JPH02157614A - Distance measuring instrument - Google Patents

Distance measuring instrument

Info

Publication number
JPH02157614A
JPH02157614A JP31020088A JP31020088A JPH02157614A JP H02157614 A JPH02157614 A JP H02157614A JP 31020088 A JP31020088 A JP 31020088A JP 31020088 A JP31020088 A JP 31020088A JP H02157614 A JPH02157614 A JP H02157614A
Authority
JP
Japan
Prior art keywords
distance
sensor
ccd
reflected light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31020088A
Other languages
Japanese (ja)
Inventor
Yukio Takagawa
高川 幸男
Takaaki Kawamura
川村 高明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP31020088A priority Critical patent/JPH02157614A/en
Publication of JPH02157614A publication Critical patent/JPH02157614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To improve the distance measurement accuracy and to reduce the size of the device by branching reflected light from an object into two and providing linear photosensors which extend in the moving direction of the reflected light corresponding to variation in the distance from the distance measuring instrument to the object. CONSTITUTION:When the object 5 is moved to vary the distance from the measurement part 1 to the object 5, the image formation positions of the reflected light 6 which is branched by a half-mirror 8 move on both CCD sensors 9 and 10 by the same distance from a point A to a point B in the extending direction of photodetecting elements of the CCD sensors. Here, a sensor offset mechanism 11 can shifts the CCD sensor 10 in position mechanically from the CCD sensor 9 accurately by 1/2 pitch of photoelectric elements. The photoelectric element pitch which is a photodetection interval where both CCD sensors 9 and 10 can be discriminate, i.e. resolution is improved double on the whole of the sensor because one CCD sensor detects the movement even if a light image moves by 1/2 pitch.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は光学式の測距装置、特にはコンパクトな構成
で測距精度を向上させた測距装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical distance measuring device, and particularly to a distance measuring device having a compact configuration and improved ranging accuracy.

(従来の技術) 従来の光学式測距装置としては、例えば、対象物へ向け
て光束を照射する、レーザーダイオードの如き光源と、
その光束の、対象物からの散乱反射光を収束させる受光
レンズと、収束した反射光の、対象物に対するその測距
装置の距離の変化に応じた移動方向へ延在する一個の、
一次元光センサとしての一次元CCDセンサとを具えて
なるものがあり、この装置は、その−次元CCDセンサ
上での反射光の像の位置を一次元CCDセンサで読取る
ことにより、対象物と測距装置との距離を計測して出力
する。
(Prior Art) Conventional optical distance measuring devices include, for example, a light source such as a laser diode that emits a beam of light toward an object;
a light-receiving lens that converges the scattered reflected light of the light flux from the target object, and one lens that extends in the direction of movement of the converged reflected light in accordance with the change in the distance of the distance measuring device to the target object.
There is a device equipped with a one-dimensional CCD sensor as a one-dimensional light sensor, and this device detects the object by reading the position of the reflected light image on the one-dimensional CCD sensor. Measures and outputs the distance to the distance measuring device.

(発明が解決しようとする課題) しかしながら、上記従来の装置にあっては、次元CCD
センサを一個しか持たないことから、測距精度がその一
次元CCDセンサの識別可能な受光間隔(分解能)によ
って制約され、しかも−次元CCDセンサの分解能を上
げることとは製造上極めて困難であるため、測距精度を
充分高め得ないという問題があった。
(Problem to be Solved by the Invention) However, in the above conventional device, the dimensional CCD
Since it has only one sensor, the distance measurement accuracy is limited by the discernible light receiving interval (resolution) of the one-dimensional CCD sensor, and increasing the resolution of the -dimensional CCD sensor is extremely difficult in terms of manufacturing. However, there was a problem in that distance measurement accuracy could not be sufficiently improved.

