with the same code are generated, so
In order to classify this, a differential amplifier circuit 53 and a comparison circuit 65 are provided.

この実施例の場合、第1の受光素子群を構成する受光素
子LLII〜LL14の光電変換信号S31〜S34が
共通に接続されて差動増幅回路53の非反転入力端に選
択信号SEL 1として与えられると共に、第2の受光
素子群を構成する受光素子LL21〜LL24の光電変
換信号S41〜S44が共通に接続されて選択信号5E
L2として反転入力端に与えられ、その差出力S64が
比較回路65の非反転入力端において、反転入力端に供
給されているアース電位と比較される。
In the case of this embodiment, the photoelectric conversion signals S31 to S34 of the light receiving elements LLII to LL14 constituting the first light receiving element group are connected in common and applied as the selection signal SEL 1 to the non-inverting input terminal of the differential amplifier circuit 53. At the same time, the photoelectric conversion signals S41 to S44 of the light receiving elements LL21 to LL24 constituting the second light receiving element group are connected in common to generate the selection signal 5E.
The difference output S64 is applied to the inverting input terminal as L2, and the difference output S64 is compared at the non-inverting input terminal of the comparator circuit 65 with the ground potential supplied to the inverting input terminal.

ここで、差出力S64は次式、 S64 = (S31+S32+S33+534)−(
S41+S42+S43+544)・・・・・・(1) で表される内容をもっているので、反射光パルスRPL
が受光素子群LLII〜LL14を照射しているとき正
の信号レベルになり、これにより比較回路65の出力端
に得られる測距信号DR15(第4図(C5))は論理
「1(」レベルになる。
Here, the difference output S64 is calculated by the following formula, S64 = (S31 + S32 + S33 + 534) - (
S41+S42+S43+544)......(1) Since it has the content expressed as
becomes a positive signal level when irradiating the light receiving element groups LLII to LL14, and the distance measurement signal DR15 (FIG. 4 (C5)) obtained at the output terminal of the comparator circuit 65 is at the logic "1" level. become.

これに対して、差出力S64は、反射光パルスRPLが
受光素子群LL21〜L L 24を照射しているとき
負の信号レベルになることにより、比較回路65の測距
信号DR15(第4図(C5))は論理rLJレベルに
なる。
On the other hand, the difference output S64 becomes a negative signal level when the reflected light pulse RPL is irradiating the light receiving element groups LL21 to LL24. (C5)) becomes the logic rLJ level.

この結果第3図の構成にれば、反射光パルスRPLの受
光素子列LL上の照射位置を各受光素子の1/2の幅の
解像度で表して測距信号DRII゛〜DR15を得るこ
とができる。
As a result, with the configuration shown in FIG. 3, it is possible to express the irradiation position of the reflected light pulse RPL on the light-receiving element row LL with a resolution of 1/2 the width of each light-receiving element, and obtain the ranging signals DRII' to DR15. can.

第5図は本発明のさらに他の実施例を示すもので、この
場合受光素子列L Lの第1の受光素子群LL11〜L
L14に沿うようにその全幅に亘って第1群選択用受光
素子LL31が設けられていると共に、第2の受光素子
群LL21〜LL24に沿うようにその全幅に亘って第
2群選択用受光素子LL32が設けられている。
FIG. 5 shows still another embodiment of the present invention, in which the first light receiving element group LL11 to L of the light receiving element array LL is
A light-receiving element LL31 for selecting the first group is provided along the entire width of L14, and a light-receiving element for selecting the second group is provided along the entire width of the second group of light-receiving elements LL21 to LL24. LL32 is provided.

これにより反射光パルスRRLが第一1群の受光素子L
LII〜LL14の範囲に照射しているときこれと−緒
に第1群選択用受光素子LL31を照射することにより
、受光素子L L 31から選択信号SEL 1を測距
信号形成回路20に与える。
As a result, the reflected light pulse RRL is transmitted to the first group of light receiving elements L.
When the range from LII to LL14 is irradiated, the first group selection light receiving element LL31 is also irradiated, thereby providing the selection signal SEL1 from the light receiving element LL31 to the ranging signal forming circuit 20.

また同様にして反射光パルスRP Lが第2群の受光素
子Lr、21〜L L 24を照射しているときこれと
一緒に第2群選択用受光素子LL32を照射することに
より選択信号5EL2を測距信号形成回路20に与える
Similarly, when the reflected light pulse RP L is irradiating the second group of light receiving elements Lr, 21 to L L 24, the selection signal 5EL2 is generated by simultaneously irradiating the second group selection light receiving element LL32. It is applied to the ranging signal forming circuit 20.

