JPS6231317B2 - - Google Patents

Info

Publication number
JPS6231317B2
JPS6231317B2 JP54109301A JP10930179A JPS6231317B2 JP S6231317 B2 JPS6231317 B2 JP S6231317B2 JP 54109301 A JP54109301 A JP 54109301A JP 10930179 A JP10930179 A JP 10930179A JP S6231317 B2 JPS6231317 B2 JP S6231317B2
Authority
JP
Japan
Prior art keywords
tritium
bed
helium
absorbent
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54109301A
Other languages
Japanese (ja)
Other versions
JPS5633599A (en
Inventor
Hiroto Tone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP10930179A priority Critical patent/JPS5633599A/en
Publication of JPS5633599A publication Critical patent/JPS5633599A/en
Publication of JPS6231317B2 publication Critical patent/JPS6231317B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 本発明は高温ガス炉のヘリウム冷却材に含まれ
る放射性物質のトリチウムをヘリウム冷却材より
連続的に分離して圧縮貯蔵し、同時にヘリウム冷
却材を精製する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for continuously separating and compressing tritium, a radioactive substance contained in helium coolant of a high-temperature gas reactor, from the helium coolant, and simultaneously purifying the helium coolant.

高温ガス炉のヘリウム冷却材にはトリチウム以
外にクリプトン、キセノンなどの放射性物質と、
水素、O2,N2,Ar,CO2,CO,CH4,H2Oなど
の非放射性物質が不純物ガスとして含まれてい
る。これらの不純物ガスを精製する方法として従
来、H2OとCO2は吸水剤たとえばモレキユラーシ
ーブで吸着除去し、クリプトン、キセノン、
O2,N2,CO,CH4,Arなどは液体窒素冷却の活
性炭で吸着除去し、最後に残つたトリチウムとそ
の同位体の水素はトリチウム吸収剤たとえばチタ
ンスポンジで吸収除去するか、酸化銅と反応させ
て水およびトリチウム水に変えたのち吸水剤で吸
着除去する方法が行なわれてきた。この従来の方
法では、トリチウム吸収剤および吸水剤ともある
1定期間使用して、水素、トリチウム、H2Oおよ
びCO2が飽和状態にまで吸着するとトリチウム吸
収剤および吸水剤の吸着能力が低下するので、ト
リチウム吸収剤および吸水剤を再生しなければな
らず、このとき吸着していた当該不純物ガスを高
温ガス炉の1次ヘリウム冷却系より大気中に放出
しなければならなかつた。したがつて、従来技術
では、このヘリウム冷却材の精製装置の再生運転
によつてトリチウム吸収剤または吸水剤に吸着し
ていた放射性物質のトリチウムが大気中に放出さ
れ、大気中のトリチウム濃度増加の要因となり、
同時に一般住民のトリチウムによる被ばく線量の
増加にも関連するため、高温ガス炉のヘリウム冷
却材中のトリチウムの有効な回収技術の確立が要
望されていた。
In addition to tritium, the helium coolant of high-temperature gas reactors contains radioactive substances such as krypton and xenon.
Non-radioactive substances such as hydrogen, O 2 , N 2 , Ar, CO 2 , CO, CH 4 and H 2 O are included as impurity gases. Conventionally, H 2 O and CO 2 are removed by adsorption with a water absorbing agent such as a molecular sieve, and krypton, xenon, etc. are used to purify these impurity gases.
O 2 , N 2 , CO, CH 4 , Ar, etc. are removed by adsorption with activated carbon cooled with liquid nitrogen, and the remaining tritium and its isotope hydrogen are removed by absorption with a tritium absorbent such as a titanium sponge or with copper oxide. A method has been used in which the tritiated water is converted into water and tritiated water by reacting with water, and then adsorbed and removed using a water-absorbing agent. In this conventional method, when hydrogen, tritium, H 2 O and CO 2 are adsorbed to a saturated state after using the tritium absorbent and water absorbent for a period of time, the adsorption capacity of the tritium absorbent and water absorbent decreases. Therefore, the tritium absorbent and water absorbing agent had to be regenerated, and at this time, the adsorbed impurity gas had to be released into the atmosphere from the primary helium cooling system of the high-temperature gas reactor. Therefore, in the conventional technology, tritium, a radioactive substance adsorbed on the tritium absorbent or water absorbing agent, is released into the atmosphere by the regeneration operation of the helium coolant purification equipment, and the tritium concentration in the atmosphere increases. become a factor,
At the same time, there was a desire to establish an effective recovery technology for tritium in the helium coolant of high-temperature gas reactors, as this would also increase the exposure dose of tritium to the general population.