そして、これを解決すべ(例えば二個のCCDセンサを
直列に用いるようにすると、同一測距範囲を二個のCC
Dセンサに振分けるため、受光レンズからの光路を長く
する必要が生じて装置が大型化するという問題があった
This problem can be solved (for example, by using two CCD sensors in series, the same distance measurement range can be covered by two CCD sensors).
In order to distribute the light to the D sensor, it is necessary to lengthen the optical path from the light receiving lens, resulting in a problem that the device becomes larger.

この発明は上述の課題を有利に解決した測距装置を提供
するものである。
The present invention provides a distance measuring device that advantageously solves the above-mentioned problems.

(課題を解決するための手段) この発明の測距装置は、対象物へ向けて光束を照射する
光源と、その光束の、対象物からの反射光を収束させる
受光レンズと、収束した反射光を複数に分岐させる反射
光分岐手段と、分岐した反射光の各々に対応し、当該測
距装置から対象物までの距離の変化に応じたその反射光
の移動方向へ各々延在する複数の一次元光センサと、そ
れらの一次元光センサを、互いにその延在方向へ、それ
らの一次元光センザの識別可能な受光間隔を一次元光セ
ンサの数で除した距離だけ位置ずれさせるセンサオフセ
ット手段と、を具えてなるものである。
(Means for Solving the Problems) A distance measuring device of the present invention includes a light source that irradiates a light beam toward a target object, a light receiving lens that converges reflected light of the light beam from the target object, and a light receiving lens that converges the reflected light of the light beam from the target object. reflected light branching means for branching the reflected light into a plurality of parts, and a plurality of primary lights corresponding to each of the branched reflected lights and each extending in the moving direction of the reflected light according to a change in the distance from the distance measuring device to the target object. Sensor offset means for positionally shifting the original optical sensor and these one-dimensional optical sensors from each other in the direction of their extension by a distance equal to the discriminable light receiving interval of the one-dimensional optical sensors divided by the number of one-dimensional optical sensors. It is made up of the following.

(作 用) かかる装置にあっては、光源から照射された光束の、対
象物からの散乱反射光が、受光レンズによって収束され
、さらに、反射光分岐手段によって複数に分岐されて各
々一次元光センサ上に結像する。そして、各一次元光セ
ンサは、当該測距装置から対象物までの距離の変化に応
じて移動する、分岐反射光の結像位置を検出して出力す
る。
(Function) In such a device, the scattered reflected light from the object of the light beam irradiated from the light source is converged by the light receiving lens, and is further branched into a plurality of parts by the reflected light branching means, each of which is converted into one-dimensional light. Image is formed on the sensor. Then, each one-dimensional optical sensor detects and outputs the imaging position of the branched reflected light, which moves according to a change in the distance from the distance measuring device to the target object.

ここで、各一次元光センサは、センサオフセット手段に
よって、その分解能を光センサの数で除した距離だけ相
対位置を延在方向へずらされているので、その、分解能
よりも小さい距離で結像位置のずれがあっても、いずれ
かの一次元光センサがそのずれを検出する。
Here, since the relative position of each one-dimensional optical sensor is shifted in the extending direction by a distance equal to its resolution divided by the number of optical sensors by the sensor offset means, an image is formed at a distance smaller than the resolution. Even if there is a positional shift, one of the one-dimensional optical sensors will detect the shift.

従ってこの装置によれば、光センサの全体としての分解
能を向上させることができ、ひいては、光路を長くして
装置を大型化することなく、コンパクトな装置で測距精
度を大幅に高めることができる。
Therefore, with this device, it is possible to improve the overall resolution of the optical sensor, and in turn, it is possible to significantly improve distance measurement accuracy with a compact device without increasing the size of the device by lengthening the optical path. .

(実施例) 以下に、この発明の実施例を図面に基づき詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は、この発明の測距装置の一実施例を示す構成図
であり、図中1は計測部を示す。
FIG. 1 is a block diagram showing an embodiment of a distance measuring device of the present invention, and numeral 1 in the figure indicates a measuring section.