測距信号形成回路20としては、第1図の構成のもの及
び第4図の構成のもののいずれであっても良(、選択信
号SEL 1及び5EL2は第1図の構成の測距信号形
成回路20の場合増幅回路41及び43に供給し、第3
図の構成の場合には選択信号SEL 1及び5EL2を
差動増幅回路53の非反転入力端及び反転入力端に供給
する。
The distance measurement signal forming circuit 20 may have either the configuration shown in FIG. 1 or the configuration shown in FIG. 20, it is supplied to the amplifier circuits 41 and 43, and the third
In the case of the configuration shown in the figure, selection signals SEL1 and SEL2 are supplied to the non-inverting input terminal and the inverting input terminal of the differential amplifier circuit 53.

第5図の構成によれば、選択信号SEL 1又は5EL
2を測距信号形成回路20に供給したとき、その入力イ
ンピーダンスがたとえ大きくとも悪影響を生じさせるこ
となく測距信号形成回路20を制御し得る。因に第1図
及び第3図の構成において、増幅回路41.43及び差
動増幅回路53の入力インピーダンスが低い場合には、
共通に接続されている受光素子LLII〜LL14の出
力S31〜534(同様に、受光素子LL21〜L+、
24の出力S41〜544)では、例えば受光素子では
、例えば受光素子LLIIからの出力信号が出力S31
、S32を介して隣接した受光素子LL12に回り込ん
で更に出力S12を介して増幅回路22に入力するおそ
れがあり、同様に他の出力S32〜S34でも起こり得
るが、第5図のように構成すれば、これを未然に防止し
得る。
According to the configuration of FIG. 5, the selection signal SEL 1 or 5EL
2 is supplied to the ranging signal forming circuit 20, even if its input impedance is large, the ranging signal forming circuit 20 can be controlled without causing any adverse effects. Incidentally, in the configurations of FIGS. 1 and 3, when the input impedance of the amplifier circuits 41 and 43 and the differential amplifier circuit 53 is low,
Outputs S31-534 of commonly connected light-receiving elements LLII-LL14 (similarly, light-receiving elements LL21-L+,
24 outputs S41 to 544), for example, in the light receiving element, the output signal from the light receiving element LLII is the output S31.
, S32 to the adjacent light-receiving element LL12 and further input to the amplifier circuit 22 via the output S12. This could also occur with the other outputs S32 to S34, but if the structure is as shown in FIG. This can prevent this from happening.

第6図は第5図の変形例を示すもので、第5図の構成の
場合は、例えば一点鎖″4IAMで示すように、反射光
パルスRPLの移動軌跡が斜あに動いたとき、受光素子
列LLから外れてしまうおそれがある。この問題を解決
するため第6図の構成においては、受光素子LLII〜
LL14及びLL21〜LL24に隣接しかつ反射光パ
ルスの移動方向に対して直交する方向に受光素子L L
 11〜LL14及びLL21〜LL24の全幅に亘っ
て延長するような第1群選択用受光素子LL41〜LL
44及びLL51〜LL54を介挿し、第1群選択用受
光素子LL41〜LL44の出力を共通に接続してその
和でなる選択信号SEL 1を測距信号形成回路20に
与えると共に、第2群選択用受光素子LL51〜LL5
4の出力を共通に接続して選択信号5EL2として測距
信号形成回路20に与える。
FIG. 6 shows a modification of FIG. 5. In the case of the configuration shown in FIG. There is a risk that the light-receiving elements LLII to LLII may fall out of the element row LL.
A light-receiving element L
11 to LL14 and LL21 to LL24 extending over the entire width of the first group selection light receiving elements LL41 to LL
44 and LL51 to LL54 are inserted, the outputs of the first group selection light receiving elements LL41 to LL44 are connected in common, and a selection signal SEL1 consisting of the sum thereof is provided to the ranging signal forming circuit 20, and the second group selection Light receiving elements LL51 to LL5
The outputs of 4 are connected in common and applied to the ranging signal forming circuit 20 as a selection signal 5EL2.

第6図のように構成すれば、たとえ反射光パルスRPL
が移動軌跡Mに沿って斜めに移動するような条件になっ
たとしても、反射光パルスRPLが受光素子列LLを構
成する受光素子LLII〜LL14及びLL21−LL
24から外れるおそれを未然に防止し得る。
If the configuration is as shown in FIG. 6, even if the reflected light pulse RPL
Even if the condition is such that the reflected light pulse RPL moves obliquely along the movement trajectory M, the reflected light pulse RPL will affect the light receiving elements LLII to LL14 and LL21 to LL constituting the light receiving element array LL.
24 can be prevented from occurring.