本発明の目的は、高温ガス炉のヘリウム冷却材
に含まれるトリチウムをヘリウム冷却材の精製装
置によつて吸着除去したのち精製装置の再生時に
大気中に放出しなければならないという前記従来
技術の欠点に鑑み、トリチウム吸収剤に吸収され
ている水素ならびにトリチウムをトリチウム透過
金属膜、ガス圧縮機ならびにトリチウム回収貯蔵
容器から構成される装置によつて連続的にヘリウ
ム冷却材より分離して回収し、同時にトリチウム
を大気中に放出することなしにトリチウム吸収剤
ベツドを再生する装置を提供することにある。
The object of the present invention is to solve the drawbacks of the prior art in that tritium contained in the helium coolant of a high-temperature gas reactor must be adsorbed and removed by a helium coolant purification device and then released into the atmosphere when the purification device is regenerated. In view of this, hydrogen and tritium absorbed in the tritium absorbent are continuously separated and recovered from the helium coolant by a device consisting of a tritium-permeable metal membrane, a gas compressor, and a tritium recovery storage container, and at the same time. An object of the present invention is to provide an apparatus for regenerating a tritium absorbent bed without releasing tritium into the atmosphere.

前記トリチウム透過金属膜は、パラジウム、チ
タン、ニツケル、鉄合金等の材質から成るもので
あり、特に水素ガス(トリチウム等の水素同位体
を含む)を透過することのできる性質のものが使
用されている。
The tritium permeable metal membrane is made of a material such as palladium, titanium, nickel, or an iron alloy, and is particularly made of a material that can permeate hydrogen gas (including hydrogen isotopes such as tritium). There is.

以下図面に従つて本発明を詳細に説明する。 The present invention will be described in detail below with reference to the drawings.