計測部1は、同一基台上に固定された、レーザー光束を
照射する光源としてのレーザー発光器2および、ビデオ
カメラ3を具えており、このビデオカメラ3は、レーザ
ー発光器2から照射されたレーザー光束4が対象物5に
当って乱反射されたその反射光6を、受光レンズ7で収
束させ、さらに、反射光分岐手段としての、受光レンズ
7の光軸に対し45°の傾きを持つハーフミラ−8で二
方向へ分岐させて、それらの分岐された反射光6をそれ
ぞれ、一次元光センサとしての二個の一次元CCDセン
サ9およびlOへ導く。
The measuring unit 1 includes a laser emitter 2 fixed on the same base as a light source that emits a laser beam, and a video camera 3. The laser beam 4 hits the object 5 and is diffusely reflected, and the reflected light 6 is converged by the light receiving lens 7. Furthermore, a half mirror having an inclination of 45 degrees with respect to the optical axis of the light receiving lens 7 is used as reflected light branching means. -8, and guides the branched reflected light 6 to two one-dimensional CCD sensors 9 and 1O, respectively, as one-dimensional optical sensors.

ここで、上記の一次元CCDセンサ9,10は、レーザ
ー光束4の光軸および、それと交差する受光レンズの光
軸を含む平面内に各々その直線状に整列する光電素子を
延在させ、かつハーフミラ−8からの反射光6の光路長
さが互いに等しくなるように、ビデオカメラ3内に配置
されており、またハーフミラ−8も、上記両光軸を含む
平面(図では紙面)と直交するように配置されている。
Here, the one-dimensional CCD sensors 9 and 10 have photoelectric elements arranged in a straight line extending in a plane including the optical axis of the laser beam 4 and the optical axis of the light-receiving lens intersecting the optical axis, and The half mirror 8 is arranged within the video camera 3 so that the optical path lengths of the reflected lights 6 from the half mirror 8 are equal to each other, and the half mirror 8 is also perpendicular to the plane (the plane of the paper in the figure) containing the above-mentioned two optical axes. It is arranged like this.

従って、例えば第1図に仮想線で示す如(対象物5を移
動させ、計測部1から対象物5までの距離を変化させる
と、ハーフミラ−8で分岐された反射光6の結像位置は
、両CCDセンサ9,10上でそれぞれ、それらのCC
Dセンサの受光素子の延在方向へA点からB点まで互い
に等しい距離だけ移動する。
Therefore, for example, as shown by the imaginary line in FIG. , on both CCD sensors 9 and 10, respectively.
The sensor D moves in the extending direction of the light receiving element from point A to point B by the same distance.

両CCDセンサ9,10は、かかる反射光像を光電素子
で検出し、その光を受けている光電素子に対応するビッ
ト番号の位置で、受けている光の強さに応じて出力レベ
ルが高くなる信号を出力する。
Both CCD sensors 9 and 10 detect the reflected light image with a photoelectric element, and the output level increases depending on the intensity of the received light at the position of the bit number corresponding to the photoelectric element receiving the light. Outputs a signal.

ここで、上述の如く対象物5に対する距離の変化に基づ
<CCDセンサ9.10上の光像の移動量は互いに等し
いので、前記距離変化に基づく、両CCDセンサ910
の出力信号の、レベルが高くなるビット番号の移動量も
互いに等しくなる。
Here, as described above, based on the change in the distance to the object 5, the amounts of movement of the optical images on the CCD sensors 9 and 10 are equal to each other,
The amount of movement of the bit numbers that increase the level of the output signals of is also equal to each other.