第7図は第6図の変形例を示すもので、この場合第1群
選択用受光素子LL41〜LL44及び第2群選択用受
光素子LL51〜LL54の幅を第6図の場合と比較し
て狭く選定している。
FIG. 7 shows a modification of FIG. 6, in which the widths of the first group selection light receiving elements LL41 to LL44 and the second group selection light receiving elements LL51 to LL54 are compared with those in FIG. It is narrowly selected.

第7図の構成によれば、受光素子列LLを構成する受光
素子LLII〜LL14及びLL21〜LL24の受光
面積を第6図の場合と比較して格段的に大きくできるの
で、測距信号を形成するために必要な検出信号の信号レ
ベルを大きくすることができ、かくして安定な測距動作
を実現し得る。
According to the configuration shown in FIG. 7, the light-receiving areas of the light-receiving elements LLII to LL14 and LL21 to LL24 constituting the light-receiving element row LL can be made significantly larger than in the case of FIG. 6, so that a ranging signal can be formed. The signal level of the detection signal required for this purpose can be increased, and thus stable ranging operation can be realized.

因に反射光パルスRPLは、測距対象までの距離が遠い
場合には、微小な信号レベルになるため、測距信号DR
I〜DR5(第1図)及びDRII〜DR14(第3図
)としてできるだけ信号レベルの大きい検出信号を得る
ことが望ましい。これに対して第1群選択用受光素子L
L41〜LL44及び第2群選択用受光素子LL51〜
LL54の検出信号を用いて第1群及び第2群の判定動
作をする位置は、受光素子列LLのうち受光素子LL1
4及びLL21間の境界位置である(第2図(C6)、
第4図(C5))。この位置は、測距距離としては、比
較的近い位置であるので、反射光パルスRPLの強度が
かなり大きいので、たとえ受光素子LL41〜LL44
及びLL51〜LL54の幅が狭くとも、測距4g号D
Rも(第2図(C6))及びDR15(第4図(C5)
)の論環レベルの変化を生じさせるにつき、実際上十分
な信号レベルの選択信号S E L 1及び5EL2の
検出出力を得ることができる。
Incidentally, when the distance to the distance measurement target is long, the reflected light pulse RPL has a minute signal level, so the distance measurement signal DR
It is desirable to obtain detection signals with as high a signal level as possible as I to DR5 (FIG. 1) and DRII to DR14 (FIG. 3). On the other hand, the first group selection light receiving element L
L41 to LL44 and second group selection light receiving element LL51 to
The position where the judgment operation of the first group and the second group is performed using the detection signal of LL54 is the light receiving element LL1 of the light receiving element array LL.
4 and LL21 (Fig. 2 (C6),
Figure 4 (C5)). Since this position is relatively close in terms of distance measurement, the intensity of the reflected light pulse RPL is quite large, so even if the light receiving elements LL41 to LL44
Even if the width of LL51 to LL54 is narrow, distance measurement No. 4g D
R (Fig. 2 (C6)) and DR15 (Fig. 4 (C5)
), it is possible to obtain detection outputs of the selection signals SEL1 and 5EL2 with practically sufficient signal levels.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、測距信号形成回路の回路
部品を一段と少なくし得ると共に、高い精度で測距動作
をし得る測距装置を容易に実現し得る。
As described above, according to the present invention, it is possible to further reduce the number of circuit components of the distance measurement signal forming circuit, and to easily realize a distance measurement device that can perform distance measurement operations with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による測距装置の一実施例を示す接続図
、第2図はその受光素子列に対応する各部の信号を示す
路線的信号波形図、第3図は本発明による測距装置の他
の実施例を示す接続図、第4図はその受光素子列に対応
する各部の信号を示す路線的信号波形図、第5図〜第7
図は本発明の他の実施例を示す接続図、第8図は三角測
距手法の説明に供する路線図、第9図は従来の測距装置
を示す接続図である。 1・・・・・・発光素子、2・・・・・・発光レンズ、
3・・・・・・カメラ本体、4・・・・・・受光レンズ
、20・・・・・・測距信号形成回路、LL・・・・・
・受光素子列、LLII〜LL14、L L 21〜L
L24・・・・・・受光素子、DRI〜DR6、DRI
I〜DR15・・・・・・測距信号。
FIG. 1 is a connection diagram showing an embodiment of the distance measuring device according to the present invention, FIG. 2 is a route signal waveform diagram showing signals of each part corresponding to the light receiving element array, and FIG. 3 is a distance measuring device according to the present invention. A connection diagram showing another embodiment of the device, FIG. 4 is a route signal waveform diagram showing signals of each part corresponding to the light receiving element array, and FIGS. 5 to 7.
FIG. 8 is a connection diagram showing another embodiment of the present invention, FIG. 8 is a route diagram for explaining the triangulation distance measuring method, and FIG. 9 is a connection diagram showing a conventional distance measuring device. 1... Light emitting element, 2... Light emitting lens,
3...Camera body, 4...Light receiving lens, 20...Distance measurement signal forming circuit, LL...
・Light receiving element array, LLII to LL14, LL21 to L
L24... Light receiving element, DRI to DR6, DRI
I~DR15... Distance measurement signal.