図は本発明の構成ならびに実施の一態様を示す
図で、図において、高温ガス炉の1次ヘリウム冷
却系出口1よりヘリウム精製系に送られた不純ガ
ス含有ヘリウムは高温熱交換器2、ガス循環機
3、中温熱交換器4を経て、吸水剤を充填した吸
水剤ベツド5え導入され、前記不純ガス含有ヘリ
ウム中のH2O,CO2が除去される。前記吸水剤ベ
ツド5でH2O,CO2が除去された不純ガス含有ヘ
リウムは低温熱交換器6を経て、液体窒素16に
より冷却された活性炭ベツド7に導入され、前記
不純ガス含有ヘリウム中のクリプトン、キセノ
ン、Ar,O2,N2,CO,CH4が除去される。この
活性炭ベツド7を通つた不純ガス含有ヘリウム中
の残存不純物はトリチウムと水素のみで、このト
リチウムと水素を含む不純ガス含有ヘリウムは低
温熱交換器6、中温熱交換器4、高温熱交換器
2、バルブ19を経てトリチウム吸収剤ベツド9
に入る。トリチウム吸収剤ベツド9はヒーター1
8により再生温度に加熱された再生条件で運転さ
れており、このトリチウム吸収剤ベツド9に吸収
されていたトリチウムおよび水素はバルブ19を
経てトリチウム吸収剤ベツド9に流入した前記不
純ガス含有ヘリウムによつてバルブ25を経てト
リチウム透過装置27の高圧側10に移送され、
トリチウム透過金属膜11を透過してトリチウム
透過装置の低圧側12に移る。トリチウム透過装
置の低圧側12に接続されたガス圧縮機13によ
つて、トリチウム透過装置の高圧側10より低圧
側12に透過した前記水素およびトリチウムはト
リチウム回収貯蔵容器14に圧縮貯蔵される。ト
リチウム透過装置の高圧側10内の前記不純ガス
含有ヘリウムはトリチウム透過金属膜11を透過
せずに残つた残存トリチウムおよび水素と共にバ
ルブ22を経てヒーター17によりトリチウム吸
収温度に加熱されているトリチウム吸収剤ベツド
8に導入され、ここで、水素およびトリチウムが
完全に吸収除去される。このトリチウム吸収温度
で運転されているトリチウム吸収剤ベツド8を通
つて完全に水素およびトリチウムが除去されて精
製されたヘリウムガスは高温ガス炉の1次ヘリウ
ム冷却系15にもどされる。
The figure shows one aspect of the configuration and implementation of the present invention. In the figure, impure gas-containing helium sent to the helium purification system from the primary helium cooling system outlet 1 of the high-temperature gas reactor is transferred to the high-temperature heat exchanger 2, The water is introduced into a water-absorbing agent bed 5 filled with a water-absorbing agent through a circulator 3 and a medium-temperature heat exchanger 4, and H 2 O and CO 2 in the impure gas-containing helium are removed. The impure gas-containing helium from which H 2 O and CO 2 have been removed in the water-absorbing agent bed 5 passes through a low-temperature heat exchanger 6 and is introduced into the activated carbon bed 7 cooled by liquid nitrogen 16. Krypton, xenon, Ar, O 2 , N 2 , CO, and CH 4 are removed. The remaining impurities in the impure gas-containing helium that has passed through the activated carbon bed 7 are only tritium and hydrogen. , via the valve 19 to the tritium absorbent bed 9
to go into. Tritium absorbent bed 9 is heater 1
The tritium and hydrogen absorbed in the tritium absorbent bed 9 are removed by the impure gas-containing helium that flows into the tritium absorbent bed 9 through the valve 19. and is transferred to the high pressure side 10 of the tritium permeation device 27 via the valve 25.
It passes through the tritium-permeable metal membrane 11 and moves to the low-pressure side 12 of the tritium-permeable device. The hydrogen and tritium that have permeated from the high pressure side 10 to the low pressure side 12 of the tritium permeation device are compressed and stored in a tritium recovery storage container 14 by a gas compressor 13 connected to the low pressure side 12 of the tritium permeation device. The impure gas-containing helium in the high-pressure side 10 of the tritium permeation device passes through the valve 22 together with the remaining tritium and hydrogen that did not pass through the tritium permeation metal membrane 11, and is heated to the tritium absorbing temperature by the heater 17. It is introduced into bed 8, where hydrogen and tritium are completely absorbed and removed. The purified helium gas from which hydrogen and tritium are completely removed is returned to the primary helium cooling system 15 of the high-temperature gas reactor through the tritium absorbent bed 8 operated at this tritium absorption temperature.