また、両CCDセンサ9.10の識別可能な受光間隔で
ある光電素子ピッチすなわち分解能は、この例では各々
7μmであり、かかる分解能は両CCDセンサ9.10
の光電素子の位置が分岐された反射光6の像の端縁に対
し各々同一位置である(例えば光電素子の端縁が両CC
D共光像の端縁と一致している)と、両CCDセンサ9
.IOが常に相対的には同一の信号を出力するので向上
し得ないが、両CCDセンサ9.10の光電素子の゛位
置が互いに1/2 ピッチだけずれていれば、光像がそ
の1/2 ピッチだけ移動した場合でもいずれか一方の
CCDセンサがその移動を検出するので、センサ全体と
しては二倍に向上する。
Further, in this example, the photoelectric element pitch, that is, the resolution, which is the discernable light reception interval of both CCD sensors 9.10, is 7 μm, and such resolution is
The positions of the photoelectric elements are at the same position with respect to the edges of the image of the branched reflected light 6 (for example, the edges of the photoelectric elements are at the same position on both CCs).
D coincident with the edge of the optical image) and both CCD sensors 9
.. Since the IO always outputs relatively the same signal, it cannot be improved, but if the positions of the photoelectric elements of both CCD sensors 9 and 10 are shifted from each other by 1/2 pitch, the optical image will be 1/2 of that. Even if the sensor moves by two pitches, one of the CCD sensors will detect the movement, so the overall sensor performance will be doubled.

そこで、この実施例では、一方のCCDセンサ9がビデ
オカメラ3のケーシング3aに固定されているのに対し
て、他方のCCDセンサ10はセンサオフセット手段と
してのセンサオフセット機構11を介してケーシング3
aに取付けられている。
Therefore, in this embodiment, one CCD sensor 9 is fixed to the casing 3a of the video camera 3, while the other CCD sensor 10 is attached to the casing 3 through a sensor offset mechanism 11 as a sensor offset means.
It is attached to a.

センサオフセット機構11は、CCDセンサ10ヲ固定
された移動台12と、CCDセンサ10の受光素子の延
在方向への移動台12の移動を案内する案内機構13と
、移動台12に傾斜面14aにて摺接するクサビ部材1
4と、移動台12の移動方向と直交する方向へのクサビ
部材14の移動を案内する案内機構15と、移動台12
をクサビ部材14へ向けて常時付勢する弾性部材16と
、クサビ部材14の厚肉側である後端部にスピンドル1
7aが当接するねじ式駆動機構、例えばマイクロメータ
17とを具えてなり、かかるセンサオフセット機構11
にあっては、マイクロメータ17のスリーブ17bを、
そこに表示された目盛りの指示に従って回転させ、その
スリーブ17bに結合されたスピンドル17aを70 
pm (0,07mm>進退移動させると、クサビ部材
14も70 μm移動し、この移動により、クサビ部材
14の、1/20の傾きを持つ傾斜面14aに摺接する
移動台12が、弾性部材16に抗し、あるいはその付勢
力によって、 3.5μmだけ往復移動する。
The sensor offset mechanism 11 includes a movable base 12 to which the CCD sensor 10 is fixed, a guide mechanism 13 that guides movement of the movable base 12 in the direction in which the light receiving element of the CCD sensor 10 extends, and an inclined surface 14a on the movable base 12. Wedge member 1 that comes into sliding contact with
4, a guide mechanism 15 that guides the movement of the wedge member 14 in a direction perpendicular to the moving direction of the moving table 12, and a guiding mechanism 15 that guides the movement of the wedge member 14 in a direction perpendicular to the moving direction of the moving table 12;
an elastic member 16 that constantly urges the wedge member 14 toward the wedge member 14;
The sensor offset mechanism 11 is provided with a screw type drive mechanism, for example, a micrometer 17, against which the sensor offset mechanism 7a abuts.
In this case, the sleeve 17b of the micrometer 17 is
Rotate the spindle 17a connected to the sleeve 17b by rotating it according to the instructions on the scale displayed there, and move the spindle 17a connected to the sleeve 17b to 70.
pm (0.07 mm> When the wedge member 14 is moved forward or backward, the wedge member 14 also moves by 70 μm, and as a result of this movement, the movable base 12, which comes into sliding contact with the inclined surface 14a having an inclination of 1/20 of the wedge member 14, moves to the elastic member 16. It moves back and forth by 3.5 μm against or due to its urging force.