Claims (1)

【特許請求の範囲】 測距対象に対して測距光を発射し、上記測距対象からの
反射光を複数の受光素子を配列してなる受光素子列で受
光して各受光素子から得られる光電変換信号に基づいて
測距信号を得るようになされた測距装置において、 上記受光素子列を構成する受光素子のうち、所定個数お
きの受光素子の検出出力を合成して測距信号形成回路に
入力し、 上記測距信号形成回路は、入力された上記検出出力のう
ち、所定の検出出力を組み合わせて、上記反射光の上記
受光素子列に対する照射位置を表す測距信号を形成する ことを特徴とする測距装置。
[Scope of Claims] Distance measurement light is emitted toward a distance measurement target, and the reflected light from the distance measurement target is received by a light receiving element array formed by arranging a plurality of light receiving elements, whereby the light is obtained from each light receiving element. In a distance measuring device configured to obtain a distance measuring signal based on a photoelectric conversion signal, a distance measuring signal forming circuit synthesizes detection outputs of every predetermined number of light receiving elements among the light receiving elements constituting the above-mentioned light receiving element array. and the distance measurement signal forming circuit combines predetermined detection outputs from among the input detection outputs to form a distance measurement signal representing the irradiation position of the reflected light with respect to the light receiving element array. Features a distance measuring device.
JP60171612A 1985-08-03 1985-08-03 Ranging device Expired - Lifetime JPH0648189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60171612A JPH0648189B2 (en) 1985-08-03 1985-08-03 Ranging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60171612A JPH0648189B2 (en) 1985-08-03 1985-08-03 Ranging device

Publications (2)

Publication Number Publication Date
JPS6232312A true JPS6232312A (en) 1987-02-12
JPH0648189B2 JPH0648189B2 (en) 1994-06-22

Family

ID=15926398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60171612A Expired - Lifetime JPH0648189B2 (en) 1985-08-03 1985-08-03 Ranging device

Country Status (1)

Country Link
JP (1) JPH0648189B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235805A (en) * 1988-03-15 1989-09-20 Matsushita Electric Works Ltd Position detector
JPH0540599U (en) * 1991-11-08 1993-06-01 ダイシンフレーム株式会社 Slide gate
JP2002048533A (en) * 2000-08-04 2002-02-15 Nissan Motor Co Ltd Distance measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865506U (en) * 1981-10-26 1983-05-04 株式会社横河電機製作所 Optical spot position detection circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865506U (en) * 1981-10-26 1983-05-04 株式会社横河電機製作所 Optical spot position detection circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235805A (en) * 1988-03-15 1989-09-20 Matsushita Electric Works Ltd Position detector
JPH0540599U (en) * 1991-11-08 1993-06-01 ダイシンフレーム株式会社 Slide gate
JP2002048533A (en) * 2000-08-04 2002-02-15 Nissan Motor Co Ltd Distance measuring device

Also Published As

Publication number Publication date
JPH0648189B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
US6084658A (en) Distance measuring apparatus
US7326919B2 (en) Optical encoder
US3649122A (en) Method and apparatus for measuring the position coordinates of one point in relation to a reference point
US4477189A (en) Photoelectric incremental measuring device
US4921345A (en) Spatial filter type speed measuring apparatus
JPH0318130B2 (en)
JPS62192617A (en) Optical type position measuring method and device
US6797940B2 (en) Optical encoder with triple photodiode
JPS6232312A (en) Range finding device
JP3215232B2 (en) Photoelectric distance sensor
JP2003161645A (en) Optical encoder
JPS60230018A (en) Detector for standard position of photoelectric encoder
KR100396108B1 (en) A circuit and method for controlling glitches in low intensity signals
JP2933804B2 (en) Photoelectric switch
JPH08166256A (en) Absolute encoder
JP2928061B2 (en) Displacement sensor
GB2126336A (en) Detection of movement of a cyclic interference waveform such as in a ring laser gyroscope
JPS6232311A (en) Range finding device
JP3117227B2 (en) Distance detection device
JPS636418A (en) Encoder
JPH0921654A (en) Optical displacement detector and method therefor
JPH02157614A (en) Distance measuring instrument
JP2901747B2 (en) Distance measuring device
JPS60107514A (en) Distance measuring device
SU1096497A1 (en) Device for measuring linear displacements

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term