以上のべたように、2基のトリチウム吸収剤ベ
ツド8、および9のうち、トリチウム吸収剤ベツ
ド9を、吸収したトリチウムを放出する再生温度
で運転し、トリチウム吸収剤ベツド8をトリチウ
ム吸収温度で運転することにより、トリチウム吸
収剤ベツド9に吸収されていたトリチウムおよび
水素、ならびに不純ガス含有ヘリウム中のトリチ
ウムおよび水素の大部分をトリチウム透過装置2
7によつてトリチウム回収貯蔵容器14に回収し
終ると、次に、トリチウム吸収剤ベツド9をトリ
チウム吸収運転、トリチウム吸収剤ベツド8を再
生運転に切換え、バルブ19,25,22および
24を閉じ、同時にバルブ20,26,21、お
よび23を開き、トリチウム吸収剤ベツド9の温
度をトリチウム吸収温度とし、またトリチウム吸
収剤ベツド8を吸収したトリチウムを放出する再
生温度にしたのち、前記不純ガス含有ヘリウムを
バルブ20、トリチウム吸収剤ベツド8、バルブ
26、トリチウム透過装置の高圧側10と流すこ
とによつて、前記の方法でトリチウム吸収剤ベツ
ド8に吸収されているトリチウムと水素をバルブ
26を経由してトリチウム透過装置27に移送
し、トリチウム透過金属膜11を透過したトリチ
ウムをトリチウム回収貯蔵容器14に加圧貯蔵す
る。次に、前記と同様にトリチウム透過装置27
で回収できなかつた残存水素および残存トリチウ
ムは不純ガス含有ヘリウムによつてバルブ21を
経由してトリチウム吸収温度で運転されているト
リチウム吸収剤ベツド9に移送されて、ここで吸
収除去され、トリチウム吸収剤ベツド9を出た精
製ヘリウムガスは高温ガス炉の1次ヘリウム冷却
系15にもどされる。
As described above, of the two tritium absorbent beds 8 and 9, tritium absorbent bed 9 is operated at the regeneration temperature to release absorbed tritium, and tritium absorbent bed 8 is operated at the tritium absorption temperature. By doing so, most of the tritium and hydrogen absorbed in the tritium absorbent bed 9 and the tritium and hydrogen in the helium containing impure gas are transferred to the tritium permeation device 2.
When the tritium absorbent bed 9 is switched to the tritium absorption operation and the tritium absorbent bed 8 is switched to the regeneration operation, the valves 19, 25, 22 and 24 are closed. At the same time, the valves 20, 26, 21, and 23 are opened, and the temperature of the tritium absorbent bed 9 is set to the tritium absorption temperature, and after the tritium absorbent bed 8 is set to the regeneration temperature at which the absorbed tritium is released, the impure gas-containing helium is is passed through valve 20, tritium absorbent bed 8, valve 26, and high pressure side 10 of the tritium permeation device, thereby removing the tritium and hydrogen absorbed in tritium absorbent bed 8 in the manner described above. The tritium is transferred to the tritium permeation device 27, and the tritium that has permeated the tritium permeation metal membrane 11 is stored under pressure in the tritium recovery storage container 14. Next, in the same manner as above, the tritium permeation device 27
The residual hydrogen and residual tritium that could not be recovered are transferred by impure gas-containing helium via the valve 21 to the tritium absorbent bed 9 operated at the tritium absorption temperature, where they are absorbed and removed. The purified helium gas leaving the agent bed 9 is returned to the primary helium cooling system 15 of the high temperature gas reactor.

以上詳細に説明したように、本発明では高温ガ
ス炉のヘリウム冷却材である不純ガス含有ヘリウ
ムに含まれるトリチウムと水素以外のすべての不
純ガスを吸水剤と液体窒素冷却の活性炭で除去し
たのち、2基のトリチウム吸収剤ベツドの1基を
再生運転、他の1基をトリチウム吸収運転とし、
再生運転中のトリチウム吸収剤ベツドから放出さ
れたトリチウムと水素を前記の不純ガス含有ヘリ
ウムを用いてトリチウム透過装置に移送してトリ
チウムと水素をヘリウムガスより分離し、トリチ
ウムと水素のみをトリチウム回収貯蔵容器中に加
圧貯蔵し、このトリチウム透過装置で回収されず
に前記不純ガス含有ヘリウム中に残つたトリチウ
ムと水素はトリチウム吸収運転中のトリチウム吸
収剤ベツドで吸収除去して前記不純ガス含有ヘリ
ウムを精製する。次に、前記2基のトリチウム吸
収剤ベツドのうち再生運転中のトリチウム吸収剤
ベツドの再生が終了し、このトリチウム吸収剤ベ
ツドに吸収されていたトリチウムと水素の大部分
がトリチウム透過装置によつてトリチウム回収貯
蔵容器に回収されると、この再生運転中のトリチ
ウム吸収剤ベツドをトリチウム吸収運転に変更
し、他の1基のトリチウム吸収運転中のトリチウ
ム吸収剤ベツドを再生運転に切換えることによつ
て、前記と同じ方法で再生運転中のトリチウム吸
収剤ベツドから放出されたトリチウムと水素をト
リチウム透過装置によつて回収貯蔵する。
As explained in detail above, in the present invention, all impurity gases other than tritium and hydrogen contained in impure gas-containing helium, which is the helium coolant of a high-temperature gas reactor, are removed using a water absorbing agent and activated carbon cooled with liquid nitrogen. One of the two tritium absorbent beds is in regeneration operation and the other is in tritium absorption operation,
The tritium and hydrogen released from the tritium absorbent bed during regeneration operation are transferred to the tritium permeation device using the aforementioned impure gas-containing helium to separate tritium and hydrogen from the helium gas, and only tritium and hydrogen are recovered and stored. The tritium and hydrogen remaining in the impure gas-containing helium without being recovered by the tritium permeation device are absorbed and removed by the tritium absorbent bed during the tritium absorption operation to remove the impure gas-containing helium. refine. Next, the regeneration of the tritium absorbent bed in the regeneration operation of the two tritium absorbent beds is completed, and most of the tritium and hydrogen absorbed in this tritium absorbent bed are removed by the tritium permeation device. When the tritium is recovered in the tritium recovery storage container, the tritium absorbent bed in the regeneration operation is changed to the tritium absorption operation, and the tritium absorbent bed in the other tritium absorption operation is switched to the regeneration operation. In the same manner as described above, tritium and hydrogen released from the tritium absorbent bed during regeneration operation are recovered and stored by a tritium permeation device.