従ってセンサオフセット機構11は、CCDセンサ10
をCCDセンサ9に対し、正確に光電素子の1/2 ピ
ッチ分、機械的に位置ずれさせることができる。
Therefore, the sensor offset mechanism 11
can be mechanically shifted with respect to the CCD sensor 9 by exactly 1/2 pitch of the photoelectric element.

上記CCDセンサ9,10の出力信号はそれぞれビデオ
カメラ3内のビデオ波形出力回路18.19により所定
のタイミングで一画面分サンプルホールドされて、第3
図に示す如きビデオ信号とされ、その信号レベルは、ビ
デオ波形出力回路i8.19のゲインを自動的に調整す
ることにより最大で所定値aとなる。
The output signals of the CCD sensors 9 and 10 are each sample-held for one screen at a predetermined timing by the video waveform output circuits 18 and 19 in the video camera 3, and then
The video signal is as shown in the figure, and its signal level reaches a maximum of a predetermined value a by automatically adjusting the gain of the video waveform output circuit i8.19.

ビデオ波形出力回路18.19の出力信号は、位置検出
回路20.21に人力され、位置検出回路20.21は
それらの入力信号を、適当なしきい値を用いて二値化す
るとともに、その二値化信号の立上りと立下りとの中心
位置を求め、それらの中心位置を出力する。そして、平
均距離演算回路22は、それらの中心位置から両CCD
センサ9,10が検出した対象物5に対する距離を演算
し、さらにそれらの距離の平均値を演算して平均距離を
求め、それを距離信号として出力する。
The output signals of the video waveform output circuits 18.19 are input to a position detection circuit 20.21, which binarizes these input signals using an appropriate threshold value, and The center positions of the rising and falling edges of the digitized signal are determined, and these center positions are output. Then, the average distance calculation circuit 22 calculates distance between both CCDs from their center positions.
The distance to the object 5 detected by the sensors 9 and 10 is calculated, and the average value of these distances is calculated to obtain the average distance, which is output as a distance signal.

上述の如き構成を具えるこの例の測距装置にあっては、
あらかじめ、両CCDセンサ9.10の相対位置を以下
の如くして調整してお(。
In the distance measuring device of this example having the configuration as described above,
In advance, adjust the relative positions of both CCD sensors 9 and 10 as follows (.

先ず、CCDセンサ9の任意の光電素子(例えば、n+
lビット目)の端縁に、第2図に示す如く分岐された反
射光6の像の端縁が重なるように、ビデオカメラ3全体
を横方向へ移動させる。
First, any photoelectric element of the CCD sensor 9 (for example, n+
The entire video camera 3 is moved in the lateral direction so that the edge of the image of the split reflected light 6 overlaps the edge of the (l-th bit) as shown in FIG.

ここで、光電素子の端縁と光像の端縁との一致判断は、
第3図に示すように、位置検出回路20に二種類のしき
い値(例えば最大値aの273の第1しきい値および最
大値aの173の第2しきい値)を設定し、両しきい値
に基づく二つの二値化信号を比較することによって行い
、例えば図示のn+1ビット目の如く、二つの二値化信
号が一致した場合に、その位置で光電素子と光像との端
縁同士が一致したと判断する。
Here, the judgment of coincidence between the edge of the photoelectric element and the edge of the optical image is as follows:
As shown in FIG. 3, two types of threshold values (for example, a first threshold value of 273 for the maximum value a and a second threshold value of 173 for the maximum value a) are set in the position detection circuit 20. This is done by comparing two binarized signals based on thresholds. For example, when the two binarized signals match, as in the (n+1)th bit shown in the figure, the end of the photoelectric element and the optical image is detected at that position. It is determined that the edges match.

このように二種類のしきい値を用いれば、実際の光像の
あいまいな端縁部分による中間レベルの信号を、しきい
値が一つの場合よりも正確に判定し、光像の端縁をより
正確に捕捉することができる。
By using two types of thresholds in this way, intermediate level signals due to ambiguous edges of an actual optical image can be determined more accurately than when only one threshold is used, and the edges of an optical image can be determined more accurately. It can be captured more accurately.