このように、本発明では2基のトリチウム吸収
剤ベツドを交互に再生運転とトリチウム吸収運転
に切換え、これら2基のトリチウム吸収剤ベツド
と接続したトリチウム透過装置を用いて、従来困
難であつた高温ガス炉のヘリウム冷却材に含まれ
る抵濃度のトリチウムを効率よく経済的に回収し
貯蔵する。従来の高温ガス炉のヘリウム冷却材の
精製技術では、高温ガス炉の運転中に発生する放
射性物質のトリチウムの大部分はヘリウム冷却材
精製装置の再生運転時に大気中に放出されるの
で、このことが大気中のトリチウムの濃度増大
と、一般住民の被ばく線量の増加の1つの要因と
なつていた。本発明によつて高温ガス炉の運転中
に発生するトリチウムをヘリウム冷却材より分離
して効率よく経済的に回収貯蔵することが可能と
なるので、高温ガス炉の運転にともなつて大気中
に放出されるトリチウム量を大巾に低減させるこ
とができ、したがつて大気中のトリチウム濃度を
低下させ、同時に地球上に生存するすべての生物
のうける放射線量を低下させることになるので、
本発明の効果は多大である。
In this way, in the present invention, two tritium absorbent beds are alternately switched to regeneration operation and tritium absorption operation, and a tritium permeation device connected to these two tritium absorbent beds is used to achieve high temperature To efficiently and economically recover and store low-concentration tritium contained in helium coolant of a gas furnace. With conventional helium coolant refining technology for high-temperature gas reactors, most of the radioactive material tritium generated during the operation of high-temperature gas reactors is released into the atmosphere during regeneration operations of the helium coolant purification equipment, so this is a problem. was one of the factors contributing to the increase in the concentration of tritium in the atmosphere and the increase in the exposure dose to the general population. According to the present invention, tritium generated during the operation of a high-temperature gas reactor can be separated from the helium coolant and recovered and stored efficiently and economically. This would greatly reduce the amount of tritium released, thus reducing the concentration of tritium in the atmosphere and, at the same time, reducing the radiation dose to all living things on Earth.
The effects of the present invention are significant.