次にここでは、ビデオカメラ3を固定した後、CCDセ
ンサ10についても上記と同様の方法で一致判断を行い
ながら、センサオフセット機構11を操作し、CCDセ
ンサ10の任意の光電素子、好ましくはCCDセンサ9
と同じビット番号の光電素子の端縁に、分岐された反射
光6の像の端縁が重なるように、CCDセンサ10のみ
移動させる。
Next, after fixing the video camera 3, the sensor offset mechanism 11 is operated while making a coincidence judgment for the CCD sensor 10 in the same manner as above, and an arbitrary photoelectric element of the CCD sensor 10, preferably a CCD sensor 9
Only the CCD sensor 10 is moved so that the edge of the image of the branched reflected light 6 overlaps with the edge of the photoelectric element having the same bit number.

上記の手順によって、両CCDセンサ9.IOとも光像
の端縁が光電素子の端縁に重なったら、ここではセンサ
オフセット機構11の操作によって、CCDセンサ10
をCCDセンサ9に対し、その光電素子の172 ピッ
チ分機械的に位置ずれさせる。
By the above procedure, both CCD sensors 9. When the edge of the optical image overlaps the edge of the photoelectric element with IO, the CCD sensor 10 is moved by operating the sensor offset mechanism 11.
is mechanically shifted relative to the CCD sensor 9 by 172 pitches of the photoelectric element.

このようにして両CCDセンサ9.10の相対位置を調
整した後は、以下の如くして距離計測を行うことができ
る。
After adjusting the relative positions of both CCD sensors 9 and 10 in this manner, distance measurement can be performed as follows.

例えば、光像の幅が2に個のビット分あり、第4図(a
)に示すように、CCDセンサ9のnビット目からn+
2にビット目までの2k(固のビットについて二値化信
号が1になった場合には、立上りと立下りとの中心位置
はn十に番目となる。そしてこのとき、CCDセンサ1
0では第4図(b) に示すように、172ビット位置
がずれてmビット目からm+2に一1ビット目までの2
に−H固のビットについて二値化信号が1になり、立上
りと立下りとの中心位置はm+に一1番目となる。但し
、中心位置の計算上1未満は切揄てられる。これらの中
心位置から、平均距離演算回路22はCCDセンサ9,
10の各々の計測した距離をL+ とじて、それらの平
均値し、を計測距離として出力する。
For example, if the width of the optical image is 2 bits wide, as shown in Figure 4 (a
), from the nth bit of the CCD sensor 9 to n+
If the binary signal becomes 1 for the 2k-th bit (hard bit), the center position of the rising edge and the falling edge will be the n-th bit.At this time, the CCD sensor 1
0, as shown in Figure 4(b), the 172 bit position is shifted and the 2 bits from mth bit to m+2 and 11th bit are shifted.
The binary signal becomes 1 for the -H bit, and the center position of the rising edge and falling edge becomes the 11th point at m+. However, in calculating the center position, values less than 1 are omitted. From these center positions, the average distance calculation circuit 22 detects the CCD sensors 9,
The distances measured by each of the 10 points are taken as L+, the average value thereof is taken, and the average value is output as the measured distance.