なお、本発明におけるトリチウム吸収剤ベツド
の基数は、前記の構成ならびに実施の一態様を示
す図に示した2基に限らず、3基以上を設置して
相互に再生ならびにトリチウム吸収運転と切換え
てもよいことはもちろんである。
Note that the number of tritium absorbent beds in the present invention is not limited to the two shown in the diagrams showing the configuration and implementation mode described above, but it is also possible to install three or more beds and mutually switch between regeneration and tritium absorption operations. Of course it's a good thing.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、高温ガス炉の1次ヘリウム冷却材に含ま
れているトリチウムを連続してヘリウム冷却材よ
り分離して回収し、加圧貯蔵するための装置に関
する本発明の構成ならびに実施の一態様を示す図
で、図中の1は高温ガス炉の1次ヘリウム冷却系
の出口、2は高温熱交換器、3はガス循環機、4
は中温熱交換器、5は吸水剤ベツド、6は低温熱
交換器、7は活性炭ベツド、8,9はトリチウム
吸収剤ベツド、10はトリチウム透過装置の高圧
側、11はトリチウム透過金属膜、12はトリチ
ウム透過装置の低圧側、13はガス圧縮機、14
はトリチウム回収貯蔵容器、15は高温ガス炉の
1次ヘリウム冷却系の入口、16は液体窒素、1
7,18は加熱ヒーター、19,22,24,2
5はバルブで図では開いた状態を示し、20,2
1,23,26はバルブで図では閉じた状態を示
し、27はトリチウム透過装置を示す。
The figure shows an embodiment of the configuration and implementation of the present invention regarding an apparatus for continuously separating tritium contained in the primary helium coolant of a high-temperature gas reactor, recovering it from the helium coolant, and storing it under pressure. In the figure, 1 is the outlet of the primary helium cooling system of the high-temperature gas reactor, 2 is the high-temperature heat exchanger, 3 is the gas circulator, and 4 is the
1 is a medium temperature heat exchanger, 5 is a water absorbent bed, 6 is a low temperature heat exchanger, 7 is an activated carbon bed, 8 and 9 are tritium absorbent beds, 10 is a high pressure side of a tritium permeation device, 11 is a tritium permeation metal membrane, 12 is the low pressure side of the tritium permeation device, 13 is the gas compressor, 14
15 is the inlet of the primary helium cooling system of the high-temperature gas reactor; 16 is liquid nitrogen; 1 is the tritium recovery storage container;
7, 18 are heating heaters, 19, 22, 24, 2
5 is a valve, shown in the open state in the figure, 20, 2
Numerals 1, 23, and 26 are valves shown in a closed state, and 27 is a tritium permeation device.

Claims (1)

【特許請求の範囲】 1 (a) ガス循環器3と; (b) このガス循環器3と配管で接続された吸水剤
ベツド5と; (c) この吸水剤ベツド5と配管で接続され、液体
窒素16により冷却される活性炭ベツド7と; (d) この活性炭ベツド7とバルブを介して配管で
接続され、加熱ヒーター18によつて加熱され
るトリチウム放出運転中のトリチウム吸収剤ベ
ツド9および加熱ヒーター17によつて加熱さ
れるトリチウム吸収運転中のトリチウム吸収剤
ベツド8と; (e) これらトリチウム吸収剤ベツド8および9と
バルブ19,20,21,22,23,24,
25および26を介して配管で接続された、高
圧側10、トリチウム透過金属膜11および低
圧側12を備えたトリチウム透過装置27と; (f) このトリチウム透過装置27の低圧側12に
配管で接続されたガス圧縮機13と; (g) トリチウム回収貯蔵容器14と から構成された高温ガス炉のヘリウム冷却材の精
製装置であつて、 トリチウム吸収剤ベツド8および9を交互にト
リチウム放出運転とトリチウム吸収運転とに切り
換え運転することのより、当該ヘリウム冷却材に
含まれる不純物ガスのトリチウムおよびその同位
体の水素をトリチウム吸収剤ベツド8または9で
濃縮した後、連続してトリチウム透過装置27に
おいてヘリウム冷却材と分離してトリチウムおよ
び水素を回収貯蔵することを特徴とする装置。 2 トリチウム吸収剤ベツドを3基以上設置した
特許請求の範囲第1項に記載の装置。
[Claims] 1 (a) A gas circulator 3; (b) A water absorbent bed 5 connected to the gas circulator 3 through piping; (c) A water absorbent bed 5 connected to the water absorbent bed 5 through piping; an activated carbon bed 7 cooled by liquid nitrogen 16; (d) a tritium absorbent bed 9 connected to this activated carbon bed 7 via piping via a valve and heated by a heating heater 18 during a tritium release operation; Tritium absorbent bed 8 during tritium absorption operation heated by heater 17; (e) These tritium absorbent beds 8 and 9 and valves 19, 20, 21, 22, 23, 24,
a tritium permeation device 27 comprising a high pressure side 10, a tritium permeable metal membrane 11 and a low pressure side 12, connected by piping via 25 and 26; (f) connected by piping to the low pressure side 12 of this tritium permeation device 27; (g) a helium coolant refining device for a high-temperature gas reactor, comprising a tritium recovery and storage vessel 14; By switching to absorption operation, the impurity gas tritium and its isotope hydrogen contained in the helium coolant are concentrated in the tritium absorbent bed 8 or 9, and then the helium is continuously transferred to the tritium permeation device 27. A device that collects and stores tritium and hydrogen separately from the coolant. 2. The device according to claim 1, wherein three or more tritium absorbent beds are installed.
JP10930179A 1979-08-28 1979-08-28 Purifier capable of continuous recovery of tritium*used for helium cooling medium for highhtemperature gas furnace Granted JPS5633599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10930179A JPS5633599A (en) 1979-08-28 1979-08-28 Purifier capable of continuous recovery of tritium*used for helium cooling medium for highhtemperature gas furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10930179A JPS5633599A (en) 1979-08-28 1979-08-28 Purifier capable of continuous recovery of tritium*used for helium cooling medium for highhtemperature gas furnace

Publications (2)

Publication Number Publication Date
JPS5633599A JPS5633599A (en) 1981-04-04
JPS6231317B2 true JPS6231317B2 (en) 1987-07-07

Family

ID=14506711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10930179A Granted JPS5633599A (en) 1979-08-28 1979-08-28 Purifier capable of continuous recovery of tritium*used for helium cooling medium for highhtemperature gas furnace

Country Status (1)

Country Link
JP (1) JPS5633599A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987022A (en) * 1982-11-08 1984-05-19 Kawasaki Heavy Ind Ltd Method and apparatus for removing tritium in cooling material of high temperature gas furnace
JPS6044020A (en) * 1983-08-19 1985-03-08 Japan Atom Energy Res Inst Apparatus for removing hydrogen gas in high temperature and high pressure steam
JPS6070398A (en) * 1983-09-27 1985-04-22 日本原子力研究所 Method and device for removing tritium
JPH0631829B2 (en) * 1987-02-23 1994-04-27 住友重機械工業株式会社 Method and apparatus for recovering and reusing hydrogen isotope gas

Also Published As

Publication number Publication date
JPS5633599A (en) 1981-04-04

Similar Documents

Publication Publication Date Title
US4704267A (en) Production of hydrogen from ammonia
US3501923A (en) Process for decontaminating radioactive fluids
US3944646A (en) Radioactive krypton gas separation
JP5392745B2 (en) Xenon concentration method, xenon concentration device, and air liquefaction separation device
JPS6231317B2 (en)
JPS63305924A (en) Method and apparatus for purifying gas containing hydrogen isotope
JPS6156009B2 (en)
EP0032949A4 (en) Method for treating a nuclear process off-gas stream.
US4696806A (en) Metal hydride adsorption process for hydrogen purification
GB2187973A (en) Process and apparatus for decontaminating exhaust gas from a fusion reactor fuel cycle
Willms et al. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium
Beloglazov et al. Semi-technical cryogenic molecular sieve bed for the tritium extraction system of the test blanket module for ITER
CN214671851U (en) Sodium-cooled fast reactor primary loop argon purification device
JPH02112796A (en) Device for treating radioactive gaseous waste
JPH0746160B2 (en) Tritium removal equipment
JP7319830B2 (en) Nitrogen production method and apparatus
JPH0531331A (en) Separation of hydrogen isotope
JPS5853760B2 (en) Tritium water vapor removal method
JPS6359339A (en) Heat recovery method in carbon dioxide removing apparatus
JPH0377626A (en) Device for refining hydrogen isotope
JPS6268530A (en) Apparatus for removing tritium water
JPS624432A (en) Gas purification device
JPH0692605A (en) Recovery and purification of hydrogen and equipment therefor
JPS6244973Y2 (en)
CN113096842A (en) Sodium-cooled fast reactor primary loop argon purification device