しかして、対象物に対する距離が変化して、光像の位置
が上記の状態から172ビット分ずれた場合には、CC
Dセンサ9では第5図(a)に示すように、n+1ビッ
ト目からn+2にビット目までの2に一1個のビットに
ついて二値化信号が1になり、その立上りと立下りとの
中心位置は(n+1+に−1)となり、未だn+に番目
に止まるが、CCDセンサ10では第5図(b)  に
示すように、mビット目からm+2にビット目までの2
k(固のビットについて二値化信号が1になり、立上り
と立下りとの中心位置はm+に番目となる。そして、こ
れらの中心位置から平均距離演算回路22は、CCDセ
ンサ9の計測した距離をLlとする一方、CCDセンサ
10の計測した距離をL1+α(αは光電素子1ピツチ
に対応する距離)とし、それらの平均値し、+α/2を
計測距離として出力する。
However, if the distance to the object changes and the position of the optical image deviates from the above state by 172 bits, the CC
In the D sensor 9, as shown in FIG. 5(a), the binary signal becomes 1 for every 2 to 11 bits from the n+1st bit to the n+2th bit, and the center of the rising and falling edges of the binary signal becomes 1. The position becomes (-1 to n+1+), and it still stops at n+, but in the CCD sensor 10, as shown in FIG.
The binarized signal becomes 1 for k (hard bits), and the center position of the rising edge and the falling edge becomes m+th. Then, the average distance calculation circuit 22 calculates the distance measured by the CCD sensor 9 from these center positions. The distance is set as Ll, while the distance measured by the CCD sensor 10 is set as L1+α (α is the distance corresponding to one pitch of the photoelectric element), and the average value thereof is output as +α/2 as the measured distance.

従ってこの測距装置によれば、CCDセンサ9゜10の
光電素子の172 ピッチ分の光像位置のずれを検出す
ることができ、ひいては、ビデオカメラ3内での光路を
長くしてカメラを大型化することなく、コンパクトな装
置で測距精度を二倍に向上させることができる。
Therefore, according to this distance measuring device, it is possible to detect a shift in the optical image position by 172 pitches of the photoelectric elements of the CCD sensor 9°10, and it is possible to lengthen the optical path within the video camera 3 to make the camera larger. It is possible to double the distance measurement accuracy with a compact device without having to

以上図示例に基づき説明したが、この発明は上述の例に
限定されるものでなく、例えばセンサオフセット手段と
して他の構造のものや、モータ等により電気的に作動し
得るものを用いても良い。
Although the above description has been made based on the illustrated example, the present invention is not limited to the above-mentioned example, and for example, a sensor offset means having a different structure or one that can be electrically operated by a motor or the like may be used. .

また、一次元光センサの数をさらに増しても良く、この
ようにすれば、反射光量が充分得られる場合やセンサの
感度が充分高い場合にはさらに測距精度を向上させるこ
とができる。
Further, the number of one-dimensional optical sensors may be further increased, and in this way, when a sufficient amount of reflected light is obtained or when the sensitivity of the sensor is sufficiently high, the distance measurement accuracy can be further improved.

(発明の効果) かくしてこの発明の測距装置によれば、コンパクトな構
成で測距精度を大幅に高めることができる。
(Effects of the Invention) Thus, according to the distance measuring device of the present invention, distance measuring accuracy can be greatly improved with a compact configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の測距装置の一実施例を示す構成図、 第2図はCCDセンサの光電素子端縁を光像端縁に重ね
た状態を示す説明図、 第3図は光電素子と光像との端縁が重なった状態での出
力信号状況を示す説明図、 第4図(a)、(b)および第5図(a)、 (b)は
距離計測時のCCDセンサ上の光像の状態を示す説明図
である。 ■・・・計測部       2・・・レーザー発光器
3・・・ビデオカメラ    5・・・対象物7・・・
受光レンズ     8・・・ハーフミラ−9,10・
・・CCDセンサ 11・・・センサオフセット機構 第2図 第3図 第4図 ビット参号
Fig. 1 is a configuration diagram showing an embodiment of the distance measuring device of the present invention, Fig. 2 is an explanatory diagram showing a state in which the edge of a photoelectric element of a CCD sensor is overlapped with the edge of an optical image, and Fig. 3 is an illustration of the photoelectric element. Figure 4 (a), (b) and Figure 5 (a), (b) are on the CCD sensor during distance measurement. FIG. 2 is an explanatory diagram showing the state of an optical image. ■...Measuring unit 2...Laser emitter 3...Video camera 5...Object 7...
Light receiving lens 8...Half mirror 9, 10.
...CCD sensor 11...Sensor offset mechanism Fig. 2 Fig. 3 Fig. 4 Bit reference

Claims (1)

【特許請求の範囲】[Claims] 1.対象物へ向けて光束を照射する光源(2)と、その
光束の、対象物からの反射光を収束させる受光レンズ(
7)と、 収束した反射光を複数に分岐させる反射光分岐手段(8
)と、 分岐した反射光の各々に対応し、当該測距装置から対象
物までの距離の変化に応じたその反射光の移動方向へ各
々延在する複数の一次元光センサ(9,10)と、 それらの一次元光センサを、互いにその延在方向へ、そ
れらの一次元光センサの識別可能な受光間隔を一次元光
センサの数で除した距離だけ位置ずれさせるセンサオフ
セット手段(11)と、を具えてなる測距装置。
1. A light source (2) that emits a beam of light toward an object, and a light receiving lens (2) that converges the reflected light of that beam from the object.
7), and a reflected light branching means (8) for branching the converged reflected light into a plurality of parts.
), and a plurality of one-dimensional optical sensors (9, 10) corresponding to each of the branched reflected lights and each extending in the direction of movement of the reflected light in response to a change in the distance from the distance measuring device to the target object. and a sensor offset means (11) for positionally shifting the one-dimensional optical sensors from each other in the direction of their extension by a distance equal to the discriminable light receiving interval of the one-dimensional optical sensors divided by the number of one-dimensional optical sensors. A distance measuring device comprising:
JP31020088A 1988-12-09 1988-12-09 Distance measuring instrument Pending JPH02157614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31020088A JPH02157614A (en) 1988-12-09 1988-12-09 Distance measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31020088A JPH02157614A (en) 1988-12-09 1988-12-09 Distance measuring instrument

Publications (1)

Publication Number Publication Date
JPH02157614A true JPH02157614A (en) 1990-06-18

Family

ID=18002384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31020088A Pending JPH02157614A (en) 1988-12-09 1988-12-09 Distance measuring instrument

Country Status (1)

Country Link
JP (1) JPH02157614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242833A (en) * 2005-03-04 2006-09-14 Nidec Copal Corp Device for detecting optical angle
TWI628415B (en) * 2017-09-13 2018-07-01 國立清華大學 Positioning and measuring system based on image scale

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242833A (en) * 2005-03-04 2006-09-14 Nidec Copal Corp Device for detecting optical angle
TWI628415B (en) * 2017-09-13 2018-07-01 國立清華大學 Positioning and measuring system based on image scale
US10535157B2 (en) 2017-09-13 2020-01-14 National Tsing Hua University Positioning and measuring system based on image scale

Similar Documents

Publication Publication Date Title
US6538751B2 (en) Image capturing apparatus and distance measuring method
US4933673A (en) Encoder
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
US5319442A (en) Optical inspection probe
US5026985A (en) Method and apparatus for detecting a reference position of a rotating scale with two sensors
JPH04369468A (en) Gloss detector
JP4215220B2 (en) Surface inspection method and surface inspection apparatus
EP0489399B1 (en) Displacement detector
CN111964699A (en) High-precision encoder based on image recognition and implementation method thereof
JPH02157614A (en) Distance measuring instrument
RU2248093C1 (en) Optoelectronic converter of position-code type
JP2544733B2 (en) Photoelectric switch
JP4401852B2 (en) Optical displacement measuring device
JPH0552517A (en) Speckle displacement meter
JP2000266567A (en) Rotary encoder
JP2671915B2 (en) Position detector for surface inspection equipment
JPH11142110A (en) Charge coupled device photodetector and distance measuring apparatus using the same
JPS6132324Y2 (en)
JPH04218707A (en) Shape detection device
JPH0552521A (en) Optical dimension measuring apparatus
JPS6232312A (en) Range finding device
JP3091276B2 (en) Displacement measuring device
JPH06241783A (en) Trigonometrical ranging photoelecrtric sensor
JP2502413B2 (en) Non-contact displacement measuring device
JPH02157613A (en) Distance measuring instrument